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Background: Keloids are benign skin tumors that appears on skin lesions in humans. Keloids are 
characterized by invasive tumor growth and are highly prone to recurrence after treatment. The incidence 
of keloids is ethnically specific; however, the molecular mechanism underlying the incidence of keloids in 
the Chinese population remains unclear. To date, no reports appear to have been published on the molecular 
characteristics underlying keloids in the Chinese population from the perspective of whole-genome sequencing.
Methods: In this study, we collected keloid samples from 9 keloid patients underwent surgery in the 
Department of Dermatology, The First Affiliated Hospital of Soochow University, paired them to normal 
skin tissues, and performed whole-exome sequencing. The average depth of the samples was 1,200×, and the 
average exome coverage was 98.90%. 
Results: The bioinformatics analysis identified 3,125 single nucleotide variants (SNVs) and 299 insertions/
deletions (InDels). The major mutation characteristics of the SNVs were C > A and C > T. The non-
synonymous SNV types included stopgain, and stoploss. The non-synonym InDels included frameshift 
deletion, frameshift insertion, and stopgain. We also found a total of 67,873 copy number variations (CNVs) 
in the samples. The genes with the highest mutation frequency included mucin 4 (MUC4) (55.6%), tubulin 
tyrosine ligase like 12 (TTLL12) (33.3%), calcium voltage-gated channel subunit alpha1 (CACNA1C) 
(33.3%), and mucin 12 (MUC12) (33.3%). The average tumor mutation burden (TMB) was 289 mutations/
million base pair (MB). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed 
that the mutated genes were mainly concentrated in micro ribonucleic acids in cancer and the calcium 
signaling pathway. The Gene Ontology (GO) analysis showed that mutant genes were mainly concentrated 
in binding cells, cell parts, and cellular processes.
Conclusions: Whole-exome sequencing was performed in the Chinese keloid patients and some potential 
candidate genes related to keloid occurrence and development were identified, which may provide new 
molecular targets for the clinical diagnosis and treatment of keloid patients.
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Introduction

Keloids are hyper-fiber proliferation caused spontaneously 
by sensitive bodies or secondary skin trauma (e.g., from 
surgery, folliculitis, or varicella). Keloids grow like 
tumors, show invasive growth, invade normal skin, and 
are susceptible to drug resistance and recurrence (1). The 
incidence of keloids is higher in black and Hispanic people 
(the incidence varies from 4.5–6.2% to 16%) (2), Asians and 
Caucasians generally less than 1% (3,4). Keloids continue 
to grow, affect the appearance, may cause persistent itching, 
pain, and repeated infections, and seriously affect the quality 
of life of patients. Keloids may be caused by the mutual 
influence of environment, gene, or various other factors. 
Among them, gene variation may play a more important 
role in the occurrence and development of Keloids. It 
would be of great scientific value to accurately understand 
the mechanism underling keloid occurrence. 

Genetic variation is an important factor in the 
occurrence and development of many diseases. High-
throughput sequencing has been widely used in the study 
of a variety of complex diseases due to its advantages, 
such as its short consumption time, high throughput, 
high accuracy, and ability to screen a large number of 
genes at 1 time, Human whole exome sequencing is a 
technique to capture and enrich the DNA in the exon 
region of the whole human genome, and to find genetic 
mutations related to protein functional variation through 
high-throughput sequencing (5-7). Some characteristic 
mutated genes, such as BRAF (v-raf murine sarcoma 
viral oncogene homolog B1) and RAF (rat sarcoma viral 
oncogene homolog), have been identified in melanoma, 
and highly effective therapies have been developed to 
target these mutated genes (8,9). Li et al. observed the 
polygenic map of keloid fibroblasts of keloid fibroblasts at 
the level of genome differential expression (10). However, 
the genomic variation of keloids remains unclear. In this 
study, keloid tissues from 9 keloid patients underwent 
surgery paired with normal skin tissues at the Department 
of Dermatology, The First Affiliated Hospital of Soochow 
University and whole-exome sequencing was performed 
to analyze the genomic variation characteristics of the 
Chinese keloid patients. Related pathogenic genes, 
the tumor mutation burden (TMB), related molecular 
functions, and signaling pathways were examined. Our 
findings should extend understandings of keloid genesis 
and development, which may provide new pathway for 
the clinical diagnosis and treatment of keloid patients. 

We present the following article in accordance with the 
STREGA reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-1303/rc).

Methods

Patient sample acquisition

Specimens were collected from patients undergoing 
keloid surgery at The First Affiliated Hospital of Soochow 
University from June 2019 to July 2020. The samples 
were taken from keloid skin near the edge of the keloid 
and normal skin next to the keloid. The samples were 
then placed in a liquid nitrogen tank. The residual keloids 
were taken for pathological examination, and the results 
conformed all the lesions were keloids. All patients were 
treated with radiotherapy to prevent recurrence. To be 
eligible for inclusion in this study, patients had to meet the 
following inclusion criteria: (I) have a pathological diagnosis 
of keloids; (II) have received no treatment in the last  
6 months; (III) have consented to data collection; (IV) have 
signed informed consent forms. This study was conducted 
in accordance with the Declaration of Helsinki (as revised in 
2013), and was approved by the Ethics Committee of The 
First Affiliated Hospital of Soochow University (application 
No. 2022014). Informed written consent was provided by 
all patients before their inclusion in this study.

DNA extraction

Deoxyribonucleic acid (DNA) was extracted using the 
QIAamp Fast DNA Tissue Kit (Qiagen) and QIAamp 
DNA FFPE Tissue kit (Qiagen). DNA extracted from 
normal skin tissues was used as a germline DNA control. 
cell populations of keloid samples were examined by 
pathologists, above 75% of cells were confirmed to  
keloid cells.

DNA quantification was performed using an Agilent’s 
BioAnalyzer (USA).

Whole-exome sequencing

The whole-exome sequencing was conducted using the 
Illumina X-ten system (Illumina, San Diego, CA, USA). 

Somatic SNV and InDel identification

The Burrows-Wheeler Aligner (BWA) (11) was used to 

https://atm.amegroups.com/article/view/10.21037/atm-22-1303/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-1303/rc
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align the clean reads from each sample against the human 
reference genome (GRCh38) and identify somatic single 
nucleotide variants (SNVs) and insertions/deletions 
(InDels). Somatic SNV and InDel calling was performed on 
multi-samples using MuTect (12).

Gene functional enrichment analysis

The screened gene sets were used in the functional 
annotation analysis using an in-house script from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (13) and 
Gene Ontology (GO) (14) databases. A modified Fisher’s 
exact test was used to define the significance of gene group 
enrichment, and a P value <0.05 was considered statistically 
difference.

Statistical analyses

SPSS (IBM Corp., Armonk, NY, USA) (15) was used for all 
the statistical analyses.

Results

Patient characteristics

The mean age of the 9 keloid patients was 33 years old (range, 
19–47 years old); 4 of the patients were male and 5 were 
female. All patients were diagnosed with keloids. 2 patients 
had keloids on their backs, 6 had keloids on their chests, and 
1 had a keloid on the front of their ear (see Table 1).

Whole-exome sequencing

Whole-exome sequencing was performed on the normal 
tissue and lesion samples from the 9 keloid patients. The 
average data output was 8,750,632,763 bp, and the average 
depth of each sample was 123×. The pathological tissue 
of Sample 2 had the highest sequencing depth (213.84×), 
followed by pathological Sample 8 (205.19×). The mean 
exome coverage of all the samples was 98.90%. Among them, 
the Sample 7 lesion tissue had the highest coverage (99.56%), 
followed by Sample 5 (99.53%) (see Figure 1 and Table S1).

Identification of Somatic single nucleotide variants (SNPs), 
insertions/deletions (InDels), and copy number variations 
(CNVs)

We compared and analyzed the data of normal tissue 
samples from each patient with the data of paired keloid 
samples. By processing the sequencing data, we collected a 
total of 3,125 somatic SNVs and 299 InDels (see Figure 1 
and Table S2). Sample 8 had the most somatic SNVs [810], 
followed by Sample 1 [414]. The non-synonymous SNV 
types included stopgain and stoploss, and the non-synonym 
InDels mainly included frameshift deletions, frameshift 
insertions, and stop-gains (see Figure 2). CNVs were 
found in all the samples. The average CNV number of all 
the samples was 7,541, and the average CNV length was 
7,314,569 bp. Sample 5 had the largest number of CNVs 
[15,431], followed by Sample 4 [12,873]. Sample 5 had 
the longest CNVs (14,862,648 bp), followed by Sample 4 
(13,082,864 bp) (see Figure 1 and Table S3).

We analyzed the variation of the somatic SNVs in 
patients from multiple perspectives, including mutation 
spectrums and mutation signatures. From these results, we 
were able to gain a clear understanding of the characteristics 
of keloid at the mutation level. The mutation spectrum 
analysis revealed a number of different types of keloid 
mutations and whether the samples have a preference for 
certain types of mutations. The characteristics of somatic 
point mutations in keloid can be studied by analyzing the 
spectrum and characteristics of somatic mutations. The 
analysis results showed that the main characteristics of 
keloid SNV were C > A and C > T (see Figure 3). 

Significantly mutated genes (SMG) refer to mutation 
frequency of genes which is higher than the background 
significantly. Generally, the variation of SNVs and InDels 
in somatic cells is examined. MuSiC software (16) was 
used to identify higher frequencies of mutated genes in 

Table 1 Clinic pathological characteristics of all keloid patients 

Characteristics No. of cases

Total number 9

Age, years [mean, range] 33 [19–47]

Sex, n (%)

Male 4 (44.0)

Female 5 (56.0)

Pathological diagnosis, n (%)

Keloid 9 (100.0)

Keloid site of growth, n (%)

Back 2 (22.0)

Chest 6 (67.0)

Front of the ear 1 (11.0)

https://cdn.amegroups.cn/static/public/ATM-22-1303-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1303-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1303-Supplementary.pdf
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the keloid samples (compared to the normal skin samples), 
and statistical tests (e.g., the SMG test) were processed for 
each mutation type. The convolution-test (CT) method 
was used. We found that the highest frequencies of mutated 
genes included mucin 4 (MUC4) (55.6%),

tubulin tyrosine ligase like 12 (TTLL12) (33.3%), 
ca lc ium voltage-gated channel  subunit  a lpha1 C 
(CACNA1C) (33.3%), mucin 12 (MUC12) (33.3%). 

We identified the 30 genes with the highest mutation 
frequencies. The TMB of each sample was calculated 
separately, and the average TMB of each sample was 289 
mutations/MB (see Figure 4).

KEGG and GO analyses

GO and KEGG pathway analyses were conducted for the 

Sample1

Sample4

Sample7

Sample2

Sample5

Sample8

Sample3

Sample6

Sample9

Figure 1 Global map of somatic variation in terms of cover depth, SNVs, InDels, and CNVs of all the samples. Circle 1: the outer frame of 
the chromosome. Circle 2: sequencing coverage map of the tumor samples. Circle 3: sequencing coverage map of the normal samples. Circle 
4: the green dot represents the density of SNP InDel. Circle 5: CNV results; red indicates increased CNVs. Circle 6: CNV results; blue 
indicates missing CNVs. SNV, single nucleotide variant; InDel, insertions/deletion; CNV, copy number variation.
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mutant genes. It was found that the mutant genes were 
mainly concentrated in GO binding cells, cell parts, and 
cellular processes (see Figure 5A). The KEGG pathway 
analysis showed that the mutant genes were mainly 
distributed in micro ribonucleic acids in cancer, the calcium 
signaling pathway, caffeine metabolism, extracellular matrix-
receptor interactions, protein digestion and absorption (see 
Figure 5B).

Discussion

The pathogenesis of keloids is extremely complex, and keloids 
manifest in various forms (i.e., single or multiple). The causes 

of keloids include the patient’s own factors (e.g., race, gene, 
age, and hormone level), site factors (e.g., local tension, 
active sites of sebaceous glands, and skin elasticity), and 
environmental factors (e.g., trauma and inflammation) (17).  
The treatment of keloid is difficult, and the treatment 
methods vary, but mainly include surgery, radiotherapy, 
steroids alone or combined with 5-FU local injection, 
laser, pressure therapy, and silicone patches. The effect of a 
combined treatment is better than that of any 1 treatment 
alone (18). As for the pathogenesis of keloids, no clear genetic 
factor has yet to be identified; thus, keloids may be caused by 
multiple gene polymorphisms (19).

There is a growing body of research focusing on the 
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epidermis and skin immune system (20,21). Cellular 
communication network factor 2 (CTGF), hepatocyte 
growth factor (HGF), and receptor C-MET have been 
detected in keloid keratinocytes. vascular endothelial 
growth factor (VEGF) and placental growth factor (PLGF), 
homeobox A7 (HOXA7), minichromosome maintenance 
8 homologous recombination repair factor (MCM8), 
proteasome 20S subunit alpha 4 (PSMA4), and proteasome 
20S subunit beta 2 (PSMB2) genes have been screened by 
functional tests (22-25). A previous study has also identified 
genes associated with epithelial differentiation, cell 
connectivity, and cell migration (26). In addition, a study 

has shown that epithelial mesenchymal transition also plays 
an important role in the development of keloids (27).

In this study, keloid skin tissues and paired normal skin 
tissues of 9 keloid patients were collected, and whole-exome 
sequencing and a related bioinformatics analysis were 
then performed. We attempted to observe the molecular 
mechanism of the occurrence and development of keloid 
from the genome level. We found high-frequency mutation 
genes, including MUC4, TTLL12, CACNA1C, and MUC12. 
MUC4 was the highest frequently mutated gene. Mutations 
were found in the diseased tissues of 5 patients.

MUC4 is a highly glycosylated protein. It plays an 

Figure 3 Mutant specificity of somatic SNVs in all the samples. (A) A heatmap of the mutation frequency of SNVs in all the samples. (B) 
Mutation profiles of SNVs in all the samples. (C) Mutation feature distribution map of all the samples. (D) Characteristic contrast heat map. 
SNV, single nucleotide variant.
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important role in the protection of epithelial cells and is 
related to the regeneration and differentiation of epithelial 
cells. The gene encodes a complete membrane glycoprotein 
on the cell surface. There are at least 24 transcriptional 
variants of MUC4, some of which are found only in tumor 
tissues. MUC4 has been reported to be closely associated 
with the development of a variety of tumors (28). MUC4 
expression is aberrantly upregulated in cutaneous squamous 
cell carcinomas (SCCs) (29,30), melanoma (31). High 
expression of MUC4 in SCC generally indicates a low 
tumor recurrence rate and a better prognosis (29). Since 
the expression of MUC4 in skin may be regulated by 
chronic inflammation (29), in keloid, there is a persistent 

inflammatory response, which may stimulate the over 
expression of MUC4. We speculated that the mutation 
of MUC4 also causes the abnormal regeneration and 
differentiation of epithelial cells, which reduces the 
protection of the skin and thus induces the production of 
keloids.

TTLL12 belongs to the tubulin tyrosine ligase family and 
plays an important role in tubulin modification, mitosis, and 
a variety of tumors. It has also been reported that TTLL12 
regulates the innate immune antiviral signals (32,33), but 
this has not been reported in keloids. We believe that 
the variation of TTLL12 may lead to abnormal tubulin 
modifications that affect the normal division and structure of 
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epithelial cells, thus promoting the occurrence of keloids.
MUC12 encodes  another  complete  membrane 

glycoprotein in the mucin family. MUC12 plays an 
important role in forming the protective mucosal barrier on 
the epithelial surface and intracellular signal transduction. 
MUC12 expression is downregulated in colorectal cancer 
tissues (34,35). There are mutations of MUC12 in human 
papillomavirus (HPV)-positive skin head and neck  
tumors (36). We hypothesize that the mutation of MUC12 
weakens the protective mucosal barrier on the epithelial 
surface and cause abnormal intracellular signal transduction, 
thus making the skin more vulnerable to damage and 
causing keloids.

CACNA1C is T type α subunit of a calcium channel, 
function as tumor suppressors in cancer development, 
exhibited low expression in some tumor tissue (37), but the 
expression of CACNA1C in keloids has not been reported, 

the mutation of CACNA1C might cause unlimited cell 
proliferation in keloid and promote the growth of keloid.

In future work, we will verify the site of mutation, and 
conduct functional experiments on relevant genes.

Conclusions

Our study identified several genes involved in the 
development of keloids at the genomic level. These results 
may provide new strategies for the clinical management of 
keloid patients.
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Figure 5 GO and KEGG analyses of all keloid patients. (A) GO analysis of all keloid patients. (B) KEGG analysis of mutant genes of all 
keloid patients. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Supplementary

Table S1 Sequencing data summary of all samples

Sample ID
Mapped target 

base
Average target 

depth
Total near target 

base
Mapped near 
target base

Average near 
target depth

Near target 
coverage  
ratio (%)

Target  
coverage  
ratio (%)

Target  
coverage  

5× (%)

Target  
coverage  
10× (%)

Target  
coverage  
20× (%)

Target  
coverage  
50× (%)

Target 
coverage  
100× (%)

Sample1-ks 9.7E+09 160.45 76180188 1.78E+09 23.4 76.2 99.25 98.8 98.3 97.11 91.28 72.02

Sample1-ns 9.6E+09 158.82 76180188 1.71E+09 22.43 74.27 99.05 98.3 97.49 95.77 88.99 70.53

Sample2-ks 1.29E+10 213.84 76180188 2.24E+09 29.4 66 96.87 91.03 86.31 81.21 73.1 62.7

Sample2-ns 9.36E+09 154.75 76180188 1.9E+09 24.94 81.53 99.25 98.77 98.24 97.05 91.14 70.86

Sample4-ks 5.19E+09 85.87 76180188 9.39E+08 12.33 67.26 98.95 97.93 96.56 93.01 74.58 32.81

Sample4-ns 9.01E+09 149.07 76180188 1.64E+09 21.47 75.23 99.38 98.86 98.29 96.93 90.36 68.93

Sample8-ns 7.4E+09 122.35 76180188 1.36E+09 17.83 73.13 99.17 98.52 97.73 95.79 86.31 57.48

Sample8-ks 1.24E+10 205.19 76180188 2.02E+09 26.47 67.04 99.14 97.02 92.86 83.69 68.56 56.81

Sample7-ks 8.44E+09 139.57 76180188 1.54E+09 20.18 74.93 99.56 99.08 98.48 96.98 89.19 64.61

Sample7-ns 6.86E+09 113.5 76180188 1.34E+09 17.6 75.74 99.4 98.74 97.91 95.79 84.67 52.03

Sample5-ks 8.91E+09 147.3 76180188 1.68E+09 22.05 77.49 99.53 99.07 98.51 97.17 90.15 67.28

Sample5-ns 1.09E+10 180.35 76180188 1.99E+09 26.14 73.89 98.06 95.45 93.39 90.27 81.84 66.64

Sample6-ks 7.27E+09 120.27 76180188 1.31E+09 17.14 71.28 99.38 98.79 97.97 95.72 82.83 51.51

Sample6-ns 8.52E+09 140.91 76180188 1.34E+09 17.63 58.48 99.21 96.24 89.86 73.54 45.73 33.33

Sample9-ks 7.13E+09 117.9 76180188 1.33E+09 17.42 74 99.25 98.69 97.99 96.01 83.97 50.93

Sample9-ns 6.39E+09 105.73 76180188 1.14E+09 14.91 70.41 99.23 98.62 97.8 95.33 80.01 43.38
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Table S2 The number summary of all samples CNVs and InDels 

Sample name SNV number InDel number

Sample 1 414 15

Sample 2 374 20

Sample 3 251 20

Sample 4 238 14

Sample 5 169 8

Sample 6 370 24

Sample 7 261 7

Sample 8 810 186

Sample 9 238 5

CNVs, copy number variations; InDel, insertions/deletion.

Table S3 Summary of all samples CNVs 

Sample Gain number Gain length Loss number Loss length Total number Total length

Sample 5 6 3817 15425 14858831 15431 14862648

Sample 4 0 0 12873 13082864 12873 13082864

Sample 3 2 1378 9952 10131422 9954 10132800

Sample 2 10861 10100743 17 13369 10878 10114112

Sample 8 5583 5053630 24 22205 5607 5075835

Sample 7 4685 4899591 7 4873 4692 4904464

Sample 6 22 20942 4649 4076135 4671 4097077

Sample 1 2100 2113612 114 84958 2214 2198570

Sample 9 1536 1350963 17 11795 1553 1362758

CNVs, copy number variations.


