
Page 1 of 11

© mHealth. All rights reserved. mHealth 2024;10:14 | https://dx.doi.org/10.21037/mhealth-24-2

Original Article

Capture of real-time data from electronic health records:
scenarios and solutions

Nikola Kirilov^

Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany

Correspondence to: Nikola Kirilov, BSc, MSc. Institute of Medical Informatics, Heidelberg University Hospital, Im Neuenheimer Feld 130.3 69120,

Heidelberg, Germany. Email: Nikola.Kirilov@med.uni-heidelberg.de.

Background: The integration of real-time data (RTD) in the electronic health records (EHRs) is
transforming the healthcare of tomorrow. In this work, the common scenarios of capturing RTD in the
healthcare from EHRs are studied and the approaches and tools to implement real-time solutions are
investigated.
Methods: Delivering RTD by representational state transfer (REST) application programming interfaces
(APIs) is usually accomplished through a Publish-Subscribe approach. Common technologies and protocols
used for implementing subscriptions are REST hooks and WebSockets. Polling is a straightforward
mechanism for obtaining updates; nevertheless, it may not be the most efficient or scalable solution. In such
cases, other approaches are often preferred. Database triggers and reverse proxies can be useful in RTD
scenarios; however, they should be designed carefully to avoid performance bottlenecks and potential issues.
Results: The implementation of subscriptions through REST hooks and WebSocket notifications using
a Fast Healthcare Interoperability Resources (FHIR) REST API, as well as the design of a reverse proxy
and database triggers is described. Reference implementations of the solutions are provided in a GitHub
repository. For the reverse proxy implementation, the Go language (Golang) was used, which is specialized
for the development of server-side networking applications. For FHIR servers a python script is provided
to create a sample Subscription resource to send RTD when a new Observation resource for specific patient
id is created. The sample WebSocket client is written using the “websocket-client” python library. The
sample RTD endpoint is created using the “Flask” framework. For database triggers a sample structured
query language (SQL) query for Postgres to create a trigger when an INSERT or UPDATE operation is
executed on the FHIR resource table is available. Furthermore, a use case clinical example, where the main
actors are the healthcare providers (hospitals, physician private practices, general practitioners and medical
laboratories), health information networks and the patient are drawn. The RTD flow and exchange is shown
in detail and how it could improve healthcare.
Conclusions: Capturing RTD is undoubtedly vital for health professionals and successful digital
healthcare. The topic remains unexplored especially in the context of EHRs. In our work for the first time
the common scenarios and problems are investigated. Furthermore, solutions and reference implementations
are provided which could support and contribute to the development of real-time applications.

Keywords: Real-time data (RTD); electronic health record (EHR); representational state transfer (REST);

database trigger; reverse proxy

Received: 04 January 2024; Accepted: 19 March 2024; Published online: 03 April 2024.

doi: 10.21037/mhealth-24-2

View this article at: https://dx.doi.org/10.21037/mhealth-24-2

11

^ ORCID: 0000-0001-7668-2448.

https://crossmark.crossref.org/dialog/?doi=10.21037/mhealth-24-2

mHealth, 2024Page 2 of 11

© mHealth. All rights reserved. mHealth 2024;10:14 | https://dx.doi.org/10.21037/mhealth-24-2

Introduction

The coordination of patient care activities is one of the
most complex and important services in every healthcare
organization (1). Therefore, the information regarding
patients has to be timely delivered to make right and
prompt clinical decisions (2). In the recent years, the
development of data sources and communication practices
in healthcare has focused on the electronic health records
(EHRs) (3,4). According to the National Academies of
Medicine, EHRs have multiple functions such as capture
of health data, support of the clinical decisions, health
information exchange, electronic communication, etc. (5).
Enhancing healthcare information systems with real-time
data (RTD) is transforming the healthcare of tomorrow (6).

What is RTD?

RTD is defined as information that is continuously updated
and provided right away after collection. Delay should
be kept as minimal as possible. This offers the possibility
of real-time computing and processing (7). RTD is often
associated with the following characteristics: immediate
availability (little to no delay in accessing the information),
frequent updates (frequently updated data, often in
milliseconds or seconds), streaming (continuous flow from
the source to the destination without interruption), low

latency and data processing in real-time using technologies
like complex event processing, stream processing, and
machine learning algorithms. Handling RTD can be
challenging due to the volume, velocity, and variety of
data sources. Scalability, data consistency, and security are
important considerations (8). New artificial intelligence (AI)
solutions are able to assess and evaluate data in real-time,
due to the growing computational power (9).

Integration of the RTD in the EHRs

RTD integration and access are crucial aspects of the EHRs
that can significantly enhance the quality of healthcare
delivery (10). Immediate accessibility to patient information
such as medical history, including diagnoses, medications,
allergies, and test results allows healthcare professionals
to make informed decisions quickly, especially in critical
situations. EHRs are continuously updated with new
information, ensuring that healthcare providers have
the most recent data about a patient’s health status (11).
This can be particularly important for managing chronic
conditions or monitoring patients in real time, such as in an
intensive care unit (12,13). EHR systems often incorporate
clinical decision support tools that use real-time patient data
to send alerts and reminders to healthcare providers (14).
For example, if a prescribed medication interacts negatively
with another medication in the patient’s record, the EHRs
can generate an alert to prevent potential harm (15).
RTD from wearable devices and remote monitoring tools
can be integrated into EHRs. This allows healthcare
providers to monitor patients’ vital signs, activity levels, and
other health metrics in real time, which can be valuable for
patients with chronic conditions or those recovering from
surgery (16). Through streamlined workflows RTD can
improve the efficiency of healthcare. For instance, it can
automate certain processes, such as notifying a pharmacy
to prepare a prescription when a healthcare provider
enters the order into the EHR (17). RTD is essential for
telemedicine and virtual visits (18). Patients and healthcare
providers can share information and communicate in real
time, even when they are not physically present in the same
location. RTD can be made available to patients through
EHR patient portals (19). This empowers patients to
actively manage their health by monitoring their progress
and communicating with their healthcare team. RTD from
EHRs can be analyzed to identify trends, outbreaks, and
other insights that can support public health decisions.
For example, during a disease outbreak, RTD from EHRs

Highlight box

Key findings
• This paper identifies the common scenarios of capturing real-

time data (RTD) from the electronic health records. In this work
the challenges of the process are studied and possible solutions are
proposed.

What is known and what is new?
• It is known, that RTD in healthcare is important and this has

been shown in many scientific papers. Nevertheless, the exact
implementation and design of the systems has not been thoroughly
discussed.

• The new in this work is the investigation of the common scenarios
and problems capturing RTD. Furthermore, implementations of
solutions are described and clinical example as use case is given.

What is the implication, and what should change now?
• The provided reference implementations could help guide the

future development of real-time applications. This could lead to
the enhancement of clinical decision making and the improvement
of clinical research.

mHealth, 2024 Page 3 of 11

© mHealth. All rights reserved. mHealth 2024;10:14 | https://dx.doi.org/10.21037/mhealth-24-2

can help authorities track the spread and severity of the
disease (20). It’s important to note that while RTD in EHRs
offers numerous benefits, it also raises concerns about data
security, privacy, and the need for robust data infrastructure
to support its transmission and storage. Healthcare
organizations must implement stringent security measures
to protect sensitive patient information while ensuring
timely access to authorized users (21).

Standards for EHRs

The beginning of the intensive research on EHRs dates
back to the 1980s. The aim was to create the clinical,
ethical and technical requirements for the standards, which
were later published at the International Organization for
Standardization (22). Standards for EHRs are essential to
ensure interoperability, data exchange, as well as the secure
and consistent use of EHRs across healthcare organizations
and systems (23). Several standards and frameworks
have been established to guide the development and
implementation of EHRs (24).

Health Level Seven International (HL7) is a widely
recognized organization that develops standards for the
exchange, integration, sharing, and retrieval of electronic
health information. HL7’s standards, such as HL7 Version 2
(HL7v2) and HL7 Version 3 (HL7v3), provide a framework
for structuring clinical and administrative data in EHRs.
The Fast Healthcare Interoperability Resources (FHIR)
standard developed by HL7 has gained significant traction
for its modern and flexible approach to data exchange (25).
Standards such as these of the HL7 family (v2 and v3)
are designed to build complex clinical documents, but
they do not specify communication protocol, nor do they
ensure interoperability. On the other hand, the recently
developed OpenEHR and HL7 FHIR standards focus on
interoperability and data transmission between centers.
Both are gaining popularity and are being adopted by many
facilities and institutions. FHIR has its own data model with
a definition of a set of resources, while OpenEHR is more
flexible and offers data modelling utilizing an archetype
hierarchy (26).

These standards and frameworks provide a foundation
for the development and implementation of EHRs.
Healthcare organizations and EHR vendors must adhere
to these standards to ensure that patient data is accurately
represented, securely transmitted, and easily shared between
different systems and healthcare providers, ultimately
improving patient care and safety.

The objective of this paper is to study the challenges of
RTD captured from EHRs, typical scenarios, their solutions
and to provide reference implementations, indicating a use
case example.

Methods

In this work, the common scenarios of capturing RTD in
the healthcare from EHRs are identified. In order to show
the feasibility of the concepts the approaches and tools are
investigated to implement the real-time solutions regardless
of the use case. The eligibility and the needed modifications
to fit into the context of EHRs are examined. To develop
reference program implementations Python and Go
language (Golang) were used. Python offers an abundancy
of libraries for server/client applications and Golang was
specially developed for server-side networking applications.

The modern EHR standards have embraced the
Representational State Transfer (REST) architecture, due
to its raising use in all web applications in the recent years,
thus, multiple REST application programming interfaces
(APIs) solutions are available for each of them. The fact that
these implementations use the Hypertext Transfer Protocol
(HTTP) for communication makes REST more preferable,
due to the undisturbed traffic through institutional firewalls.
Usually, these APIs consist of a webserver, which processes
the requests and stores data in a database, e.g., PostgreSQL,
MySQL, Microsoft SQL, etc. (27-29).

RTD in REST

REST is an architectural style and set of constraints for
designing networked applications. It was introduced and
defined by Roy Fielding in 2000. REST is widely used in
the design of web services and APIs due to its simplicity,
scalability, and compatibility with the HTTP protocol (30).
In his work, Roy Fielding lays the key principles of REST.

Resources are key components of REST APIs, which
can be a conceptual entity or a piece of data. Each resource
is identified by a unique Uniform Resource Identifier.
RESTful interactions are performed using standard
HTTP methods, also known as HTTP verbs. The primary
HTTP methods used in REST are: GET (retrieve data
or information about a resource), POST (create a new
resource or submit data to a resource), PUT (update
or replace an existing resource), DELETE (remove a
resource). REST allows the use of intermediary components
(proxies, gateways, caches) to improve system performance,

mHealth, 2024Page 4 of 11

© mHealth. All rights reserved. mHealth 2024;10:14 | https://dx.doi.org/10.21037/mhealth-24-2

scalability, and security. Each component only needs to
understand the immediate request/response, not the entire
application (31).

RESTful APIs have become the dominant approach
for building web services and have found widespread use
in web and mobile applications due to their simplicity
and compatibility with the HTTP protocol. They offer
a scalable and loosely coupled way to design distributed
systems on the web.

Delivering RTD to users by REST APIs is usually
accomplished through a Publish-Subscribe approach. This
allows clients to receive updates or notifications about
resource changes in a real-time or event-driven manner (32).
Clients subscribe to specific resources or events on the
server. This subscription is typically established by the
client sending a request to the server, expressing interest in
certain resources or types of events (channels). The server
acknowledges the subscription and associates the client
with the specified resource or event. As resources change
or events occur that are relevant to the client’s subscription,
the server detects these changes and sends notifications (33).

Common technologies and protocols used for
implementing subscriptions are REST hooks, WebSocket
and Server-Sent Events (34). The choice of technology
depends on the specific requirements of the application
and the desired level of real-time interaction between the
server and the client. A REST server that does not support
these approaches only follows a standard request-response
model. In such a system, the only way to receive data is by
making a HTTP request. The practices of HTTP polling
could be considered a predecessor to the above-mentioned
technologies and could enable real-time interactions.
Despite of its limitations polling has remained for a long
time on the web. The adoption of all these approaches
is widespread and can be found in many of the web and
mobile applications (35).

RTD independent of REST

Real-time communication is also possible outside of REST
APIs. In this section, the approaches to separate the RTD
delivery and management from the APIs are presented.

Many applications including REST APIs usually use a
database solution to store the resources. Database triggers
are a feature of relational database management systems
and are usually used to automate actions or enforce data
integrity rules within the database itself. Database trigger
is a procedure which is executed as soon as an event in a

database table occurs. This includes creation, deletion or
modification of entries. Triggers are supported by most
of the popular databases: Microsoft SQL, PostgreSQL,
MySQL, SQLite, etc. (36). Database triggers can also
be deployed in RTD scenarios to ensure data integrity,
propagate changes, and automate certain actions when
RTD events occur (37).

A reverse proxy is a server or software application which
is located between the client devices and the backend
servers. It acts as an intermediary, receiving requests from
clients and forwarding them to the appropriate backend
server. The reverse proxy then sends the server response
back to the client. The key distinction between a reverse
proxy and a regular (forward) proxy is the direction of
the traffic flow. Reverse proxies are often used to enhance
security, improve performance, and provide additional
features for web applications (38). Currently a few solutions
which offer an implementation for real time client
interaction exist. These manage RTD delivery separating
the implementation of the real-time service from the main
backend API (39,40).

Results

Implementation description

RTD in REST
HL7 FHIR Rest APIs implement the REST hook. A
Subscription resource needs to be created, which includes
the criteria used to determine when to generate notifications
and the rest hook channel. The criteria follow the same
logic as if they were to be written as a uniform resource
locator (URL) to search the resources of interest. When
a resource meeting the criteria is created or updated the
server sends a POST request with empty body or a PUT
request with the full resource. In this scenario the recipient
of the data has to be an HTTP endpoint which accepts the
POST or PUT requests with a JavaScript Object Notation
(JSON) body. After that if needed the data can be forwarded
to other systems which need it in real-time allowing for a
change in protocol and domain (Figure 1).

HL7 FHIR servers offer the use of WebSockets to
send notifications to clients when an event occurs. To use
WebSockets a Subscription resource has to be created
like the REST hook mechanism, where the criteria and
the WebSocket channel is specified. The recipient in this
case is a client which connects to the server using the
HTTP WebSocket technology. As soon as connection is

mHealth, 2024 Page 5 of 11

© mHealth. All rights reserved. mHealth 2024;10:14 | https://dx.doi.org/10.21037/mhealth-24-2

Figure 1 Diagram of the RTD delivery using Subscriptions over WebSocket or with REST hook. RTD, real-time data; REST,
representational state transfer; EHR, electronic health record; HTTP, HyperText Transfer Protocol.

established the client sends a message “bind id” where id
is the id of the subscription resource for which the client
needs to be notified. The server responds than with a
“bound id” message. From this moment the client receives
a message “ping id” each time new data is available and
has to query the resources and eventually forward them to
a target system. The delivery of the data happens in real-
time (Figure 1).

The HL7 FHIR describes two different approaches:
polling a single record or polling across records. The
polling of a single record is applicable only when there is
an interest in the modification of an existing record. If the
resource does not yet exist, polling across records should
be used filtering by timestamp to identify new resources.
Polling could be utilized with any other EHR standard,
e.g., openEHR. The delay depends solely on the frequency
of the queries and if it is short enough almost real-time
delivery is achievable (Figure 2).

The polling interval defines how frequently the client
sends requests to the server. The choice of polling interval
depends on the specific requirements of the application.
Shorter intervals provide more real-time updates but may

increase server load and network traffic.

RTD independent of REST
Database triggers are applicable to all EHR servers using
databases like OpenEHR and FHIR. The procedure
code is written and inserted in the database server using
a structured query language (SQL) query. When the
defined event occurs the server notifies all clients that are
listening on the particular channel. The recipient has to
be connected to the database server and has to be listening
for notify events. These can then be forwarded to another
system. The delivery in this case is in real-time (Figure 3).

It’s important to note that while database triggers can be
useful in RTD scenarios, they should be designed carefully
to avoid performance bottlenecks and potential issues,
especially in high-velocity RTD environments. Additionally,
the choice of database system and its support for real-time
processing can impact the effectiveness of using triggers in
such scenarios.

Reverse proxies can be used to track and forward requests
to the EHR servers. The RTD capturing could be achieved
by notifying a recipient when an HTTP request using the

Local network
Network

REST hook

EHR rest
server

Forwarding
(optional) Recipient

target system
RTD recipient
http endpoint

Client

Local network
Create, Update,

Delete

Local network

Forwarding (optional)

WebSocket
notification

Recipient
target system

RTD recipient
WebSocket

client

mHealth, 2024Page 6 of 11

© mHealth. All rights reserved. mHealth 2024;10:14 | https://dx.doi.org/10.21037/mhealth-24-2

Figure 2 Diagram of the RTD delivery using Polling. EHR, electronic health record; RTD, real-time data.

Figure 3 Diagram of the RTD delivery using database triggers. EHR, electronic health record; RTD, real-time data.

POST, PUT or DELETE method is passed (Figure 4).
In this scenario, the encryption and authentication should
be handled by the proxy as well as the identity of the
requesting client. It is important to note that the server
should be aware of the URL of the reverse proxy in order to
adjust the resource URLs (base URL).

Reference implementation

A reference implementation of the solutions for each
scenario is made available in a GitHub repository.
For HL7 FHIR a python script is provided to create a
sample Subscription resource to send RTD when a new
Observation resource for specific patient id is created. The
sample WebSocket client is written using the “websocket-
client” python library. The sample HTTP endpoint is
created using the “Flask” framework. For database triggers
a sample SQL query for Postgres is made available to
create a trigger when an INSERT or UPDATE operation
is executed on the FHIR “hfj_resource” table. The
trigger notifies the connected clients about the operation,
resource type and resource id. The database client is

implemented using the “psycopg2” library. Finally, for the
reverse proxy Golang’s “httputil” package is used. It allows
the modification of the response before it reaches the
requesting client. In this case the response is not modified
and the information is used to check the request method
that created the response and the status code. If the request
method is “POST”, “PUT” or “DELETE” and if the status
code is successful, an operation producing data update on
the server is identified. In this step a new request to a RTD
recipient, e.g., an endpoint is executed. More information
regarding the implementation and usage could be found in
the README.MD file.

Use case clinical example

In this use case example of RTD capture from the EHRs
the main actors are the healthcare providers [hospitals,
physician private practices, general practitioners (GPs),
medical laboratories], health information networks (HIN)
and patients. All of the above-mentioned settings have
their own private networks with EHR servers and databases
protected by a firewall. In the hospital network a reverse

Local network
NotifyLocal network

Network

EHR server Forwarding
(optional)

Recipient target
system

RTD recipient
database

client

Client

Create, Update,
Delete

Create, Update, Delete

Database

EHR server
POLLING

INTERVAL

Recipient client

mHealth, 2024 Page 7 of 11

© mHealth. All rights reserved. mHealth 2024;10:14 | https://dx.doi.org/10.21037/mhealth-24-2

proxy could be placed in front of the EHR server and when
new records are generated these will be sent to a HIN
in real-time. The RTD delivery from a physician private
practice could be implemented using a database trigger.
Medical laboratories could also deliver RTD by connecting
a REST hook to the HIN. As soon as new information is
received by the HIN, patients can receive RTD through
a WebSocket mobile client and the GP will be informed
about the new patient data through REST hook to a HTTP
Endpoint positioned in the demilitarized zone behind the
firewall. GPs could send RTD to the HIN as well. The
selection of the implementation approach and technology
here is just an example and in real-life this process should be
assessed according to the needs and design of the network
and information technology infrastructure of the facility
(Figure 5).

A hypothetical scenario could be a patient, who is
admitted to a hospital and diagnosed with a chronic
condition, which requires managing and regular visits at a
physician private practice. The clinicians generate the new
EHRs regarding this encounter and the information is sent
in real-time to the HIN, which forwards the RTD to the
GP. The GP can than expeditiously prepare and write a
referral for specialist care and other documents to the HIN
saving the patient troubles appointing a visit. The patient
will receive the generated records on his phone as RTD and

can visit the private practice of a specialist physician, who
will examine the patient and assign additional laboratory
testing, treatment and complete the EHR of the patient by
sending RTD to the HIN. The GP is able to issue receipts
and observe the laboratory results in real-time. This will be
true for the patient as well and should reduce the amount of
patient visits, waiting times and costs.

Discussion

The solutions to achieve RTD delivery depend mostly
on the technology which the EHR server uses. HL7
FHIR uses a REST API and implements many of the
notification features. The only work which discusses the
use of the REST subscriptions mechanism in the context of
EHRs presents a real-time link between a FHIR server to
Observational Medical Outcomes Partnership (OMOP) and
Patient-Centered Clinical Research Network (PCORnet)
databases for COVID-19 research (41). The authors do
not show in detail how this mechanism is implemented.
REST hooks are effective delivering RTD, but need an
endpoint address which is exposed and accessible from the
EHR server. If both the server and the recipient of data are
residing in the same local network then this may not be
needed. On the contrary, WebSockets do not need outward-
facing HTTP endpoint and relay on a Transmission

Figure 4 Diagram of the RTD delivery using reverse proxy. EHR, electronic health record; RTD, real-time data.

Network

Reverse proxy EHR server

Recipient target system

Client

Local network

Create, Update, Delete Create, Update, Delete

Response

Local network

Local network

RTD recipient
client or endpoint

mHealth, 2024Page 8 of 11

© mHealth. All rights reserved. mHealth 2024;10:14 | https://dx.doi.org/10.21037/mhealth-24-2

Control Protocol/Internet Protocol (TCP/IP) connection
on top of HTTP, which is established and maintained.

If WebSockets or REST hooks are not supported by the
server the recipient needs to resort to other approaches.
In these scenarios database trigger or reverse proxy are
the next solution which offers best RTD availability. By
searching the literature, we did not find any application of
database triggers or reverse proxies for RTD delivery in
the context of EHRs. Database triggers require an access
to the database system in order to execute the SQL query
creating the trigger. Moreover, the database server needs to
be accessible by the listening recipient. The reverse proxy
solution calls for a more sophisticated intermediary to
forward requests and handle encryption and authentication.
The reliability of this solution might be higher than that of
the database triggers avoiding bottleneck and performance
issues. Furthermore, reverse proxies offer additional
performance features. Although, reverse proxies that
manage real-time features already exist, their use is mainly
to separate the implementation of real-time messaging from
the backend API or other microservices. This allows the
backend to remain stateless, but requires the ability of the

API to communicate with the reverse proxy and be aware of
its existence (39,40). In our proposed reverse proxy design,
there is no need for modification of the EHR Server and
the solution can universally be deployed in many scenarios.
Some reverse proxy servers offer a mirror module which
mirrors the original request to another backend (42). These
features do not access the response from the EHR server
and can’t guarantee the success of the request.

If none of these approaches can be used the only solution
remains polling. To achieve almost RTD delivery, it is
important to increase the frequency of the queries. This
may increase bandwidth and consume processing power
from the server. It is recommended to use polling if all
other solutions are unavailable (35).

Conclusions

Capturing RTD is undoubtedly vital for health professionals
and successful digital healthcare. The topic remains
unexplored especially in the context of EHRs. In this work
for the first time the common scenarios and problems
are investigated. Furthermore, solutions and reference

Figure 5 Use case model diagram: relationship and RTD exchange between healthcare providers (hospitals, physician private practices,
GPs, medical laboratories), health information networks and patients. EHR, electronic health record; REST, representational state transfer;
GP, general practitioner; Lab, laboratory; HTTP, HyperText Transfer Protocol; DB, database; RTD, real-time data.

Hospital network

Physician private practice

Database

Physician Firewall Firewall

Firewall

Database client
Practice RTD

Practice RTD Lab RTD
(REST Hook)

Patient RTD
(REST Hook)

Patient RTD
(REST Hook)

GP

GP RTD

General practitioner

Medical laboratory

Medical laboratory
scientistLaboratory

EHR server

GP EHR
server

Demilitarized zone
(DMZ)

HTTP endpoint

GP RTD
(REST Hook)

Patient RTD

Patient RTD

Lab RTD

Practice RTD
(DB trigger)

Hospital RTD

Hospital RTD
Hospital

EHR server

Practice
EHR server

EHR server

Database

Database

PatientWeb Socket
Mobile client

Health information network

InternetFirewall

Database

Reverse proxy

Clinician

mHealth, 2024 Page 9 of 11

© mHealth. All rights reserved. mHealth 2024;10:14 | https://dx.doi.org/10.21037/mhealth-24-2

implementations which could support and contribute to
the development of real-time applications are provided.
Ultimately, as RTD requirements of each scenario can
vary significantly, it’s advisable to carefully assess the
specific needs of the application and choose appropriate
technologies and strategies accordingly.

Acknowledgments

Funding: None.

Footnote

Data Sharing Statement: Available at https://mhealth.
amegroups.com/article/view/10.21037/mhealth-24-2/dss

Peer Review File: Available at https://mhealth.amegroups.
com/article/view/10.21037/mhealth-24-2/prf

Conflicts of Interest: The author has completed the ICMJE
uniform disclosure form (available at https://mhealth.
amegroups.com/article/view/10.21037/mhealth-24-2/coif).
The author has no conflicts of interest to declare.

Ethical Statement: The author is accountable for all
aspects of the work in ensuring that questions related
to the accuracy or integrity of any part of the work are
appropriately investigated and resolved.

Open Access Statement: This is an Open Access article
distributed in accordance with the Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article
with the strict proviso that no changes or edits are made
and the original work is properly cited (including links
to both the formal publication through the relevant
DOI and the license). See: https://creativecommons.org/
licenses/by-nc-nd/4.0/.

References

1. Hempel S, Ganz D, Saluja S, et al. Care coordination
across healthcare systems: development of a research
agenda, implications for practice, and recommendations
for policy based on a modified Delphi panel. BMJ Open
2023;13:e060232.

2. Schlicher J, Metsker MT, Shah H, et al. From NASA to

healthcare: real-time data analytics (mission control) is
reshaping healthcare services. Perspect Health Inf Manag
2021;18:1g.

3. Evans RS. Electronic Health Records: Then, Now, and in
the Future. Yearb Med Inform 2016;Suppl 1:S48-61.

4. Hämäläinen A, Hirvonen H. Electronic Health Records
reshaping the socio-technical practices in Long-
Term Care of older persons. Technology in Society
2020;62:101316.

5. Gliklich RE, Leavy MB, Dreyer NA, editors. Tools and
Technologies for Registry Interoperability, Registries
for Evaluating Patient Outcomes: A User’s Guide, 3rd
Edition, Addendum 2. Rockville (MD): Agency for
Healthcare Research and Quality (US); 2019 Oct. Report
No.: 19(20)-EHC017-EF.

6. Northern Kentucky University. Northern Kentucky
University; c2024 [cited 2024 Jan 04]. Benefits of Real-
Time Data in Health Information Systems. Available
online: https://onlinedegrees.nku.edu/programs/business/
informatics/mshi/real-time-data/

7. Shin KG, Ramanathan P. Real-time computing: a
new discipline of computer science and engineering.
Proceedings of the IEEE 1994;82:6-24.

8. Laska M, Herle S, Klamma R, et al. A Scalable
Architecture for Real-Time Stream Processing of
Spatiotemporal IoT Stream Data—Performance Analysis
on the Example of Map Matching. ISPRS Int J Geo-Inf
2018;7:238.

9. Mintz Y, Brodie R. Introduction to artificial intelligence
in medicine. Minim Invasive Ther Allied Technol
2019;28:73-81.

10. Paganelli AI, Mondéjar AG, da Silva AC, et al. Real-
time data analysis in health monitoring systems: A
comprehensive systematic literature review. J Biomed
Inform 2022;127:104009.

11. Bouri N, Ravi S. Going mobile: how mobile personal
health records can improve health care during
emergencies. JMIR Mhealth Uhealth 2014;2:e8.

12. Fu MR. Real-time detection and management of chronic
illnesses. Mhealth 2021;7:1.

13. Cruz R, Guimarães T, Peixoto H, et al. Architecture for
Intensive Care Data Processing and Visualization in Real-
time. Procedia Computer Science 2021;184:923-8.

14. Gold R, Sheppler C, Hessler D, et al. Using Electronic
Health Record-Based Clinical Decision Support to
Provide Social Risk-Informed Care in Community
Health Centers: Protocol for the Design and Assessment
of a Clinical Decision Support Tool. JMIR Res Protoc

https://mhealth.amegroups.com/article/view/10.21037/mhealth-24-2/dss
https://mhealth.amegroups.com/article/view/10.21037/mhealth-24-2/dss
https://mhealth.amegroups.com/article/view/10.21037/mhealth-24-2/prf
https://mhealth.amegroups.com/article/view/10.21037/mhealth-24-2/prf
https://mhealth.amegroups.com/article/view/10.21037/mhealth-24-2/coif
https://mhealth.amegroups.com/article/view/10.21037/mhealth-24-2/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://onlinedegrees.nku.edu/programs/business/informatics/mshi/real-time-data/
https://onlinedegrees.nku.edu/programs/business/informatics/mshi/real-time-data/

mHealth, 2024Page 10 of 11

© mHealth. All rights reserved. mHealth 2024;10:14 | https://dx.doi.org/10.21037/mhealth-24-2

2021;10:e31733.
15. Wright A, Aaron S, Seger DL, et al. Reduced Effectiveness

of Interruptive Drug-Drug Interaction Alerts after
Conversion to a Commercial Electronic Health Record. J
Gen Intern Med 2018;33:1868-76.

16. Classen D, Li M, Miller S, et al. An Electronic Health
Record-Based Real-Time Analytics Program For Patient
Safety Surveillance And Improvement. Health Aff
(Millwood) 2018;37:1805-12.

17. Porterfield A, Engelbert K, Coustasse A. Electronic
prescribing: improving the efficiency and accuracy of
prescribing in the ambulatory care setting. Perspect Health
Inf Manag 2014;11:1g.

18. Kalid N, Zaidan AA, Zaidan BB, et al. Based on Real Time
Remote Health Monitoring Systems: A New Approach for
Prioritization "Large Scales Data" Patients with Chronic
Heart Diseases Using Body Sensors and Communication
Technology. J Med Syst 2018;42:69.

19. van Kuppenveld SI, van Os-Medendorp H, Tiemessen
NA, et al. Real-Time Access to Electronic Health
Record via a Patient Portal: Is it Harmful? A
Retrospective Observational Study. J Med Internet Res
2020;22:e13622.

20. Satterfield BA, Dikilitas O, Kullo IJ. Leveraging the
Electronic Health Record to Address the COVID-19
Pandemic. Mayo Clin Proc 2021;96:1592-608.

21. Menachemi N, Collum TH. Benefits and drawbacks of
electronic health record systems. Risk Manag Healthc
Policy 2011;4:47-55.

22. Kalra D. Electronic health record standards. Yearb Med
Inform 2006;136-44.

23. Reisman M. EHRs: The Challenge of Making Electronic
Data Usable and Interoperable. P T 2017;42:572-5.

24. Winter A, Takabayashi K, Jahn F, et al. Quality
Requirements for Electronic Health Record Systems*. A
Japanese-German Information Management Perspective.
Methods Inf Med 2017;56:e92-104.

25. Ayaz M, Pasha MF, Alzahrani MY, et al. The Fast Health
Interoperability Resources (FHIR) Standard: Systematic
Literature Review of Implementations, Applications,
Challenges and Opportunities. JMIR Med Inform
2021;9:e21929.

26. Kryszyn J, Smolik W, Wanta D, et al. "Comparison of
OpenEHR and HL7 FHIR Standards." International
Journal of Electronics and Telecommunications
(2023): 47-52.

27. Mandel JC, Kreda DA, Mandl KD, et al. SMART on
FHIR: a standards-based, interoperable apps platform

for electronic health records. J Am Med Inform Assoc
2016;23:899-908.

28. HAPI FHIR. HAPI FHIR Server Introduction. [cited
2024 Jan 04]. Available online: https://hapifhir.io/hapi-
fhir/docs/server_plain/

29. OpenEHR. OpenEHR REST EHR API. [cited 2024 Jan
04]. Available online: https://specifications.openehr.org/
releases/ITS-REST/Release-1.0.0/ehr.html

30. Fielding RT. Chapter 2: Network-based Application
Architectures. Architectural Styles and the Design of
Network-based Software Architectures (Ph.D.) 2000.
University of California, Irvine. Archived from the original
on 2014-12-16. Retrieved 2014-04-12.

31. Erl T, Carlyle B, Pautasso C, et al. SOA with REST:
Principles, Patterns & Constraints for Building Enterprise
Solutions with REST. Upper Saddle River. New Jersey:
Prentice Hall, 2012.

32. Google. Google Cloud; c2024 [cited 2024 Jan 04]. What
is Pub/Sub? Available online: https://cloud.google.com/
pubsub/docs/overview

33. Google. Google Cloud; c2024 [cited 2024 Jan 04].
Overview of the Pub/Sub service. Available online: https://
cloud.google.com/pubsub/docs/pubsub-basics

34. Zapier. Zapier Inc.; c2022-2024 [cited 2024 Jan 04]. What
are webhooks? Available online: https://zapier.com/blog/
what-are-webhooks/

35. Murley P, Ma Z, Mason J, et al. WebSocket Adoption
and the Landscape of the Real-Time Web. Proceedings
of the Web Conference 2021. Association for Computing
Machinery, New York, NY, USA, 1192–1203. doi:
10.1145/3442381.3450063.

36. Berndtsson M, Mellin J. Database Trigger. In: Liu L, Özsu
MT. editors. Encyclopedia of Database Systems. New
York, NY: Springer; 2018.

37. Estuary. estuary.dev; c2023-2024 [cited 2024 Jan 04].
Realtime Database Triggers. Available online: https://
estuary.dev/realtime-database-triggers/

38. Cloudflare. Cloudflare, Inc.; c2024 [cited 2024 Jan 04].
What is a reverse proxy? | Proxy servers explained.
Available online: https://www.cloudflare.com/learning/
cdn/glossary/reverse-proxy/

39. pushpin.org. Fastly, Inc; c2024 [cited 2024 Jan 04].
Available online: https://pushpin.org/

40. fanout.io. Fanout Now part of Fastly; c2024 [cited 2024
Jan 04]. Available online: https://fanout.io/

41. Lenert LA, Ilatovskiy AV, Agnew J, et al. Automated
Production of Research Data Marts from a Canonical
Fast Healthcare Interoperability Resource (FHIR) Data

https://hapifhir.io/hapi-fhir/docs/server_plain/
https://hapifhir.io/hapi-fhir/docs/server_plain/
https://specifications.openehr.org/releases/ITS-REST/Release-1.0.0/ehr.html
https://specifications.openehr.org/releases/ITS-REST/Release-1.0.0/ehr.html
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/pubsub/docs/pubsub-basics
https://cloud.google.com/pubsub/docs/pubsub-basics
https://zapier.com/blog/what-are-webhooks/
https://zapier.com/blog/what-are-webhooks/
https://estuary.dev/realtime-database-triggers/
https://estuary.dev/realtime-database-triggers/
https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy/
https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy/
https://pushpin.org/
https://fanout.io/

mHealth, 2024 Page 11 of 11

© mHealth. All rights reserved. mHealth 2024;10:14 | https://dx.doi.org/10.21037/mhealth-24-2

Repository: Applications to COVID-19 Research. medRxiv
[Preprint] 2021. doi: 10.1101/2021.03.11.21253384.
Update in: J Am Med Inform Assoc 2021;28:1605-11.

42. Nginx. Nginx; c2024 [cited 2024 Jan 04]. Module ngx_
http_mirror_module. Available online: https://nginx.org/
en/docs/http/ngx_http_mirror_module.html

doi: 10.21037/mhealth-24-2
Cite this article as: Kirilov N. Capture of real-time data from
electronic health records: scenarios and solutions. mHealth
2024;10:14.

https://nginx.org/en/docs/http/ngx_http_mirror_module.html
https://nginx.org/en/docs/http/ngx_http_mirror_module.html

