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Introduction

Psoriasis is one of the most prevalent immune-related 
skin diseases (1). Inside the psoriasis microenvironment, 
dendritic cells (DCs) can produce certain interleukins such 
as interleukin (IL)-23 and IL-12 to recruit T cell subtypes, 
which in turn release interferon γ (IFN-γ) or tumor necrosis 

factor (TNF) and generate the inflammation (2). Recent 
high-throughput single-cell RNA-sequencing (scRNA-
seq) data showed that T helper 17 (Th17) cells displayed 
distinct transcriptome profiles in the psoriasis niche (3). 
Further computational evidence showed that the immune 
microenvironment of psoriasis was strongly associated 
with the skin phenotypes and clinical outcomes (4). All 
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those results highlight the fundamental role of the immune 
microenvironment in controlling the fate of psoriasis 
initiation and progression.

The abnormal metabolic activity of immune cells inside 
the tissue microenvironment was strongly linked with 
disease progression. For example, we recently developed the 
scMetabolism pipeline and showed that macrophage subsets 
are metabolically remodeled during cancer metastasis (5). 
Inside the tumor, regulatory T (Treg) cells can flexibly 
reprogram their metabolic profile and help cancer cell 
survive with the aid of lactic acid and lipid signaling (6,7). 
As for autoimmune diseases, Th17 cells switch between 
glycolysis and beta oxidation (8). Interestingly, clinical 
evidence showed that psoriasis patients showed a higher 
incidence of altered metabolic status (9,10). Those data 
allowed us to hypothesize that inflammatory skin disease 
may also show altered immunometabolism imprinted by the 
tissue microenvironment.

Here, by utilizing the state-of-the-art scRNA-seq data, 
we systematically compared the immune microenvironment 
difference between psoriasis and normal skin tissues. 
We observed a broad spectrum of immune cells with 
notably altered pathway activity especially oxidative 
phosphorylation. In particular, glycolysis and fatty acid 
metabolism were significantly enhanced in exhausted CD8 
T cells. Our work uncovered the immunometabolism 
landscape of psoriasis microenvironment and indicated 
the potential treatments for targeting this disease. We 
present the following article in accordance with the MDAR 
reporting checklist (available at https://atm.amegroups.
com/article/view/10.21037/atm-22-1810/rc).

Methods

Data source and data availability

The scRNA-seq data (barcodes, features, and matrix of 
gene expression) was downloaded from Gene Expression 
Omnibus (ID: GSE151177; GSE41664. https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE151177; https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSE41664). 
All data and code are available by request.

scRNA-seq quality control, processing, and visualization

Seurat (V4.0) (11) was used to create the gene expression 
matrix object (min.cells =3, min.features =200). Then, data 
normalization, variable feature identification, data scaling, 

and principal component analysis (PCA) were performed. 
Harmony (12) was further used to integrate all cells based 
on the sample ID. Next, dimensional reduction and 
clustering analysis were performed on all cells (reduction = 
“harmony”, dims =1:20) and only the CD45+ cell clusters 
were kept. The “dittoSeq” package was used to visualize the 
cell type proportion across conditions (13). 

Cell type annotation

The main cell types of CD45+ cells were annotated by 
using the marker of CD3D, LYZ, KLRF1, and LAMP3 
for the identification of T cells, myeloid cells, natural 
killer (NK) cells, and DCs, respectively as we and others 
described before (3,5). SingleR was also utilized to confirm 
the main cell type identification (14). The CD8 T cell 
subsets and CD4 T cell subsets were further annotated. In 
detail, 6 distinct clusters were observed for CD4 T cells. 
The top markers are CCL5, CCD7, FOXP3, LTB, SELL, 
and KLRB1. We hence define them into CCL5+ CD4 T 
cells, CCR7+GPR183+ CD4 T cells, FOXP3+ Treg cells, 
LTB+ CD4 T cells, naive CD4 T cells, and Th17 cells. As 
for CD8 T cells, we observed 5 distinct clusters for CD8 
T cells. The top markers are CTLA4, GZMB, GZMK, 
SLC4A10, and SELL. They were hence defined into 
CTLA4+ CD8 T cells, GZMB+ CD8 T cells, GZMK+ CD8 
T cells, MAIT cells, and naive CD8 T cells. 

Cell trajectory inference

Monocle2 was utilized to infer the trajectory of T cells 
between conditions. In detail, only GZMB+ CD8 T cells, 
CTLA4+ CD8 T cells, GZMK+ CD8 T cells, naive CD8 T 
cells were kept to infer the trajectory. The top 500 variable 
genes were reserved to perform downstream analysis. 
The reduceDimension function was used to construct the 
trajectory (max_components =2, auto_param_selection = T, 
method = “ICA”). 

Single-cell metabolism quantification

The “scMetabolism” package was used to compute the 
single cell metabolic activity of T cells. In detail, the 
method was set as “VISION” and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) metabolic gene sets were 
used for analysis (5). The function DotPlot.metabolism was 
used for visualization.

https://atm.amegroups.com/article/view/10.21037/atm-22-1810/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-1810/rc
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE151177
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE151177
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSE41664
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSE41664
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Pathway enrichment analysis

The “clusterprofiler” package was used to performed the 
gene enrichment analysis (15). The KEGG and hallmark 
gene sets were set as input (16). 

Statistical analysis

Wilcox test and spearman correlation test was used.

Ethical statement

This paper is a data analysis paper based on open access 
data, hence the ethics approval is not required. The study 
was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Results

Charting the immune profile of psoriasis at the single cell 
level

To understand the immune cell landscape at the single-cell 
level, we retrieved the scRNA-seq data of 10x Genomics 
Chromium Single Cell platform as is described before (3) 
(see Methods). We split out the immune cells [defined as 
CD45+ cells as we described before (5)] and integrated all 
cells by utilizing harmony (Figure 1A) (12). On average, an 
average of 1,777 genes could be detected in each cell and a 
total of 7,944 cells were included for analysis. To annotate the 
immune cell types, we combined the SingleR (14) and manual 
annotation based on markers (Figure 1B) as we described 
before (5). In general, we observed the rich enrichment of 
diverse immune cell types (Figure 1C) such as myeloid cells 
(n=2,033), T cells (n=4,646; CD8 T cells, n=1,607; CD4 
T cells, n=3,039), NK cells (n=565), and DC cells (n=700), 
which is consistent with the original annotation (3). We 
next compared the cellular proportion of main immune cell 
types between normal and psoriasis groups. Interestingly, 
the T cells showed higher infiltration level inside the 
psoriasis (59.7% vs. 38.7%, Figure 1D). This result indicated 
the immune microenvironment of psoriasis is potentially 
distinct from the normal skin. We hence performed the 
unsupervised clustering of the pseudo-bulk transcriptional 
profiles of immune cells in each sample (Figure 1E,1F). 
As expected, control samples were clustered into single 
cluster while most psoriasis samples were classified into 
other clusters. Further PCA of pseudo-bulk CD45+ cells 
also indicate the specific transcriptional profile of psoriasis 

immune microenvironment. We further utilized the too-
many-cell algorithm and observed the unique clustering 
result of psoriasis compared with normal controls (Figure 
1G). In summary, all those data indicated that the immune 
profile of psoriasis niche is largely different from normal 
controls.

Heterogeneous T cell subtypes and states inside the psoriasis 
microenvironment

Due to the higher proportion of T cells inside the psoriasis, 
we next split the T cells out and annotate their subset cell 
types manually. We performed the unsupervised clustering 
analysis of CD4/CD8 T cells, computed their highly 
expressed genes, and annotate them according to their 
markers (Figure 2A,2B). As for the CD4 T cells, we observed 
a high fraction of CCL5+ CD4 T cells (n=1,213). The 
immunosuppressive cells, FOXP3+ Treg cells, also harbored 
rich infiltration (Figure 2C,2D). As for the CD8 T cells, we 
also observed the high diversity of different cell subsets such 
as naive CD8 T cells, GZMB+ CD8 T cells, GZMK+ CD8 
T cells, and CTLA4+ CD8 T cells (Figure 2E,2F). Those 
results led us to compare the T cell composition difference 
between normal and psoriasis samples (Figure 2G). As 
a result, the psoriasis skin exhibited higher infiltration 
level of CCR7+GPR183+ CD4 T cells and GZMK+ CD8  
T cells. The immunosuppressive cells such as Treg cells 
and CTLA4+ CD8 T cells also showed higher infiltration 
in psoriasis skin samples. All those results highlighted the 
heterogeneity of immune microenvironment of psoriasis 
and implied the potential key role of T cells especially the 
suppressive T cells in psoriasis development. 

Suppressive T cells undergo extensive reprogramming 
imprinted by psoriasis

To understand how the suppressive T cells underwent 
reprogramming during psoriasis, we first compared the 
cellular proportion of immunosuppressive cells between 
normal and psoriasis samples. Strikingly, we observed the 
significant upregulated infiltration level of FOXP3+ Treg 
cells and CTLA4+ CD8 cells inside the psoriasis tissues 
(Figure 3A), which is partly in agreement with previous 
reports (17). To validate the immunosuppressive cell 
enrichment, we examined the gene signature in another 
cohort. In consistency with the scRNA-seq data, we 
observed that exhausted T cell signature is significantly 
higher in lesioned region and is decreased after the 
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Figure 1 The immune profile of psoriasis at the single cell level. (A) The UMAP plot showing the dimensional reduction of immune cell 
transcriptome according to the patient number. (B) The upregulated gene expression profile of each cell types. (C) The UMAP plot showing 
the dimensional reduction of immune cell transcriptome according to the main immune cell types. (D) The proportional difference of 
T cells and other immune cells between psoriasis and normal skins. (E) The unsupervised clustering of single cell gene expression of all 
samples. (F) Principal component analysis based on pseudo-bulk gene expression profile of each sample. (G) Clustering analysis shows the 
distinct transcriptomics architecture between psoriasis and normal skin samples. UMAP, Uniform Manifold Approximation and Projection; 
DCs, dendritic cells; NK, natural killer; PC, principal component.

etanercept treatment (Figure S1). Such observation further 
explained the immune microenvironment dynamics 
along with psoriasis initiation and progression. Given 
the high proportion of those immunosuppressive cells, 

we next investigated the phenotypic difference of T cells 
between normal and psoriasis samples. We performed 
the phenotypic scoring of naiveness and cytotoxicity of 
all T cells and observed the significantly enhanced T cell 

https://cdn.amegroups.cn/static/public/ATM-22-1810-Supplementary.pdf
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Figure 2 Heterogeneous T cell populations inside the psoriasis niche. (A) The upregulated gene expression profile of CD8 T cells. (B) 
The upregulated gene expression profile of CD4 T cells. (C) The UMAP plot showing the dimensional reduction of CD4 T cell subsets 
according to cell types. (D) The UMAP plot showing the dimensional reduction of CD8 T cell subsets according to cell types. (E) Clustering 
analysis shows the transcriptomics architecture of CD4 T cells. (F) Clustering analysis shows the transcriptomics architecture of CD8 T 
cells. (G) The proportional difference of T cell subsets between psoriasis and normal skins. UMAP, Uniform Manifold Approximation and 
Projection; NK, natural killer; Th17, T helper 17; Treg, regulatory T.

phenotyping in psoriasis (Figure 3B). To fully capture 
the unbiased molecular difference between normal and 
psoriasis samples, we performed the differential expression 

analysis of all CD8 T cells between normal and psoriasis 
samples and computed the pathway enrichment analysis. 
Interestingly, CD8 T cells infiltrated in psoriasis skins were 
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Figure 3 T cells undergo phenotypic and state reprogramming of the psoriasis microenvironment. (A) The proportion difference of 
FOXP3+ Treg cells and CTLA4+ CD8 T cells between psoriasis and normal skins. (B) The phenotypic difference of T cells between psoriasis 
and normal skins. (C) Pathway enrichment analysis of T cells between psoriasis and normal skins. (D) The trajectory of T cell subsets 
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enriched with higher activity of oxidative phosphorylation 
but low activity of TNF-α (Figure 3C). These data 
indicated the potential role of metabolic regulation in 
psoriasis immune microenvironment. Next, we used the 
“monocle” package to trace the developmental trajectory 
of CD8 T cells. The results showed that naïve CD8 T cells 
developed into two branches including cytotoxic CD8 T 
cells (i.e., GZMB+ CD8 T cells) and exhausted CD8 T 
cells (i.e., CTLA4+ CD8 T cells), indicating the potential 
differentiation lineage of CD8 T cells imprinted by the 
psoriasis microenvironment (Figure 3D). In summary, these 
results highlighted suppressive T cells potentially undergo 
extensive phenotypic and state reprogramming imprinted 
by psoriasis.

Rewired intercellular network reprogramming driven by 
psoriasis

Given the altered immune cell states and phenotypes inside 
the psoriasis niche, we next investigated whether such 
reprogramming can drive the altered cell-cell crosstalk. 
We first computed the incoming and outgoing signaling 

intensity of all immune cells. As a result, cytotoxic T cells 
such as GZMK+ CD8 T cells and GZMB+ CD8 T cells 
showed the top incoming ligand-receptor incoming intensity 
(Figure 4A). On the contrary, memory CD4 T cells showed 
the highest outgoing. Of note, the suppressive immune 
cells including CTLA4+ CD8 T cells and Treg cells showed 
intermediate incoming and outgoing signaling intensity. To 
understand the detailed signaling pathways, we computed 
all 16 ligand-receptor pathways and ranked them according 
to their overall intensity (Figure 4B,4C). As a result, MIF, 
GALECTIN, CCL, and CXCL showed the top activation 
intensity. CCL is potentially conserved across all outgoing 
signaling patterns, while CXCL is specifically active in 
certain cell types such as CTLA4+ exhausted CD8 T cells. 
These data led us to hypothesize CXCL and CCL pathways 
may play fundamental roles in psoriasis microenvironment 
formation. We hence performed the CCL/CXCL signaling 
pathway network analysis between all immune cells. 
Interestingly, CTLA4+ CD8 T cells can serve as the sender 
of CXCL pathway and interact with GZMB+ CD8 T cells 
(Figure 4D,4E). Among all ligand-receptor pairs, CXCL13-
CXCR3 showed the highest interaction score and is 
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Figure 4 Distinct intercellular crosstalk programs drive psoriasis immune reprogramming. (A) Incoming and outgoing signaling strength 
of all immune cell types in psoriasis samples. (B) The outgoing signaling patterns of all immune cell types in psoriasis samples. (C) The 
incoming signaling patterns of all immune cell types in psoriasis samples. (D) CXCL signaling pathway network of all immune cell types 
in psoriasis samples. (E) CCL signaling pathway network of all immune cell types in psoriasis samples. (F) The CXCL13-CXCR3 ligand-
receptor dynamics of all immune cell types in psoriasis samples. Treg, regulatory T; NK, natural killer; Th17, T helper 17.

associated with the wide crosstalk between exhausted T cells 
and cytotoxic T cells (Figure 4F). Collectively, all these data 
highlighted the rewired cellular crosstalk network linked 
with psoriasis and indicated the central role of exhausted T 
cells in driving intercellular crosstalk.

Hot immunometabolism of T cells inside the psoriasis niche

To explore the metabolic state switching between psoriasis 

and normal skins, we utilized the “scMetabolism” package 
that we developed before (5) to quantify the metabolic 
activity of single T cells. We first filtered the metabolic 
pathways according to their variability (top 50% variable 
pathways) and compared their activity between different 
immune cell subsets. As a result, we observed the diverse 
metabolic profile across different T cell subsets (Figure 5A).  
For  example ,  we  observed  the  h igh  g lyco ly s i s /
gluconeogenesis activity of LTB+ CD4 T cells, FOXP3+ 
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Treg, and Th17 cells inside the psoriasis, while such 
glycolytic activity is lower in normal skin enriched cells 
such as GZMB+ CD8 T cells. Pyruvate metabolism, the 
final product of glycolysis, also exhibited similar metabolic 
profile spanning all T cells. We next explored the overall 
metabolic activity of all T cells and ranked their scores. 
Interestingly, the psoriasis-infiltrated T cells showed 
overall higher metabolic activity while the normal skin 
enriched T cells are metabolically cold. In detail, the 
immunosuppressive T cells inside the psoriasis such as 
FOXP3+ Treg cells and CTLA4+ CD8 T cells showed the 
higher rankings among all T cells (Figure 5B), indicating 
that psoriasis microenvironment may imprint the unique 
metabolic profile of infiltrated T cells. In summary, the 
immunometabolism of T cells inside the psoriasis niche 
is generally fueled up and the immunosuppressive cells 
showed higher metabolic activity, raising up the possibility 
of targeting such unique cell types to fight against psoriasis.

Discussion

In this work, we utilized the single-cell transcriptomics data 
and observed the inflamed immune microenvironment of 
psoriasis. In particular, psoriasis tissues exhibited higher 
suppressive T cell subsets such as exhausted T cells and 
Treg cells. Those cells were featured with high metabolic 
activity and broad spectrum of metabolic enzyme activation. 
Our results highlighted the unique niche formed by such 
disease and raised the possibility of targeting the specific 
immunometabolism to fight against psoriasis.

The immune microenvironment of psoriasis is unique 
compared to the normal skins. For example, a retrospective 
study composed of 1,145 skin samples showed that 
psoriatic microenvironment can be clustered into two 
distinct immunophenotypes (4). Such immunophenotype 
can effectively predict the drug responsive patterns and 
tightly associate with clinical outcomes. Our data showed 
that immunosuppressive cells are significantly enriched in 

Figure 5 The immunometabolism of T cells of psoriasis and normal skins. (A) The metabolic profile infiltrated T cells of psoriasis and 
normal skins. The top 50% variable metabolic pathways were included for analysis. (B) The overall metabolic score rankings of infiltrated 
T cells of psoriasis and normal skins. Treg, regulatory T; NK, natural killer; Th17, T helper 17; GB, glycosaminoglycan biosynthesis; TCA, 
tricarboxylic acid; CoA, coenzyme A.
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psoriatic microenvironment. Beyond those findings, we 
also observed that CCR7+GPR183+ CD4 cells or GZMK+ 
CD8 cells were enriched in psoriatic microenvironment 
while GZMB+ CD8 cells were decreased, although these 
alterations did not reach the statistical significance. Such 
divergence of immunosuppressive cells (CTLA4+ CD8 
T cells) and cytotoxic cells (GZMB+ CD8 T cells) also 
explained the suppressive microenvironment switching 
during psoriasis progression.

Immune metabolism was recently reported to be 
necessary to drive specific immune lineage differentiation 
and support immune protection or pathogenic responses (18). 
For example, we and others recently showed that unique 
immune subsets such as MRC1+CCL18+ macrophages (5)  
and FOXP3+ Treg cells (6) can undergo metabolic 
remodelling during cancer progression or metastasis. Those 
evidence drove us to hypothesize that the unique ecosystem 
of psoriasis may also imprint certain immune subset states 
and enforces their functional specialization. Our results 
showed that immunosuppressive cells such as Treg cells and 
exhausted T cells exhibited higher metabolic activity (i.e., 
glycolysis). These data indicated that further experimentally 
inhibiting glycolytic metabolism of exhausted immune cells 
may balance the disrupted ecosystem of skin. 

Our study did have some limitations. In this study, 
almost all results are descriptive rather than casual. Further 
experimental validation is required to prove that such state 
shift of T cells is the causal reason underlying psoriasis or 
the result of psoriasis progression. 

In summary, our work provided detailed evidence 
regarding the unique immune ecosystem of psoriasis and 
revealed how psoriasis microenvironment contribute to 
inframammary skin disease. These data not only helped 
us understand how immune metabolism is regulated 
under the condition of psoriasis, but also opened new 
opportunities for targeting metabolism in treating such 
skin diseases.
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BA

Figure S1 Suppressive T cell dynamics during psoriasis progression and treatment. (A) Treg cell gene signature score of non-lesions, pre-
treatment of etanercept, post-treatment of etanercept at week 1, post-treatment of etanercept at week 2, post-treatment of etanercept at 
week 4. (B) T cell exhaustion gene signature score of non-lesions, pre-treatment of etanercept, post-treatment of etanercept at week 1, post-
treatment of etanercept at week 2, post-treatment of etanercept at week 4. Treg, regulatory T.
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