
Page 1 of 11

© mHealth. All rights reserved. mHealth 2019;5:25 | http://dx.doi.org/10.21037/mhealth.2019.07.04

Introduction

The potential of mobile health is fueled by digital data
captured in real time and real-world environments that
allows quantification of the personal experience of illness.
The myriad of sensors on today’s smartphones and
smartwatches can help patients track exercise, sleep, heart
rate, and much more. The concept of digital phenotyping,
defined as the “moment-by-moment quantification of
the individual-level human phenotype in situ using data
from personal digital devices” (1) has emerged as a means
to conceptualize the possibilities of such data to improve
health and has been extensively applied in mental health (2).
Yet the vast quantities of this new data have not yet
transformed routine clinical care and still remain more
a research topic than clinical tool to support prevention,
clinical decision support, and personalized medicine. While

there are numerous reasons for this discrepancy between
data and utility, there is a clear need for solutions that can
harness the potential of transforming mobile data into
health data.

Consider the clinical case of a patient using a smartphone
app over three months, responding to surveys about mood
and anxiety and capturing real time data on steps and
sleep. An intelligent machine learning algorithm used in
the app is able to capture the baseline of this patient using
a combination of sensors and surveys. This algorithm is
then able to perform real time assessment of risk of relapse
based on changes in these digital signals, notifying the
patients, alerting the clinical team, and recommending
digital interventions in real time. This case, as well as
many others such as deploying emergency responses to a
signal suggesting high risk of suicide based on geolocation,
survey responses, and social activity, are possible today with

Technical Report

Actionable digital phenotyping: a framework for the delivery of
just-in-time and longitudinal interventions in clinical healthcare

Aditya Vaidyam1, John Halamka2, John Torous1

1Department of Psychiatry, 2Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston,

MA, USA

Correspondence to: John Torous, MD. 330 Brookline Ave, Boston, MA 02115, USA. Email: jtorous@bidmc.harvard.edu.

Abstract: Designed to improve health, today numerous wearables and smartphone apps are used by
millions across the world. Yet the wealth of data generated from the many sensors on these wearables and
smartwatches has not yet transformed routine clinical care. One central reason for this gap between data
and clinical insights is the lack of transparency and standards around data generated from mobile device that
hinders interoperability and reproducibility. The clinical informatics community has offered solutions via
the Fast Healthcare Interoperability Resources (FHIR) standard which facilities electronic health record
interoperability but is less developed towards precision temporal contextually-tagged sensor measurements
generated from today’s ubiquitous mobile devices. In this paper we explore the opportunities and challenges
of various theoretical approaches towards FHIR compatible digital phenotyping, and offer a concrete
example implementing one such framework as an Application Programming Interface (API) for the open-
source mindLAMP platform. We aim to build a community with contributions from statisticians, clinicians,
patients, family members, researchers, designers, engineers, and more.

Keywords: mHealth; Fast Healthcare Interoperability Resources (FHIR); Application Programming Interface

(API); psychiatry; digital phenotyping

Received: 09 January 2019; Accepted: 15 July 2019; Published: 12 August 2019.

doi: 10.21037/mhealth.2019.07.04

View this article at: http://dx.doi.org/10.21037/mhealth.2019.07.04

https://crossmark.crossref.org/dialog/?doi=10.21037/mhealth.2019.07.04

mHealth, 2019Page 2 of 11

© mHealth. All rights reserved. mHealth 2019;5:25 | http://dx.doi.org/10.21037/mhealth.2019.07.04

advancements in technology and access to care. But little
has been done to standardize the use and development of
systems that support cases such as these in the modern
digital clinic (3).

Adapting to ever-changing legislative, security, privacy,
and medical needs, the Health Level Seven (HL7)
International organization proposed the Fast Healthcare
Interoperability Resources (FHIR) standard (4) to help
make digital data more uniform and interpretable. FHIR
aims to facilitate secure interoperation between medical
records systems as well as third-party applications such
as medical devices and smartphone apps. However, while
FHIR proposes an easily generalizable and interoperable
standard for medical records and devices, its capability to
support such personalized, highly contextual sensor-driven
data is still evolving. It is possible to envision how FHIR
standards could be augmented and expanded to one day
support such clinically useful applications (5).

As we approached the concept of real-time digital
clinical interventions, we identified numerous apps capable
of delivering health-related intervention but found in line
with prior research that they required manual configuration
and deployment with no feedback system in place for either
the patient or clinician. Furthermore, many of the apps
that others and our team identified lacked integration with
other existing systems such as electronic medical records,
a concern that could easily be mitigated through adoption
of FHIR. Recognizing this need, we blueprinted new
techniques to react to potentially rapid changes in mental
health state such as threshold-triggered auto-deployment
of interventions, feedback monitoring for advanced clinical
decision support, and auto-configuration based on incoming
patient data. We explored existing methods of data storage,
encryption and access, future proofing, and interoperability
in the context of mobile device based digital phenotyping
and health interventions.

In this paper, we frame the discussion around a software
protocol and smartphone platform to provide concrete
examples of clinical use cases. The software protocol, called
an Application Programming Interface in software engineering
parlance, defines all properties of communication between
parties. An ideal protocol should be easy to use but hard
to misuse, self-documenting, flexible and extensible, yet
concise (6). It can be thought of as a dictionary containing
the core set of nouns and verbs as well as the spoken dialect
itself. Together, a system, its protocol, and an ecosystem
of third-party clients that speak this protocol all constitute
a platform. We incrementally developed our platform by

following industry standards validated alongside our core
goals: data modeling (consisting of a well-designed object
hierarchy, interaction patterns, storage mechanisms and
exchange or transfer), extensibility, and interoperability.
Through various stages of research and development,
clinicians and patients were consulted and interviewed
about their experiences, usage patterns, and criticism. These
feedback then informed modifications to our architecture
and implementation.

Discussion

To organize the discussion, we present a theoretical
framework, shown below in Figure 1. This paper aims
to translate the clinical needs presented to the left of the
pyramid into the engineering requirements on the right.

Data modeling

Resource schema
For data modeling, digital mobile health platforms need
to ensure simplicity and efficiency, along with reliance
on existing standards. We wanted to develop a protocol
composed of smaller interconnected modular components.
We began by defining the ‘schema’, a rigid structural
vocabulary, with which data could be organized and
interpreted, agreed upon in advance by all parties working
with some data constrained by that schema. A succinct set
of core data types in our schema, outlined in Table 1, is
initially declared and further elaborated upon by subtypes
with more specific use-cases and properties.

Ochian et al. (7) note that current challenges in
healthcare informatics revolve around low-latency and high-
throughput big data processing of both well-structured and
un-structured but specialized medical data. The methods
of data warehousing and integration are not novel to the
biological or medical fields; Shah et al. (8) first demonstrated
in 2005 a relational database approach to high-throughput
data integration and analysis in bioinformatics. To facilitate
such high frequency measurement recordings from on-
device or external sensor instruments, we created special
types of objects called ‘events’; as with droplets of water in
a larger stream, events form a virtual ‘event stream’ that
can be filtered and whose changes can be reacted upon in a
dynamic manner.

To reduce complexity and promote ease of use of the
protocol, we limited our vocabulary of specialized subtypes
to only a few nouns, outlined in Table 2, that would be

mHealth, 2019 Page 3 of 11

© mHealth. All rights reserved. mHealth 2019;5:25 | http://dx.doi.org/10.21037/mhealth.2019.07.04

Figure 1 The pyramid represents paired sets of clinical goals, shown on the left, and engineering goals, shown on the right; each set of goals
builds upon the set of goals below it.

Table 1 An outline of core data types supported by the protocol

Type Description

Text A string of characters that may be language or region-localized

Number A signed (positive or negative) decimal or integer number

Timestamp Millisecond-precision floating point representation of date and time in the GMT time zone (UTC)

Identifier A universally unique identifier used to tag Resources or links to other Resources

List Unsorted collection of data of arbitrary types, including Text or Resources

Dictionary Sorted index of unique keywords linked to data of arbitrary types, including Text or Resources

Resource Identifier-scoped composable unit of data and interoperability

Event Timestamp-scoped composable unit of data and reactivity

Credential Security token presented and recorded during access or modification of data

capable of build datasets that suit the changing needs of
digital mental health research. FHIR on the other hand
was designed to ensure compatibility across electronic
medical records vendors and afford hospital systems the
greatest amount of cross-talk, and so declares a vast set of
specialized subtypes spanning over 50 nouns such as Patient,
Condition, and Practitioner. For FHIR, this is a necessity
that aims to organize data into highly complex structures
capable of representing every capability, possibility,
or outcome of a hospital system, including billing and
insurance management. Though clinicians may find the set

of types we have declared to be fairly limited in comparison
to FHIR, we designed the protocol not to replace FHIR
entirely but instead to enable its use as an adjunct where
needed.

The concrete relationship of these virtual data types can
be mapped spatially into the application’s user interface,
as shown in Figure 2, but the protocol itself is able to be
used in any kind of application, including those that do
not present an interface at all. Another facet of the schema
not immediately visualized, is reacting to events instead
of repeatedly checking for them. The two event types,

Interventions
Interventions

Decision support
Feedback response

Automations
Actionability

Standardization

Security & Privacy

Data interpretability

Simplicity & efficiency

Compatibility

Reproducibility

Interoperability

Extension & Integration

Clinical interpretability
Realtime alerts

Tags

VisualizationsClinical
modeling

Network
modeling

Data modeling

Query language

Documentation & Discovery

Transmission format

Interchange format

Resource schema

mHealth, 2019Page 4 of 11

© mHealth. All rights reserved. mHealth 2019;5:25 | http://dx.doi.org/10.21037/mhealth.2019.07.04

ActivityEvent and SensorEvent represent reactive data in
event streams containing information contextually linked
either to a Sensor equipped by a patient, or interaction with
an Activity.

Interchange format
For digital health, it is important that clinical data is easily
interpreted and visualized in any context. The JavaScript
Object Notation (JSON) data interchange format, a well-
accepted internet standard (9), was chosen because of
its textually encoded representation of data in a human-
readable and hierarchically organized way. Unlike some
older formats such as the eXtensible Markup Language
(XML), JSON does not require the explicit definition
of schema. Though we have already defined a schema,
avoiding ‘schema lock-in’ affords the protocol flexibility and
extensibility, as explained in Section “Clinical intervention
support”. Other formats were also briefly considered for
their potentially superior encoding ability and minimal
storage size, but ignoring the vast adoption of JSON across
internet services, mobile apps, development frameworks
and tools would have eliminated many opportunities
for interoperability, again explored in Section “Clinical
intervention support”. Furthermore, because most
transmission and storage formats support compression, the
textual nature of JSON could maintain human readability
while also minimizing storage size, at the slight cost of

computing time required for compression.
While FHIR does support JSON, this data is transformed

post-hoc from the original XML document into inefficient
and non-standard JSON documents. These documents, for
example, represent keyword-indexed data linked to more
data as an unsorted list of pairs. While seemingly trivial
in notation, this minute structural modification forces the
user’s computer to perform a time and processing-intensive
unoptimized search through every element of an array
instead of an optimized pre-calculated lookup operation;
this would be as if one were to search for the definition of
a word by reading every alphabetized definition preceding
it, instead of jumping to the page containing the word’s first
letter and scanning from there. Furthermore, these lists may
now contain duplicate data that could go undetected where
a dictionary would impose constraints on the uniqueness of
data. By natively supporting JSON, the protocol is afforded
considerable advantages in machine processing, reducing
computing power, and time requirement. These advantages
are then realized during computation tasks performed on
cheaper mobile devices that must operate in conditions
without stable internet connection to a more powerful server.
Transmission format
For digital health to support interoperability, protocols
must describe how the systems that understand it are to
speak to each other. The HyperText Transfer Protocol
(HTTP) standard is one that the vast majority of internet

Table 2 An outline of extended data types supported by the protocol

Type Description

Researcher Organizes and manages multiple Studies

Study Organizes and manages multiple Participants; configures Activities and Sensors

Participant Interacts with Activities and Sensors to produce ActivityEvents and SensorEvents

ActivitySpec Defines some type of activity that will be performed by Participants in the mobile or wearable app, such as surveys
or cognitive tests. Provides the executable applet, the associated help documentation, and the schema for generated
data

Activity Configures and activates an in-app activity, for example, a Survey with the title “Personal Health Questionnaire” with
pre-defined questions. Also enables scheduling notifications which present this specific Activity to a Participant at
particular intervals

ActivityEvent Temporal slices of in-app measurements taken from a configured Activity and normalized

SensorSpec Describes an available sensor instrument that can create a Sensor, as well as the kind of data contained within its
corresponding SensorEvent

Sensor Configures and activates a sensor instrument to be recorded; parameters such as collection frequency or GPS fuzzing
are specified

SensorEvent Temporal slices of measurements taken from a configured Sensor and normalized

mHealth, 2019 Page 5 of 11

© mHealth. All rights reserved. mHealth 2019;5:25 | http://dx.doi.org/10.21037/mhealth.2019.07.04

services and mobile apps already rely on (including
FHIR), and with much of the internet’s infrastructure
already purpose-built for HTTP, important security and
efficiency optimizations such as encrypting, compressing,
and caching data as it moves from point to point are trivial.
The Representational State Transfer (REST) model (10)
describes interactions through a system of requests and
responses by which an application can export ‘objects’
(also referred to as ‘documents’) over HTTP, each with a
uniform resource locator (URL) that may be accessed as a
link (11). A comparison against other approaches is detailed
in Supplement I. As standard internet browsers support this
HTTP and REST functionality, explained visually in Figure 3,

they are able to present and manipulate data, though they
may not semantically understand it. Any individual holding
appropriate access rights may enter the URL corresponding
to the data they wish to view and may interpret its decrypted
contents using either a desktop or mobile browser.

Following standard guidelines, we supported the HTTP
methods: GET to list entire collections of resources or
read individual resources; POST to create resources; PUT
and PATCH both to update resources; and DELETE to
delete resources. With these verbs in place, actions are
communicated from one entity to another in a format such
as “GET/participant/<some_id>” along with some JSON
data where appropriate. An interaction between entities

Figure 2 The protocol mapped visually onto the user interface of the mindLAMP app.

ActivitySpec

Activity ActivityEvent

Participant

Interacts with

Creates

Creates

Describes

mHealth, 2019Page 6 of 11

© mHealth. All rights reserved. mHealth 2019;5:25 | http://dx.doi.org/10.21037/mhealth.2019.07.04

using the protocol may now take place, consisting of: (I)
a verb to describe the action being done; (II) the URL
location of the server; (III) a noun to describe the resource
or event being manipulated; (IV) a security token providing
an authorization context; and (V) optionally, some data to
update the resource with, or create a new resource from. If
the operation requested was successful, a matching response
is presented with the resulting data; otherwise, the response
consists of both an error code and further contextual
information for debugging.

FHIR also uses the HTTP method OPTIONS to
produce conformance resources talking about the object
schema and capabilities of the server. FHIR servers do
not actually delete resources when a deletion action is
requested, but instead they are versioned, and these older
versions can be retrieved from a “Recycle Bin” at a later
time. We consider the OPTIONS method as well for use
in polymorphic data (structured meta-information on
the usage of some resource), service capabilities, or the
transaction audit log. This audit log records modifications
to data as well as all access requests for internal auditing and
data recovery.

Documentation & discovery
Clinical systems require collaboration with diverse
stakeholders. For maintainers, developers, and statisticians
to easily explore, learn, and use the protocol, we document

and make available the protocol using the robust and tightly
integrated OpenAPI and JSON Schema meta-protocols.
Integration with these meta-protocols enabled features we
felt were vital to open-source platforms, such as the easy
generation of client code, development tooling, and support
for numerous other frameworks. For example, we were able
to quickly generate a “Rosetta stone” for developers using
many various programming languages to speak the protocol
without handling any of the translation and communication.
We chose to avoid schema documentation systems such
as JSON-LD that required modifications to the data
being presented from the server, adding complexity to the
readability of data in JSON format, making it harder to read
and debug. Another concern was the runtime requisition
nature of JSON-LD, where the data itself is bundled with
the schema, and requires recursively querying each element
to build a tree of relationships between objects. OpenAPI
instead declares in advance of even receiving a single piece
of data, all relationships between elements as well as actions
that may be taken on them.

Unlike FHIR and many other common systems where
the protocol is static and expected to be unchanging,
entities that speak the LAMP Protocol may maintain and
provide information about their ‘dialect’ for other entities
to reconfigure and reorient themselves. We also designed
interaction responses to be self-evident by packaging the
requested data in a document format with a “live citation,”

Figure 3 Transmission and interchange of data as shown through a standard browser window.

Encryption Resource ID Queries & Filters

Server Identity

Authentication & Authorization

Human-readable schema-defined data

mHealth, 2019 Page 7 of 11

© mHealth. All rights reserved. mHealth 2019;5:25 | http://dx.doi.org/10.21037/mhealth.2019.07.04

consisting of the same access request details and security
credentials as are saved to the aforementioned audit log.
When examining data from a different time point, the audit
log can be consulted with the “live citation” to produce
the original data along with the set of all changes that have
occurred since that point.

Network modeling

Document transformations
Supporting interoperability is critical for the success of any
digital health platform. Some systems that use the protocol
may need “glue code” that acts as a translator, reducing
efficiency and wasting computing power. Several document
manipulation frameworks able to be embedded within
the protocol have evolved to both query and manipulate
documents in an efficient manner; this functionality can
be used in reverse to translate the LAMP Protocol into the
FHIR standard for EMR integration. Boussadi et al. (12)
and Wagholikar et al. (13) use a system-integrated approach
to develop a FHIR layer above the i2b2 software, allowing
FHIR queries to translate to the i2b2 database system.
In contrast with their approach, FHIR integration with
the LAMP Protocol is trivially implemented as a set of
adapter queries using such a framework and does not
require additional computing power or storage space for
translating any functions of the data. The XML format used
by FHIR supports a pair of frameworks called XPath and
XQuery, outlined in Supplement I, to perform these tasks,
but no such universally accepted framework exists for the
JSON format. In response, HL7 developed the standards-
incompatible “FHIRPath” framework to replicate these
features in FHIR (14). The decision was made to support
the “JSONPath” framework, used in industry by Amazon,
Google, eBay, and others, though not ratified by any
standards committee. With a concise implementation and
large developer community contributing to implementations
in many programming languages, the level of integration,
support, performance, and quality of code would be higher
than if we had developed a custom framework as HL7 did.

Tags
The expected lifespan of clinical systems suggests there is
a need to support backwards compatibility, communication
with other coexisting clinical systems, as well as future
systems whose protocols may not exist today. Thus, we
aimed to further develop integration with external data
and future-proof the protocol. The protocol’s schema

thus supports the “Tag” data type; though similar to the
mechanism utilized by FHIR, XML DTD-based document
extensions, the content of a Tag is lacking a schema. The
protocol in this case declares that it does not understand
or even directly handle the content of Tags, and instead
acts only as a broker or middleman for two other entities
that do understand the data to communicate. As they are
out-of-line from the rest of the protocol, they may hold
binary data, arbitrary strings, or well-structured objects.
Though the protocol itself uses JSON Schema, within
a Tag, the provision of schema, definition language,
storage and access mechanism are left to other entities
instead. A further benefit of Tags is the ad-hoc integration
with clinical dashboards supporting patient, family, and
care team messaging, as explained further in Section
“Clinical intervention support”. Detail on the reference
implementation is provided in Supplement II.

Automations
Digital health platforms must not only capture data but
offer actionability towards improving patient health.
Most REST-based protocols are designed without the
ability to perform an action unlinked to a resource; that
is, actions may only take the form of verbs attached to
nouns, such as “CREATE activity_event”. FHIR supports
“OperationDefinition,” the definition of a computable result
yielded from an operation or complex query. Similarly,
building upon Tags, we introduce Automations, resources
that act as modular “applets” around static data, supporting
different data formats and external resources, shown visually
in Figure 4. Automations are run in isolated environments
through carefully configured system containers, currently
supporting the R, Python, and JavaScript languages.
Though this incurs a slight latency cost in retrieving data
from an Automation applet, it enables complete data and
algorithmic reproducibility when used in tandem with
“live citations.” Each container is identical to every other
container of the same Automation, and so applets when run
with some input identical at different time points yield the
exact same output, also identical at the same time points.
This reproducibility offers the key advantage of analytic
validity within and between applet results, such as those
producing visualizations that can be shown by another
entity.

Containerized replication of programmable scientific
methods has been shown before in bioinformatics by
Challis et al. (15), Hung et al. (16), and Ríos et al. (17); we
however present a layer of meta-programmability through

mHealth, 2019Page 8 of 11

© mHealth. All rights reserved. mHealth 2019;5:25 | http://dx.doi.org/10.21037/mhealth.2019.07.04

Figure 4 Multiple automation applets layered atop one-another with inputs and outputs chained together; the final applet represents the
deployment of an intervention after statistical analysis is performed on data both internal and external to the protocol, after it is harmonized.

the program code attached to Automations. By abstracting
the semantics of system containers, package dependencies,
configuration, and data pre-processing away from the user
“installing” the Automation, we aim to reduce the level of
systems engineering knowledge required to develop truly
reproducible research methods. Where the ActivitySpec data
type provides to the protocol reproducible patient-facing
activities mirroring experimental methods, Automations
mirror the role of post-collection data analysis linked
to a specific context of data. Thus, all data collection,
schema-validation, homogenization, and further post-
processing steps are performed by the main LAMP Platform
itself. Furthermore, these applets can be configured to
automatically run when changes are detected on any
Resource, or when Events enter the stream for a particular
set of Participants, making the framework truly dynamic and
researcher input or configuration no longer required.

Clinical intervention support

Clinical case
The protocol now forms the underpinnings of a simple,
secure, and efficient pipeline for reproducible and actionable
data and also builds native extensibility and interoperability
with other entities and protocols. FHIR integration into
existing EMR and billing systems would establish the
ability to able to span the continuum of care in the hospital
setting. Walking through the advanced features detailed
in Section “Network modeling”, we share tangible use-
cases from workflows currently in use in several research
studies. Integrating custom functions into the document
manipulation framework allows for building expressive
data queries that stitch together different resources and
events, aggregating calculation and computation, obtaining
data from remote sources, and exporting in Excel or CSV
formats efficiently. With an expressive query language and

Intervention deployment

Visualizations

Likelihood prediction Anomaly detection Harmonization & Distillation Raw sensor & Touch input

mHealth, 2019 Page 9 of 11

© mHealth. All rights reserved. mHealth 2019;5:25 | http://dx.doi.org/10.21037/mhealth.2019.07.04

Figure 5 An example of reactive data providing clinical decision support.

document manipulation framework well integrated into the
protocol, clinicians can apply such transformations to data
and mold the various facets of data into the custom domain-
specific model suitable to their needs.

An example of Tags used in current studies is the
manual coding and entry of pencil-and-paper tests taken
by participants during their first and last in-person visit.
Once attached to the participant data, it can be accessed,
updated, or deleted through the protocol in the same way
as active or passive data from the app. This data integration
allows for effective coercion and harmonization of external
data sources, and therefore integrated analytics, displaying
visualizations, and further research goals. An example
of Automations is the download and storage of remote
resources from isolated or foreign remote servers, after
which different Automations can process and transform the
data into mindLAMP-supported schema types. This allows
multiple systems such as Apple HealthKit and Google Fit
to integrate with the system and be seen by a researcher or
data scientist as if it were a single unified platform.

Considering a hypothetical scenario integrating these
framework components together, detailed in Figure 5, a
machine learning algorithm is used by a clinician to better
understand the baseline of a patient as compared to other
patients with the same illness and to patients without the

same illness. To automatically tune the algorithm, incoming
events for each patient would be fed through an automation
applet, then producing a set of outcome metrics. Supposing
the algorithm reports feedback visually with an alert
placed in the dashboard for the clinician to see, a new tag
containing the alert is created with a pre-negotiated name
known to both the algorithm and the dashboard. When
the dashboard sees the tag attached to the patient, it shows
the clinician along with further actions suggested by the
algorithm. If the algorithm has determined that the patient
is in a state of high anxiety, it may suggest the clinician to
activate a soothing breathing exercise intervention. This
Activity would have been configured before-hand and
available to the patient, but if the clinician decides to accept
the suggestion, a notification is sent to the patient that will
open the Activity. The dashboard visualizations shown to
both the clinician and the patient in this case would be
recomputed and automatically adjusted to show data both
pre and post intervention deployment. The clinician would
have access to feedback data on whether the deployment of
the intervention was successful or not.

Furthermore, another automation applet would in
this case be configured to generate weekly reports for
the patient of progress over previous weeks, highlighting
whether interventions taken by the patient were successful,

Show data
visualizations

Artificial
intelligence

Analyze clinical
correlations

Perform clinical
decision support

Machine
Learning

Show intervention
CDS card

Passive data

Active data

User LAMP platform

mHealth, 2019Page 10 of 11

© mHealth. All rights reserved. mHealth 2019;5:25 | http://dx.doi.org/10.21037/mhealth.2019.07.04

such as walking more often or sleeping more often. These
reports are then emailed or physically mailed to the patient
before their next appointment at the clinic. With automated
medication tracking from auxiliary services such as Apple’s
HealthKit, a full mental health profile can be managed by
the clinician within one session with the patient.

Conclusions

As mobile computing and technology continue to develop
rapidly, a careful standards-oriented approach must be
taken to ensure the field of psychiatry is ready and able to
harness it both in its current incarnation as well as embrace
its future potential and possibilities. It is crucial to accept
existing well-accepted standards and extend the ecosystem
of tools, libraries, applications, and products built around
them. We identified an unmet need in such a standard,
FHIR, taking the opportunity to design a cooperative and
coexisting protocol as well as develop a corresponding
reference implementation. Our proof-of-concept platform,
mindLAMP, is currently being used in clinical research
studies across medical domains including psychiatry,
anesthesiology, neurology. By architecting this standard
and platform with current and well-accepted medical/
psychiatric, computer engineering, and biostatistical best
practices in mind, and sharing such in the public domain,
we invite others to contribute, expand, and explore this
intersection of digital health, data standards, and mobile
healthcare.

Acknowledgments

Funding: J Torous is supported by a career development
award from the NIMH: K23MH116130.

Footnote

Conflicts of Interest: The authors have no conflicts of interest
to declare.

Ethical Statement: The authors are accountable for all
aspects of the work in ensuring that questions related
to the accuracy or integrity of any part of the work are
appropriately investigated and resolved.

References

1.	 Onnela JP, Rauch SL. Harnessing Smartphone-Based

Digital Phenotyping to Enhance Behavioral and Mental
Health. Neuropsychopharmacology 2016;41:1691-6.

2.	 Insel TR. Digital Phenotyping: Technology for a New
Science of Behavior. JAMA 2017;318:1215-6.

3.	 Hsin H, Torous J, Roberts L. An Adjuvant Role
for Mobile Health in Psychiatry. JAMA Psychiatry
2016;73:103-4.

4.	 HL7. 2017. Welcome to FHIR. Retrieved Dec 14, 2018.
Available online: https://www.hl7.org/fhir/

5.	 VA announces new Veterans Health Application
Programming Interface. Dec. 2018. Available online:
https://www.va.gov/opa/pressrel/pressrelease.
cfm?id=5158

6.	 Bloch J. How to design a good API and why it
matters. Paper presented at the Companion to the
21st ACM SIGPLAN Symposium on Object-Oriented
Programming Systems, Languages, and Applications,
2006:506-7.

7.	 Ochian A, Suciu G, Fratu O, et al. An overview of cloud
middleware services for interconnection of healthcare
platforms. Paper presented at the 2014 10th International
Conference on Communications (COMM), 2014:1-4.
doi:10.1109/ICComm.2014.6866753.

8.	 Shah SP, Huang Y, Xu T, et al. Atlas - a data warehouse
for integrative bioinformatics. BMC Bioinformatics
2005;6:34.

9.	 Bray T. The javascript object notation (json) data
interchange format. Internet Engineering Task Force
(IETF). 2014.

10.	 Fielding RT. Architectural Styles and the Design of
Network-Based Software Architecture. Representational
state transfer, 2000:76-85.

11.	 Bryan P, Zyp K, Nottingham M. JavaScript object
notation (JSON) pointer. Retrieved Dec 14, 2018.
Available online: https://tools.ietf.org/html/rfc6901

12.	 Boussadi A, Zapletal E. A Fast Healthcare
Interoperability Resources (FHIR) layer implemented
over i2b2. BMC Med Inform Decis Mak 2017;17:120.

13.	 Wagholikar KB, Mandel JC, Klann JG, et al. SMART-
on-FHIR implemented over i2b2. J Am Med Inform
Assoc 2017;24:398-402.

14.	 Patias I, Georgiev V. Mobile medical applications:
From cloud-oriented to cloud ready. 2017. MCIS 2017
Proceedings 6.

15.	 Challis RJ, Kumar S, Stevens L, et al. GenomeHubs:
simple containerized setup of a custom Ensembl database
and web server for any species. Database (Oxford) 2017.
doi: 10.1093/database/bax039.

mHealth, 2019 Page 11 of 11

© mHealth. All rights reserved. mHealth 2019;5:25 | http://dx.doi.org/10.21037/mhealth.2019.07.04

16.	 Hung LH, Kristiyanto D, Lee SB, et al. GUIdock: Using
Docker Containers with a Common Graphics User
Interface to Address the Reproducibility of Research.
PLoS One 2016;11:e0152686.

17.	 Ríos J, Karlsson J, Trelles O. Magallanes: a web services
discovery and automatic workflow composition tool. BMC
Bioinformatics 2009;10:334.

doi: 10.21037/mhealth.2019.07.04
Cite this article as: Vaidyam A, Halamka J, Torous J.
Actionable digital phenotyping: a framework for the delivery
of just-in-time and longitudinal interventions in clinical
healthcare. mHealth 2019;5:25.

Supplementary

Supplement I Comparison of open standards

The following diagram details our research into HTTP-based transmission formats: (I) Remote Procedural Calls, (II) Resource-oriented RPC, and (III)
RESTful. The model chosen in our reference implementation is indicated with a bubble.

Client Server

POST /api
{
 method: new_researcher,
 params: …
}

POST /api
{
 method: get_researcher,
 params: …
}

Handling Errors

200 OK
{
 error: 4874,
 msg: "Already exists"
}

200 OK
{
 error: 1928,
 msg: "Does not exist"
}

Client Server

POST /api
{
 method: new_researcher,
 params: …
}

POST /api
{
 method: get_researcher,
 params: …
}

200 OK
{
 data: null
}

200 OK
{
 data: …
}

Calling Methods

Remote Procedural Call

Client Server

POST /researcher
{
 action: create,
 data: …
}

POST /researcher
{
 action: read,
 data: …
}

Handling Errors

400 Bad Request
{
 error: 2482,
 msg: "Not authorized"
}

400 Bad Request
{

 error: 1928,
 msg: "Does not exist"
}

Client Server

POST /researcher
{
 action: create,
 params: …
}

POST /researcher
{
 action: read,
 data …
}

200 OK
{
 data: null
}

200 OK
{
 data: …
}

Manipulating Resources

Resource-oriented RPC

Client Server

Handling Errors

POST /researcher
{
 …
}

GET /researcher/123

403 Forbidden
{
 msg: "Not logged in"
}

404 Not Found
{
 msg: "Invalid resource"
}

Client Server

POST /researcher
{
 …
}

GET /researcher/123

201 Created
{
 link: …
}

200 OK
{
 …
}

Manipulating Resources

RESTful API

Decreased HTTP Protocol Reliance Increased HTTP Protocol Reliance

LAMP

The following diagram details our research into various HTTP-based event stream delivery methods: (I) Wait-polling, (II) Long-polling/XHR, and (III) Server
Push Notifications. The model chosen in our reference implementation is indicated with a bubble.

Wait-polling

Client Server

GET /resource/123

(no change)

{ data … }

GET /resource/123

GET /resource/123

(no change)

 30 s

 30 s

Long-polling XHR

Client Server

GET /resource/123

GET /resource/123

{ data … }

unknown t

…

Server Push NotiÞcation

Client Server

{ data … }

{ data … }

{ data … }

GET /resource/123

unknown t

 10 s

15 s

Increased I/O Bandwidth & Usage Decreased I/O Bandwidth & Usage

LAMP

Increased CPU Deadlock Decreased CPU Deadlock

The following diagram details the differences between the XML and JSON ecosystems; additionally, XML typically is used
with a SOAP transmission model where JSON is used with a REST transmission model.

XML

PresentationContent

XML XSLT

Structure

XML-DTD

XPath
XQuery

JSON

PresentationContent

JSON JavaScript + HTML

Structure

JSON Schema

JSON Pointer
JSONPath/JMESPath

Supplement II Automations in-depth

Automations and Tags are implemented as multiple planes existing on the same data format; the use of an alternation data type extension marks a Tag as an Automation to be handled differently. The visual
layering in the diagram shown below corresponds to the method by which different Tags and Automations relate to one-another.

Object Header

Out-of-line
Attachments

In-line
Data

org.lamp.key1

org.lamp.key2

org.beiwe.study_id

com.test.viz1

com.test.viz2

1010100010100111101110110101010101010101110
1010101010110101010101001011010101001010100
0101010001010011110111011010101010101010111
0101010101011010101010100101101010100101010
0010101000101001111011101101010101010101011
10101010101011010101

{
 "data": 123,
 "some_dat": [
 "my name",
 "some other name"
]
}

dh3948jf

10101000101001111011101101010101010101011101010
10101011010101010100101101010100101010001010100
01010011110111011010101010101010111010101010101
10101010101001011010101001010100010101000101001
11101110110101010101010101110101010101011010101
10101010101001011010101001010100010101000101001
11101110110101010101010101110101010101011010101
10101010101001011010101001010100010101000101001
11101110110101010101010101110101010101011010101

{}

Static Data Plane

org.lamp.key2

org.beiwe.study_id

com.test.viz2

 time_table[i,3*(j-1)+1]= mean(temp$answer)
 time_table[i,3*(j-1)+2]= mean(temp$time)/1000
 time_table[i,3*(j-1)+3]= nrow(temp)
 }
 }
 time_table=data.frame(time_table)
 column = c()
 for (i in 1:length(cat)){
 column = c(column,c(paste0(cat[i],'_score'), ...
 }
 colnames(time_table)=column
 time_table$date = unique_t

import zip
for data_stream in stream_zip:

…

Dynamic Data Plane

{
 "data": 123,
 "some_dat": [
 "my name",
 "some other name"
]
}

survey_reform=function(survey) {
 survey$answer=as.numeric(as.character(survey$answer))
 cat = c('sleep','medication','social','psychosis','depression','anxiety')
 unique_t = unique(survey$start)
 time_table = matrix(0,nrow = length(unique_t), ncol=length(cat)*3)
 for(i in 1:length(unique_t)){
 for(j in 1:length(cat)){
 temp = subset(survey,start==unique_t[i] & name==cat[j])
 time_table[i,3*(j-1)+1]= mean(temp$answer)
 time_table[i,3*(j-1)+2]= mean(temp$time)/1000
 time_table[i,3*(j-1)+3]= nrow(temp)
 }
 }
 time_table=data.frame(time_table)
 column = c()
 for (i in 1:length(cat)){
 column=c(column,c(paste0(cat[i],'_score'),paste0(cat[i],'_time'),paste0(cat[i],'_row')))
 }
 colnames(time_table)=column
 time_table$date = unique_t
 row.names(time_table)=NULL
 time_table
}

input parameter

static: org.lamp.key2

dynamic: org.lamp.key2

The following diagram shows the available script runtime execution pathways available for Automation applets in the current
reference implementation.

The following is an example of using a JSONPath transformation to re-model data into a domain-specific schema for
visualizing events in a timeline shown in a dashboard.

Query Transform
{

events: {
result: ResultEvent_all_by_participant(`U2591503941`)[].{

timestamp: timestamp,
activity: Activity_all_by_participant(`U2591503941`)[?id == activity],
activity_name: static_data.survey_name,
summary: static_data,
details: temporal_events

},
metadata: MetadataEvent_all_by_participant(`U2591503941`).{

timestamp: timestamp
},
sensor: SensorEvent_all_by_participant(`U2591503941`).{

timestamp: timestamp
},
environment: EnvironmentEvent_all_by_participant(`U2591503941`).{

timestamp: timestamp
coordinates: split(`,`, coordinates),
context: [social_context, location_context]

},
Þtness: FitnessEvent_all_by_participant(`U2591503941`).{

timestamp: timestamp,
summary: join(`, `, record)

}
} | sort_by(@[*], ×tamp)

}

Study

ActivityActivity

Participant

Result
Event

Metadata
Event

Sensor
Event

Fitness
Event

Timeline

Event Event …Event

