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Background and Objective: The coronavirus disease of 2019 (COVID-19) is highly infectious and 
mainly involves the respiratory system, with some patients rapidly progress to acute respiratory distress 
syndrome (ARDS), which is the leading cause of death in COVID-19 patients. Hence, fully understanding 
the features of COVID-19-related ARDS (CARDS) and early management of this disease would improve 
the prognosis and reduce the mortality of severe COVID-19. With the development of recent studies 
which have focused on CARDS, whether CARDS is “typical” or “atypical” ARDS has become a hotly  
debated topic.
Methods: We searched for relevant literature from 1999 to 2021 published in PubMed by using the 
following keywords and their combinations: “COVID-19”, “CARDS”, “ARDS”, “pathophysiological 
mechanism”, “clinical manifestations”, “prognosis”, and “clinical trials”. Then, we analyzed, compared and 
highlighted the differences between classic ARDS and CARDS from all of the aspects above.
Key Content and Findings: Classical ARDS commonly occurs within 1 week after a predisposing cause, 
yet the median time from symptoms onset to CARDS is longer than that of classical ARDS, manifesting 
within a period of 9.0–12.0 days. Although the lung mechanics exhibited in CARDS grossly match those of 
classical ARDS, there are some atypical manifestations of CARDS: the severity of hypoxemia seemed not to 
be proportional to injury of lung mechanics and an increase of thrombogenic processes. Meanwhile, some 
patients’ symptoms do not correspond with the extent of the organic injury: a chest computed tomography 
(CT) will reveal the severe and diffuse lung injuries, yet the clinical presentations of patients can be mild.
Conclusions: Despite the differences between the CARDS and ARDS, in addition to the treatment of 
antivirals, clinicians should continue to follow the accepted evidence-based framework for managing all 
ARDS cases, including CARDS.
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Introduction

The coronavirus disease of 2019 (COVID-19), caused 
by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), is an ongoing global pandemic (1-3). 
Predominantly, COVID-19 patients experience mild 
clinical symptoms; however, 19% of those infected 
could experience severe or fatal symptoms, particularly 
COVID-19-related acute respiratory distress syndrome  
(CARDS) (4). It seems that CARDS is the main cause of 
death for COVID-19 patients. Hence, a research emphasis 
has been placed on the pathogenesis, clinical manifestations, 
and prognostic factors of CARDS. With the development of 
such studies, controversy has emerged surrounding whether 
CARDS is simply “typical” acute respiratory distress 
syndrome (ARDS), or is a particular subtype of ARDS with 
“atypical” pathophysiological and clinical features. It is 
increasingly inferred that CARDS might be different from 
other viral-driven related phenotypes. In a matched cohort 
study, Chiumello et al. demonstrated arterial oxygen partial 
pressure/fractional inspired oxygen (PaO2/FiO2) ratio 
was related to the proportion of non-aerated lung tissue 
in patients with “typical” ARDS, while there was no such 
correlation in CARDS patients. Furthermore, in CARDS, 
the severity of hypoxemia seemed not to be proportional 
to injury of lung mechanics, which was another point of 
distinction from classic ARDS (5). However, despite the 
above differences, there have been no study suggesting 
that the standard approaches used to manage classic ARDS 
should be modified for the management of CARDS. Rather, 
recent study has asserted that clinicians should continue 
to follow the accepted evidence-based framework for 
managing all ARDS cases, including CARDS (6). However, 
management approaches for CARDS are continually 
evolving with the accumulation of clinical experience (7). In 
this study, we capture the current understanding of CARDS, 
including pathophysiological mechanism, manifestations, 
diagnosis and differential diagnosis, treatment, as well as 
management and prognosis biomarkers. We further highlight 
and elucidate the differences between typical ARDS and 
atypical CARDS from the above aspects. We present the 
following article in accordance with the Narrative Review 
reporting checklist (available at https://atm.amegroups.com/
article/view/10.21037/atm-22-3717/rc).

Methods

The present study was conducted through the digital 

libraries of West China Hospital, Sichuan University, 
Jiangsu, China. We collected the associated literature about 
the pathophysiological mechanism, clinical manifestations, 
diagnosis, treatment, as well as the management and 
prognosis biomarkers of CARDS. All the data were 
collected from National Center for Biotechnology 
Information (NCBI) database, PubMed. For data collection, 
we used some Medical Subject Headings (MeSH) terms 
and their combinations in title/abstract: “COVID-19”, 
“CARDS”, "ARDS", “pathophysiological mechanism”, 
“clinical manifestations”, “prognosis biomarkers”, and 
“clinical trials”. Table 1 describes the study sequence and 
details.

Mechanism of CARDS

Although the lung mechanics exhibited in CARDS 
grossly match those of classical ARDS (8), there are 
some atypical manifestations of CARDS (Figure 1): the 
separation between the maintenance of relatively good 
respiratory mechanics and the severity of the hypoxemia 
and an increase of thrombogenic processes (9-11). Based 
on different pathophysiology, patients with CARDS are 
divided into two phenotypes: L phenotype, with almost 
normal lung compliance, and H phenotype, with reduced 
lung compliance (12).

The hypoxemia caused by the L phenotype is likely 
attributed to a pulmonary vascular dysregulation leading 
to a mismatched ratio of ventilation to perfusion rather 
than an inherent problem of the pulmonary alveoli (10,13). 
This is probably related to the binding properties of SARS-
CoV-2 and the angiotensin-converting enzyme 2 (ACE2) 
receptors of endothelial cells and arterial smooth muscle 
cells. Type L patients are responsive to the increase of FiO2 
to reverse hypoxemia.

To the contrary, the H phenotype is attributed to hyper-
inflammation that causes direct damage to the lungs and 
eventually leads to ARDS. The process of pathophysiology 
is as follows: the first 7–10 days (exudative stage) show 
interstitial/alveolar lymphocytic infiltration in the lung, 
scarcity of neutrophils (14), multinucleated syncytial 
cells, diffuse alveolar damage (DAD) with necrosis of 
endothelial and types I/II epithelial cells, and widespread 
microthrombosis with microangiopathy (15,16). These 
changes eventually lead to pulmonary edema, hyaline 
membrane formation, decreased pulmonary compliance, 
and difficulties in pulmonary ventilation and gas exchange. 
Type H patients should be treated as severe ARDS cases, 

https://atm.amegroups.com/article/view/10.21037/atm-22-3717/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-3717/rc
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Table 1 The search strategy summary

Items Specification

Date of search 2022-01-04 to 2022-05-30

Databases and other sources searched NCBI PubMed

Search terms used (including MeSH and free text 
search terms)

“COVID-19”, “CARDS”, "ARDS", “pathophysiological mechanism”, “clinical 
manifestations”, “prognosis biomarkers”, and “clinical trials”

Timeframe 1999 to 2021

Inclusion and exclusion criteria The study collected the relevant literature published in English from 1999 to 2021. 
The literatures of COVID-19 and ARDS was mainly covered

Selection process Dan Pu, Xiaoqian Zhai and Yuwen Zhou jointly collected and assembled the 
data. Then Yao Xie, Liansha Tang and Liyuan Yina conducted the classification 
and analysis of the information. Finally, all authors reached an agreement on the 
manuscript

Any additional considerations None

MeSH, Medical Subject Headings; NCBI, National Center for Biotechnology Information; COVID-19, coronavirus disease of 2019; CARDS, 
COVID-19-associated acute respiratory distress syndrome; ARDS, acute respiratory distress syndrome.

Figure 1 Comparison of CARDS and ARDS. Created with BioRender.com. CARDS, COVID-19-related acute respiratory distress 
syndrome; ARDS, acute respiratory distress syndrome; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; DAD, diffuse 
alveolar damage.
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including higher positive end-expiratory pressure (PEEP), 
if compatible with hemodynamics, prone positioning, and 
extracorporeal support.

Clinical manifestation

Based on clinical data available, the incidence of CARDS 
ranges from 14% to 67% (17-21). Classical ARDS 
commonly occurs within 1 week after a predisposing cause, 
yet researchers have reported that the median time from 
symptoms onset to CARDS is longer than that of classical 
ARDS, manifesting within a period of 9.0–12.0 days 
(1,17,22-24) (Figure 1). Similar to the classical ARDS, the 
clinical manifestations of CARDS usually include fever, 
dry cough, cyanosis of the mouth and lips, and respiratory 
distress which cannot be adjusted by normal oxygen therapy 
(25,26). A distinguishing feature of COVID-19 disease 
is that a lack of dyspnea is recognized in the most critical  
cases (26), the major reason for which is the direct 
neurotoxic impact of the virus and a general response 
caused within the infectious context (27). There are two 
mechanisms associated with it: one is the direct invasion 
of SARS-CoV-2 into ACE2-expressing brain cells in the 
limbic system (especially in the insula), and the second is 
the indirect toxic effect on the cortical network, which 
plays a major role in expressing the sensation of dyspnea, 
through cytokine storm (28). Apart from typical clinical 
manifestations, CARDS presents some atypical symptoms: it 
always manifests severe hypoxemia with well-preserved lung 
mechanics, although in classical ARDS, severe hypoxemia 
is always associated with poor lung compliance (29,30). 
Meanwhile, some patients’ symptoms do not correspond 
with the extent of the organic injury: a chest computed 
tomography (CT) will reveal the severe and diffuse lung 
injuries, yet the clinical presentations of patients can be 
mild (29). Similarly, the results of laboratory tests, including 
indexes of hemodynamics and tissue perfusion, may be 
relatively stable in some patients with CARDS (21).

Diagnosis

Clinical diagnosis of CARDS is the same as that of classical 
ARDS, which is based on the Berlin criteria on the 
prerequisite of molecular diagnosis of COVID-19 (31). 
Usually, ARDS is divided into mild [200 mmHg < PaO2/
FiO2 ≤300 mmHg with PEEP or continuous positive airway 
pressure (CPAP) ≥5 cmH2O], moderate (100 mmHg < PaO2/

FiO2 ≤200 mmHg with PEEP ≥5 cmH2O), and severe 
(PaO2/FiO2 ≤100 mmHg with PEEP ≥5 cmH2O) (24). 
However, some researchers have indicated that the Berlin 
definition is not fully suitable for the diagnosis and grading 
of CARDS because of its poor specificity to the diagnosis 
of DAD—the common histopathologic hallmark of ARDS 
which is more frequent in CARDS (32,33). The incidence 
of identification of DAD increases from less than 50% to 
69% when Berlin-based diagnosis of classic ARDS is made 
after 3 days from the symptom onset. However, the median 
time of occurrence for CARDS is 9 days (34).

Hematologic tests

Abnormalities of hematologic indexes of CARDS present 
similarly to those of classical ARDS. Lymphopenia, 
neutrophilia, and thrombocytopenia are observed in blood 
routine and the deviation from the normal values always 
indicates the severity (18,35,36). Inflammatory responses 
lead to the overexpression of infection-related biomarkers 
including interleukin-6 (IL-6), interleukin-8 (IL-8), 
vascular endothelial growth factor (VEGF), monocyte 
chemoattractant protein-1 (MCP-1), granulocyte colony-
stimulating factor (GCSF), tumor necrosis factor-α 
(TNF-α), complement 3 (C3), macrophage inflammatory 
protein 1-alpha (MIP1A), interferon (IFN)-inducible 
protein-10 (IP10), C-reactive protein (CRP), serum amyloid 
A, ferritin, and hepcidin. Among these, median IL-6 levels 
in hyper-inflammatory ARDS have been shown to be 10- 
to 200-fold higher than those in CARDS patients (37). Of 
note, higher concentration of these biomarkers is usually 
related to more severe disease (1,38-41).

Pathology manifestation

In both ARDS and CARDS, DAD is the major pathological 
manifestation, and was detectable in all lobes with a prominent 
distribution in middle and lower lobes (42). Differing from 
neutrophil infiltration in DAD of ARDS, patients who have 
died from CARDS have exhibited infiltration of lymphocytes 
and plasmacytes and a lack of neutrophils in both lungs 
(12,42) (Figure 1). Meanwhile, patients with DAD in CARDS 
developed more thrombotic complications compared to those 
with classical ARDS (43,44) (Figure 1). In addition to different 
features in DAD, CARDS presents other atypical pathological 
features. Enlarged pneumocytes and multinucleated syncytial 
cells have been observed, indicating viral-induced cytopathic-
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like changes in the absence of intranuclear or intracytoplasmic 
viral inclusions (42).

The recommended treatment of CARDS

Although early studies have shown that CARDS has a 
unique function that distinguishes it from the historical 
ARDS, emerging evidence suggests that the respiratory 
mechanisms of ARDS patients are roughly similar, 
regardless of SARS-Cov2 infection. However, in terms of 
treatment, it should not be ignored that CARDS and ARDS 
involve some different pathophysiological aspects. In ARDS 
patients, due to the hyper-inflammation, the stability of 
the alveoli is always reduced, accompanied by pulmonary 
edema, pulmonary blood flow damage, and pulmonary 
blood vessel obstruction, resulting in hypoxemia. However, 
in CARDS, lung compliance remains almost normal, along 
with increased lung microvascular and macrovascular 
thrombosis when COVID-19 is severe. From this 
perspective, the breathing strategy is determined based on 
the homogeneity and heterogeneity in ARDS and CARDS.

Prevention of venous thromboembolism

A prospective cohort study (44) showed that the incidence 
of thrombotic complications in COVID-19 intensive care 
unit (ICU) patients is very high. Some 42.6% of CARDS 
patients were diagnosed with clinically relevant thrombotic 
complications during their stay in the ICU, especially, 
pulmonary embolism (16.7%) (45). Therefore, it is 
recommended that all COVID-19 patients admitted to the 
ICU should be strictly administered thromboprophylaxis 
where there are no contraindications, even in the absence of 
substantiating evidence (46). To date, several guidelines have 
recommended low molecular weight heparin for treatment 
severe COVID-19 patients with hypercoagulation.

Streptokinase, one of the thrombolytics, was recently 
found to promote lung function and oxygenation, and 
decrease ICU stay length and mortality in a randomized 
controlled trial (RCT) recruiting 60 ARDS patients 
without response to standard therapy (47). Besides, the 
results of previous phase I clinical trial reported that tissue 
plasminogen activator (tPA) used as salvage therapy for 
ARDS yielded significant improvements in PaO2/FiO2 (48). 
Preliminary studies have reported that tPA may improve 
recovery of ARDS patients and reduce COVID-19-related 
mortality (49,50). Anti-thrombosis therapy, as a potential 

therapy, is being evaluated in a few studies of CARDS 
patients on the basis of the pulmonary microthrombosis 
reports.

Respiratory support

Respiratory support plays an important role in the 
management of patients with CARDS and ARDS. Although 
the risk factors of CARDS associated with respiratory 
failure that require mechanical ventilation are not clearly 
described in the limited literature available, the risk factors 
associated with severe disease include older age (>60 years), 
male gender, and complications such as diabetes, chronic 
respiratory diseases, cardiovascular diseases, malignant 
tumors, and immunodeficiency (51). In addition, early 
in the pandemic of COVID-19, research demonstrated 
the differences between CARDS and classical ARDS 
and suggested different ventilatory management in 
CARDS. However, according to the gradually enriched 
understanding of CARDS, it is reasonable to employ a 
similar strategy at this stage, despite residual gray areas in 
the understanding of COVID-19 (52,53).

Respiratory support of mild ARDS

Patients with PaO2/FiO2 <300 mmHg should be administrated 
oxygen treatment immediately. A high-flow nasal cannula 
(HFNC) or a mask for oxygen supplementation could be 
implemented at the initial stage and the respiratory distress 
and/or hypoxemia should be promptly re-evaluated in time in 
the case of delayed intubation. In the absence of indications 
for tracheal intubation, patients with CARDS who cannot 
obtain a HFNC should undergo a close monitoring test of 
nasal intermittent positive pressure ventilation (NIPPV). For 
patients with persistent hypoxemia who have not undergone 
tracheal intubation despite increased supplemental oxygen 
demand, an awake prone position should be considered to 
improve oxygenation (CIIa), as reports have indicated that 
awake prone positioning could improve the overall median 
oxygen saturation of these patients (30). Nonetheless, 
considering the risk of viral transmission to other patients 
and health care workers, HFNC are not implemented in 
emergency rooms, unless negative pressure single rooms are 
available. A study has confirmed that HFNC could improve 
the outcome of patients with acute hypoxemic respiratory 
failure when the optimal oxygen saturation (SpO2) ranged 
from 92% to 96% (54).
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Respiratory support of moderate-severe ARDS

For adult patients with moderate-to-severe ARDS, it 
is recommended to ventilate in the prone position for  
12–16 hours a day (BIIa). This ventilation strategy can 
evenly distribute the gas-tissue ratio and lung stress and 
strain distribution, yielding a significant improvement in 
arterial blood gas (55). Some clinical trials have convincingly 
shown that ARDS patients with PaO2/FiO2 <150 mmHg 
can reduce mortality by ventilating prone for at least  
16 hours a day (56,57). To date, no study has described the 
clinical course of prone position ventilation in patients with 
COVID-19. However, we infer that these patients should 
also benefit from prone ventilation.

Patients with CARDS that have indications as follows for 
invasive mechanical ventilation should receive endotracheal 
intubation: (I) respiratory distress aggravation: when 
hypoxemia cannot be improved (SPO2 ≤93%), the frequency 
of breathing ≥35 times/minute, or the tidal volume (Vt) is 
too large (>9 to 10 mL/kg weight) under HFNC or NIPPV 
treatment. (II) Tissue hypoxia or lactic acid elevation: the 
performances of tissue hypoxia aggravate, such as increasing 
lactic acid or decreasing central venous oxygen saturation 
(ScvO2). (III) Hemodynamic instability or consciousness 
disorder. However, invasive mechanical ventilation has two 
sides. On the one hand, it potentially saves lives. On the other 
hand, it also causes ventilator-induced lung injury (VILI), 
exacerbating lung damage in ARDS patients and eventually 
leading to multiple organ failure. Reducing VILI may be 
achieved through low Vt ventilation (4–8 mL/kg), plateau 
pressures <30 cmH2O, a conservative fluid strategy, higher 
PEEP. The recommendation comes from the experience of 
non-CARDS experience whereby higher PEEP in patients 
with moderate (PaO2/FiO2 100–200 mmHg) and severe 
ARDS (PaO2/FiO2 <100 mmHg) leads to lower rates of 
ICU mortality (58).

Furthermore, in ARDS patients, the analgesia and 
sedation effects should be adjusted according to the 
specific needs of the patient to avoid lung injury during 
the ventilation. Early neuromuscular blocking has been 
suggested to reduce 90-day mortality (59), although 
evidence remains controversial (60). Therefore, it is 
suggested that neuromuscular blocking agents (NMBA) 
should be used in patients with persistent ventilator 
dyssynchrony, and patients needing ongoing deep sedation 
prone ventilation, or persistently high plateau pressures (61).

An extracorporeal membrane oxygenator (ECMO) 
should be taken into consideration if a patient present 
with persistent hypoxemia, regardless of whether lung 
protective ventilation measures have been taken or not. The 
venovenous ECMO (vv-ECMO) has traditionally been used 
to provide adequate tissue oxygenation, to support patients 
with severe ARDS. However, the efficacy of ECMO in 
patients with ARDS remains controversial. A study showed 
that the use of ECMO in severe ARDS patients does not 
significantly reduce the 60-day mortality compared with 
conventional mechanical ventilation strategies including 
ECMO as a rescue therapy (62). There has been one study 
that demonstrated that the use of vv-ECMO in adults 
with severe ARDS can reduce 60-day mortality when 
compared with conventional mechanical ventilation, despite 
a moderate risk of major bleeding (63). Recently, guidelines 
have recommended that ECMO is used in the treatment of 
severe ARDS patients (64). However, in CARDS patients, 
the role of vv-ECMO is uncertain. One study demonstrated 
that the mortality rate was similar between ARDS and 
CARDS patients with vv-ECMO, which indicated that the 
use of vv-ECMO can achieve a similar effect in CARDS 
and ARDS patients (65). Patients with severe COVID-19 
receiving ECMO support should be monitored closely 
for multiple drug-resistant bacteria (Klebsiella pneumoniae, 
Baumann bacillus, Pseudomonas aeruginosa, etc.) infections 
which will lead to poor prognosis. Due to the uncertain 
benefits and possible risks, the National Institutes of Health 
(NIH) guideline neither recommend nor advise against the 
use of ECMO in patients with COVID-19 and refractory 
hypoxemia.

Pharmacological therapy of CARDS

The pharmacologic therapy of CARDS does not appear 
“atypical”. Most therapies of CARDS take the therapies 
of “typical” ARDS caused by other factors for reference, 
due to the similar critical physiopathologic processes such 
as cytokine storm. Actually, the pivotal point of combating 
CARDS may be anti-COVID-19 therapy itself. Here, we 
have summarized the following pharmacologic therapies of 
CARDS.

Antivirals

Remdesivir (GS-5734), as a broad-spectrum antiviral drug, 
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was regarded the most promising drug for treating severe 
COVID-19, but disappointing results have emerged. 
Study published in the Lancet reported no observable 
effect of remdesivir on the recovery or mortality of 
hospitalized patients with COVID-19 compared to placebo  
controls (66). Thus, Remdesivir was fails to be used to treat 
severe COVID-19.

Anti-inflammatory and immunoregulatory 
therapy

Corticosteroids

Owing to the anti-inflammatory and immune-modulating 
properties, corticosteroids have been widely applied for 
CARDS. However, the application of corticosteroids on 
CARDS patients remains controversial. The World Health 
Organization (WHO) (67) conducted a prospective meta-
analysis, which pooled data from seven trials (RECOVERY, 
CoDEX, REMAP-CAP, CAPE COVID, and another 
3 trials), to evaluate the response of corticosteroids to 
critically ill COVID-19 patients. Among these trials, over 
50% of patients came from the RECOVERY trial. The 
RECOVERY trial confirmed for the first time that low-
dose dexamethasone (6 mg/d, no more than 10 days) can 
reduce less than 28-day mortality among patients receiving 
invasive mechanical ventilation or oxygen alone (68). 
Based on that, medical officers in some countries have 
recommended to use glucocorticoids in patients with serious  
COVID-19 (69). In the CoDEX trial, intravenous 
dexamethasone was shown to shorten the ventilator-free 
days of patients with CARDS (70). The REMAP-CAP trial 
indicated that hydrocortisone contributed to improved 
organ support-free days within 21 days (71). Another 
retrospective study found that low-dose corticosteroid 
therapy may help to reduce the risk of in-hospital death 
in CARDS patients (72). The above studies indicated that 
the use of steroids was related to the reduced mortality in 
critically ill patients with COVID-19, and corticosteroids 
could be administrated in general treatment in CARDS  
patients (73). Nevertheless, another study found that patients 
with mild ARDS could not benefit form corticosteroids  
administration (74). Furthermore, specific virus types may 
lead to different responses for corticosteroids. Prior studies 
have found that corticosteroids were linked to delayed 
viral clearance in SARS and Middle East respiratory 
syndrome (MERS) (75,76), which increased concerns that 

corticosteroids might damage host response to COVID-19. 
In addition, patients with influenza pneumonia who received 
corticosteroids experienced increased mortality (77). 
In summary, further study is required to explore the 
harmful or beneficial effects of corticosteroids for this  
application (78). Furthermore, re-evaluation in combination 
with novel therapeutic strategy, such as new anti-viral 
therapies, immunomodulatory agents, and potential 
monoclonal antibodies (mAbs), may display considerable 
efficacy as well.

Anti-cytokine storm drugs

As the critical pathophysiologic progress in CARDS, the 
cytokine storm is triggered by the colossal release of pro-
inflammatory cytokines, including IL-6, IL-1, TNF-α, 
and so on. This leads to a hyperactive and dysregulated 
immune reaction causing organ dysfunction. Therefore, the 
immunomodulatory drugs are of vital importance in anti-
cytokine storm therapy.

Tocilizumab (TCZ), one of the most studied IL-6 
inhibitors, has been identified to exert a great therapeutic 
effect in CARDS patients.  A Chinese open-label, 
noncontrolled study showed that 21 severe COVID-19 
patients who were treated with TCZ (400 mg IV infusion) 
harbored normal lymphocyte counts and improved 
oxygenation, manifesting the potential role of TCZ (79). 
Besides, Roche has approved TCZ to enter into a phase 
III RCT (COVACTA) in severe, hospitalized COVID-19 
patients (80). Another IL-6 inhibitor, sarilumab, has been 
initiated clinical trials (NCT04315298, NCT04327388) 
in severe cases of SARS-CoV-2. Furthermore, novel mAb 
that inhibits IL-6 receptor (TZLS-501) is currently under 
investigation.

Anakinra (ANK) is an inhibitor of IL-1, which is 
considered a potential life-saving therapy for patients using 
non-invasive ventilation outside of the ICU (81). A small-
scale respective study indicated that 55.6% of CARDS 
patients may benefit from high dose (100 mg every 6 h) 
subcutaneous ANK therapy (82). Especially in patients with 
elevated aminotransferases, ANK might become a potential 
alternative for non-response TCZ patients.

Granulocyte-macrophage colony-stimulating factor 
(GM-CSF) plays a  cardinal  role in inf lammatory 
modulation. When binding to the receptor (GM-CSFR-α), 
various pro-inflammatory pathways are activated, inducing 
the release of pro-inflammatory cytokines (83). A single-
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center, prospective cohort study found that mavrilimumab 
(an anti-GM-CSFR-α mAb) can improve the clinical 
outcome of patients with severe COVID-19 (84).

The functions of various IFN subtypes are different. In 
ARDS, IFN-γ has proinflammatory functions whereas IFN-
b1a has antiviral and immunomodulatory functions (85,86). 
As such, the application of inhaled IFN-b1a formulation 
(SNG001) in CARDS is being evaluated in a clinical trial 
(NCT04385095).

Vitamin C and D might act as strong immunosuppressive 
agents in inhibiting cytokine release syndrome in 
COVID-19 (87). A retrospective study identified that high-
dose (6 g IV infusion q12h D1 and 6 g qd for the following 
4 days) vitamin C may decrease the death rate without 
adverse events in COVID-19 patients (88). In addition, 
the lack of vitamin D has been found to be associated 
with ARDS, due to lower 25(OH)D concentration (89). 
Currently, various RCTs utilizing either oral 25(OH)D or 
vitamin D are ongoing (90).

Mesenchymal stem cell (MSC) therapy

Violent cytokines release is attributed to T cells hyper-
activation in CARDS patients, which lead to cytotoxic 
effects on the respiratory system (91). MSC could reduce 
the activation of T cells, B cells, natural killer (NK) cells, 
and dendritic cells (DC) by secreting cytokines. In addition, 
the induction of neutrophils, macrophages, and anti-
inflammatory regulatory Treg cells is also the performance 
of MSC’s immune modulation function. Currently, MSCs 
which are mainly derived from bone marrow (BM), 
umbilical cord (UC), adipose tissue (AD), and dental 
pulp (DP) have been involved in the clinical trials against 
COVID-19 in many countries (92,93). Preclinical research 
has identified that BM-MSCs have the regeneration and 
anti-inflammatory impact on damaged pulmonary alveolar 
and endothelial cells, through the release of extracellular 
vesicle (EV) and paracrine factors and transfer of 
mitochondria (94,95). Therefore, MSCs are shown to have 
the potential for treating severe COVID-19 cases. Previous 
studies have shown that MSC therapy improves the 
symptom and function of COVID-19 patients with ARDS 
and obtains a significant survival rate (95-97). Besides, 
exosomes originated from allogeneic BM-MSCs have been 
investigated to treat severely compromised COVID-19 
patients in clinical trials (98-101). These results showed 
excellent ability and safety to downregulate cytokine storm, 
reconstitute immunity, and restore oxygenation.

Convalescent human plasma and intravenous 
immunoglobulin (IVIG)

Convalescent plasma enriched in antibodies is obtained 
from recovered COVID-19 patient, and then transfused to 
the infected patients. One study reported four of five severe 
COVID-19 cases who were transfused with convalescent 
plasma resolved the symptoms of CARDS at 12 days after 
transfusion (102). However, a Chinese study revealed that 
convalescent plasma therapy did not achieve a statistically 
significant clinical improvement within 28 days (103). 
Although in August 2020, the Food and Drug Authority 
(FDA) approved the use of convalescent plasma for the 
treatment of critically ill COVID-19 patients (104), this 
therapy still needs further research. In terms of IVIG, 
previous evidence has suggested that a high dose of IVIG 
therapy should be considered in patients with severe 
COVID-19 (105). Furthermore, the National Health 
Service (NHS) specialty guideline also recommended the 
use of IVIG for the treatment of COVID-19 patients with 
sepsis (106); IVIG is considered an important therapeutic 
approach.

Advanced potential therapy

Repositioning drugs

Currently, some advanced potential drugs have emerged 
to treat CARDS, which are mainly inferred from the 
mechanism of action with limited supporting clinical 
evidence. However, these therapies may provide a novel 
direction for developing repositioning drugs which could 
fight CARDS.

Opioids
Although opioids are most exploited in the analgesic aspect, 
they could also exert triple effects in combating COVID-19. 
The benefits of utilizing opioids contain addressing the 
unfavorable side-effects [cough (107) and dyspnea (108)], 
overcoming the virus infection cycle (inhibit lysosomal 
acidification) (109), and the host reactions to the virus-elicited 
pathogenesis (anti-excessive inflammation) (110). In addition, 
hydromorphone and oxycodone could alleviate the subjective 
perception of CARDS as well as reduce anxiety effects 
(111,112). Therefore, further investigation is warranted to 
evaluate the long-term therapeutic effects of opioids.

Radiotherapy (RT)
The evidence in literature has revealed that RT may be 
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effective for mitigating CARDS (113). Firstly, low-dose 
radiation (LDR) is conducive to decelerate viral loading 
and replication (114) in the pulmonary epithelial cells 
by oxygen metabolism. In addition, LDR could enhance 
the recruitment of circulating immune cells and further 
promote the antiviral environment (115). As for the LDR, a 
single total dose of 0.3–0.5 Gy would be of great benefit for 
CARDS patients (116). However, the optimal dose of RT 
should be assessed carefully and repetitively in the future 
clinical trials.

Poly ADP-ribose polymerase (PARP) inhibitors 
(PARPis)
PARPs take part in various cellular processes, containing 
cell death, autophagy, antiviral response, and immune 
function. Some researchers (117,118) have verified that 
PARPi could decrease the critical interleukins in COVID-
19-induced cytokine storm. Furthermore, PARPis has 
the ability of counteracting cell death induced by SARS-
CoV-2 and inflammation and supporting cell survival (119). 
The benefits of PARPis have been supported by great 
therapeutic effects in animal models of VILI and ARDS 
(120,121). Thus, PARPis may potentiate the effectiveness 
of anti-cytokine storm therapy (122-124) and would be 
beneficial for SARS-CoV-2 patients.

Prognosis

Mortality and survival

Although most COVID-19 patients experience mild 
symptoms, 19% could present with intractable conditions 
and develop severe or fatal symptoms, particularly  
CARDS (4). In developed countries, the mortality rate of 
cards can reach 30–50% (125-129), which is consistent 
with the mortality from non-COVID ARDS in the ICU. 
Moreover, in some cases, the mortality rate of patients with 
CARDS can reach 70% (130). In addition, a study showed 
that the 90-day mortality rate of CARDS increased with 
the severity of CARDS (30%, 34%, and 50% for mild, 
moderate, and severe cards, respectively) (125). Another 
unfortunate reality is that patients with CARDS who are 
accompanied with acute kidney injury (AKI), acute heart 
injury, and septic shock will face significantly reduced 
mortality (131).

Sequelae

Patients who have survived CARDS may further experience 
many medical consequences post intensive care therapies. 
Most common long-term consequences of CARDS include 
impaired weaning from mechanical ventilation, ventilator-
diaphragmatic interactions, ICU-acquired weakness  
(132-134), consequences from other organ injury (131), 
other neuromuscular disorders (e.g., dysphagia) (135,136) 
and/or thromboembolic complications (137). All the above 
“sequelae” of CARDS not only damage the survival and 
health of patients, but also place a huge burden on the social 
medical system. Hence, it is necessary to identify biological 
markers that predict individual prognosis.

Prognosis biomarkers

The most common combined biomarkers that have 
been used are age, lymphocyte percentage, monocyte 
percentage, CRP, procalcitonin, and serum albumin. 
These are regarded as independent predictors of a more 
severe illness course (138,139). In addition, based on the 
pathogenesis of CARDS: endothelial injury, epithelial 
injury, inflammatory cascade, and coagulation cascade (140), 
there are some the most commonly promising prognostic 
biomarkers: lactate dehydrogenase [LDH; weakens the 
immune response to viral infection (141)]; ferritin (142); 
D-dimer (143); proinflammatory cytokines (they often 
are measured as part of a panel and have insufficient 
specificity to serve as a stand-alone biomarker (144,145); 
nicotinamide phosphoribosyltransferase (eNAMPT) (146); 
soluble intercellular adhesion molecule-1 (sICAM-1) [an 
early pulmonary endothelial injury maker of CARDS (147)]; 
angiopoeitin-2 (Ang-2) in plasma, and receptor for advanced 
glycation end products (RAGE) in plasma (148).

Summary

The COVID-19 is an unprecedented pandemic and can 
lead to fatal clinical outcomes, particularly CARDS. 
Researchers have made great efforts to improve the 
prognosis of severe COVID-19 and reduce the mortality 
caused by CARDS. Among them, a large number of 
studies have attempted to determine whether CARDS is 
“typical” or “atypical” ARDS. As of the time of writing, 
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we have delineated the pathophysiological mechanism, 
manifestations, diagnosis, treatment, management, and 
prognosis biomarkers of CARDS based on the past 1-year 
development of this disease, and further highlighted and 
elucidated the differences between typical ARDS and 
atypical CARDS from all of the above aspects. Despite the 
differences between the CARDS and ARDS, in addition 
to the treatment of antivirals, clinicians should continue 
to follow the accepted evidence-based framework for 
managing all ARDS cases, including CARDS. In fact, our 
study is still not comprehensive, such as failing to explain 
the mechanistic differences between CARDS and ARDS in 
more depth. However, we still help clarify the homogeneity 
and heterogeneity between CARDS with other cause 
ARDS, which may provide direction for the future basic 
research and help to optimize the clinical management 
framework of this disease.
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