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Introduction

The potential of mobile health is fueled by digital data 
captured in real time and real-world environments that 
allows quantification of the personal experience of illness. 
The myriad of sensors on today’s smartphones and 
smartwatches can help patients track exercise, sleep, heart 
rate, and much more. The concept of digital phenotyping, 
defined as the “moment-by-moment quantification of 
the individual-level human phenotype in situ using data 
from personal digital devices” (1) has emerged as a means 
to conceptualize the possibilities of such data to improve 
health and has been extensively applied in mental health (2).  
Yet the vast quantities of this new data have not yet 
transformed routine clinical care and still remain more 
a research topic than clinical tool to support prevention, 
clinical decision support, and personalized medicine. While 

there are numerous reasons for this discrepancy between 
data and utility, there is a clear need for solutions that can 
harness the potential of transforming mobile data into 
health data.

Consider the clinical case of a patient using a smartphone 
app over three months, responding to surveys about mood 
and anxiety and capturing real time data on steps and 
sleep. An intelligent machine learning algorithm used in 
the app is able to capture the baseline of this patient using 
a combination of sensors and surveys. This algorithm is 
then able to perform real time assessment of risk of relapse 
based on changes in these digital signals, notifying the 
patients, alerting the clinical team, and recommending 
digital interventions in real time. This case, as well as 
many others such as deploying emergency responses to a 
signal suggesting high risk of suicide based on geolocation, 
survey responses, and social activity, are possible today with 
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advancements in technology and access to care. But little 
has been done to standardize the use and development of 
systems that support cases such as these in the modern 
digital clinic (3). 

Adapting to ever-changing legislative, security, privacy, 
and medical needs, the Health Level Seven (HL7) 
International organization proposed the Fast Healthcare 
Interoperability Resources (FHIR) standard (4) to help 
make digital data more uniform and interpretable. FHIR 
aims to facilitate secure interoperation between medical 
records systems as well as third-party applications such 
as medical devices and smartphone apps. However, while 
FHIR proposes an easily generalizable and interoperable 
standard for medical records and devices, its capability to 
support such personalized, highly contextual sensor-driven 
data is still evolving. It is possible to envision how FHIR 
standards could be augmented and expanded to one day 
support such clinically useful applications (5). 

As we approached the concept of real-time digital 
clinical interventions, we identified numerous apps capable 
of delivering health-related intervention but found in line 
with prior research that they required manual configuration 
and deployment with no feedback system in place for either 
the patient or clinician. Furthermore, many of the apps 
that others and our team identified lacked integration with 
other existing systems such as electronic medical records, 
a concern that could easily be mitigated through adoption 
of FHIR. Recognizing this need, we blueprinted new 
techniques to react to potentially rapid changes in mental 
health state such as threshold-triggered auto-deployment 
of interventions, feedback monitoring for advanced clinical 
decision support, and auto-configuration based on incoming 
patient data. We explored existing methods of data storage, 
encryption and access, future proofing, and interoperability 
in the context of mobile device based digital phenotyping 
and health interventions. 

In this paper, we frame the discussion around a software 
protocol and smartphone platform to provide concrete 
examples of clinical use cases. The software protocol, called 
an Application Programming Interface in software engineering 
parlance, defines all properties of communication between 
parties. An ideal protocol should be easy to use but hard 
to misuse, self-documenting, flexible and extensible, yet 
concise (6). It can be thought of as a dictionary containing 
the core set of nouns and verbs as well as the spoken dialect 
itself. Together, a system, its protocol, and an ecosystem 
of third-party clients that speak this protocol all constitute 
a platform. We incrementally developed our platform by 

following industry standards validated alongside our core 
goals: data modeling (consisting of a well-designed object 
hierarchy, interaction patterns, storage mechanisms and 
exchange or transfer), extensibility, and interoperability. 
Through various stages of research and development, 
clinicians and patients were consulted and interviewed 
about their experiences, usage patterns, and criticism. These 
feedback then informed modifications to our architecture 
and implementation.

Discussion

To organize the discussion, we present a theoretical 
framework, shown below in Figure 1. This paper aims 
to translate the clinical needs presented to the left of the 
pyramid into the engineering requirements on the right.

Data modeling

Resource schema
For data modeling, digital mobile health platforms need 
to ensure simplicity and efficiency, along with reliance 
on existing standards. We wanted to develop a protocol 
composed of smaller interconnected modular components. 
We began by defining the ‘schema’, a rigid structural 
vocabulary, with which data could be organized and 
interpreted, agreed upon in advance by all parties working 
with some data constrained by that schema. A succinct set 
of core data types in our schema, outlined in Table 1, is 
initially declared and further elaborated upon by subtypes 
with more specific use-cases and properties.

Ochian et al. (7) note that current challenges in 
healthcare informatics revolve around low-latency and high-
throughput big data processing of both well-structured and 
un-structured but specialized medical data. The methods 
of data warehousing and integration are not novel to the 
biological or medical fields; Shah et al. (8) first demonstrated 
in 2005 a relational database approach to high-throughput 
data integration and analysis in bioinformatics. To facilitate 
such high frequency measurement recordings from on-
device or external sensor instruments, we created special 
types of objects called ‘events’; as with droplets of water in 
a larger stream, events form a virtual ‘event stream’ that 
can be filtered and whose changes can be reacted upon in a 
dynamic manner. 

To reduce complexity and promote ease of use of the 
protocol, we limited our vocabulary of specialized subtypes 
to only a few nouns, outlined in Table 2, that would be 
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Figure 1 The pyramid represents paired sets of clinical goals, shown on the left, and engineering goals, shown on the right; each set of goals 
builds upon the set of goals below it.

Table 1 An outline of core data types supported by the protocol

Type Description

Text A string of characters that may be language or region-localized

Number A signed (positive or negative) decimal or integer number

Timestamp Millisecond-precision floating point representation of date and time in the GMT time zone (UTC)

Identifier A universally unique identifier used to tag Resources or links to other Resources

List Unsorted collection of data of arbitrary types, including Text or Resources

Dictionary Sorted index of unique keywords linked to data of arbitrary types, including Text or Resources

Resource Identifier-scoped composable unit of data and interoperability

Event Timestamp-scoped composable unit of data and reactivity

Credential Security token presented and recorded during access or modification of data

capable of build datasets that suit the changing needs of 
digital mental health research. FHIR on the other hand 
was designed to ensure compatibility across electronic 
medical records vendors and afford hospital systems the 
greatest amount of cross-talk, and so declares a vast set of 
specialized subtypes spanning over 50 nouns such as Patient, 
Condition, and Practitioner. For FHIR, this is a necessity 
that aims to organize data into highly complex structures 
capable of representing every capability, possibility, 
or outcome of a hospital system, including billing and 
insurance management. Though clinicians may find the set 

of types we have declared to be fairly limited in comparison 
to FHIR, we designed the protocol not to replace FHIR 
entirely but instead to enable its use as an adjunct where 
needed.

The concrete relationship of these virtual data types can 
be mapped spatially into the application’s user interface, 
as shown in Figure 2, but the protocol itself is able to be 
used in any kind of application, including those that do 
not present an interface at all. Another facet of the schema 
not immediately visualized, is reacting to events instead 
of repeatedly checking for them. The two event types, 
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ActivityEvent and SensorEvent represent reactive data in 
event streams containing information contextually linked 
either to a Sensor equipped by a patient, or interaction with 
an Activity. 

Interchange format
For digital health, it is important that clinical data is easily 
interpreted and visualized in any context. The JavaScript 
Object Notation (JSON) data interchange format, a well-
accepted internet standard (9), was chosen because of 
its textually encoded representation of data in a human-
readable and hierarchically organized way. Unlike some 
older formats such as the eXtensible Markup Language 
(XML), JSON does not require the explicit definition 
of schema. Though we have already defined a schema, 
avoiding ‘schema lock-in’ affords the protocol flexibility and 
extensibility, as explained in Section “Clinical intervention 
support”. Other formats were also briefly considered for 
their potentially superior encoding ability and minimal 
storage size, but ignoring the vast adoption of JSON across 
internet services, mobile apps, development frameworks 
and tools would have eliminated many opportunities 
for interoperability, again explored in Section “Clinical 
intervention support”. Furthermore, because most 
transmission and storage formats support compression, the 
textual nature of JSON could maintain human readability 
while also minimizing storage size, at the slight cost of 

computing time required for compression. 
While FHIR does support JSON, this data is transformed 

post-hoc from the original XML document into inefficient 
and non-standard JSON documents. These documents, for 
example, represent keyword-indexed data linked to more 
data as an unsorted list of pairs. While seemingly trivial 
in notation, this minute structural modification forces the 
user’s computer to perform a time and processing-intensive 
unoptimized search through every element of an array 
instead of an optimized pre-calculated lookup operation; 
this would be as if one were to search for the definition of 
a word by reading every alphabetized definition preceding 
it, instead of jumping to the page containing the word’s first 
letter and scanning from there. Furthermore, these lists may 
now contain duplicate data that could go undetected where 
a dictionary would impose constraints on the uniqueness of 
data. By natively supporting JSON, the protocol is afforded 
considerable advantages in machine processing, reducing 
computing power, and time requirement. These advantages 
are then realized during computation tasks performed on 
cheaper mobile devices that must operate in conditions 
without stable internet connection to a more powerful server.
Transmission format
For digital health to support interoperability, protocols 
must describe how the systems that understand it are to 
speak to each other. The HyperText Transfer Protocol 
(HTTP) standard is one that the vast majority of internet 

Table 2 An outline of extended data types supported by the protocol

Type Description

Researcher Organizes and manages multiple Studies

Study Organizes and manages multiple Participants; configures Activities and Sensors

Participant Interacts with Activities and Sensors to produce ActivityEvents and SensorEvents

ActivitySpec Defines some type of activity that will be performed by Participants in the mobile or wearable app, such as surveys 
or cognitive tests. Provides the executable applet, the associated help documentation, and the schema for generated 
data

Activity Configures and activates an in-app activity, for example, a Survey with the title “Personal Health Questionnaire” with 
pre-defined questions. Also enables scheduling notifications which present this specific Activity to a Participant at 
particular intervals

ActivityEvent Temporal slices of in-app measurements taken from a configured Activity and normalized

SensorSpec Describes an available sensor instrument that can create a Sensor, as well as the kind of data contained within its 
corresponding SensorEvent

Sensor Configures and activates a sensor instrument to be recorded; parameters such as collection frequency or GPS fuzzing 
are specified

SensorEvent Temporal slices of measurements taken from a configured Sensor and normalized



mHealth, 2019 Page 5 of 11

© mHealth. All rights reserved. mHealth 2019;5:25 | http://dx.doi.org/10.21037/mhealth.2019.07.04

services and mobile apps already rely on (including 
FHIR), and with much of the internet’s infrastructure 
already purpose-built for HTTP, important security and 
efficiency optimizations such as encrypting, compressing, 
and caching data as it moves from point to point are trivial. 
The Representational State Transfer (REST) model (10) 
describes interactions through a system of requests and 
responses by which an application can export ‘objects’ 
(also referred to as ‘documents’) over HTTP, each with a 
uniform resource locator (URL) that may be accessed as a 
link (11). A comparison against other approaches is detailed 
in Supplement I. As standard internet browsers support this 
HTTP and REST functionality, explained visually in Figure 3,  

they are able to present and manipulate data, though they 
may not semantically understand it. Any individual holding 
appropriate access rights may enter the URL corresponding 
to the data they wish to view and may interpret its decrypted 
contents using either a desktop or mobile browser.

Following standard guidelines, we supported the HTTP 
methods: GET to list entire collections of resources or 
read individual resources; POST to create resources; PUT 
and PATCH both to update resources; and DELETE to 
delete resources. With these verbs in place, actions are 
communicated from one entity to another in a format such 
as “GET/participant/<some_id>” along with some JSON 
data where appropriate. An interaction between entities 

Figure 2 The protocol mapped visually onto the user interface of the mindLAMP app.
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using the protocol may now take place, consisting of: (I) 
a verb to describe the action being done; (II) the URL 
location of the server; (III) a noun to describe the resource 
or event being manipulated; (IV) a security token providing 
an authorization context; and (V) optionally, some data to 
update the resource with, or create a new resource from. If 
the operation requested was successful, a matching response 
is presented with the resulting data; otherwise, the response 
consists of both an error code and further contextual 
information for debugging.

FHIR also uses the HTTP method OPTIONS to 
produce conformance resources talking about the object 
schema and capabilities of the server. FHIR servers do 
not actually delete resources when a deletion action is 
requested, but instead they are versioned, and these older 
versions can be retrieved from a “Recycle Bin” at a later 
time. We consider the OPTIONS method as well for use 
in polymorphic data (structured meta-information on 
the usage of some resource), service capabilities, or the 
transaction audit log. This audit log records modifications 
to data as well as all access requests for internal auditing and 
data recovery.

Documentation & discovery
Clinical systems require collaboration with diverse 
stakeholders. For maintainers, developers, and statisticians 
to easily explore, learn, and use the protocol, we document 

and make available the protocol using the robust and tightly 
integrated OpenAPI and JSON Schema meta-protocols. 
Integration with these meta-protocols enabled features we 
felt were vital to open-source platforms, such as the easy 
generation of client code, development tooling, and support 
for numerous other frameworks. For example, we were able 
to quickly generate a “Rosetta stone” for developers using 
many various programming languages to speak the protocol 
without handling any of the translation and communication. 
We chose to avoid schema documentation systems such 
as JSON-LD that required modifications to the data 
being presented from the server, adding complexity to the 
readability of data in JSON format, making it harder to read 
and debug. Another concern was the runtime requisition 
nature of JSON-LD, where the data itself is bundled with 
the schema, and requires recursively querying each element 
to build a tree of relationships between objects. OpenAPI 
instead declares in advance of even receiving a single piece 
of data, all relationships between elements as well as actions 
that may be taken on them. 

Unlike FHIR and many other common systems where 
the protocol is static and expected to be unchanging, 
entities that speak the LAMP Protocol may maintain and 
provide information about their ‘dialect’ for other entities 
to reconfigure and reorient themselves. We also designed 
interaction responses to be self-evident by packaging the 
requested data in a document format with a “live citation,” 

Figure 3 Transmission and interchange of data as shown through a standard browser window.
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consisting of the same access request details and security 
credentials as are saved to the aforementioned audit log. 
When examining data from a different time point, the audit 
log can be consulted with the “live citation” to produce 
the original data along with the set of all changes that have 
occurred since that point.

Network modeling

Document transformations
Supporting interoperability is critical for the success of any 
digital health platform. Some systems that use the protocol 
may need “glue code” that acts as a translator, reducing 
efficiency and wasting computing power. Several document 
manipulation frameworks able to be embedded within 
the protocol have evolved to both query and manipulate 
documents in an efficient manner; this functionality can 
be used in reverse to translate the LAMP Protocol into the 
FHIR standard for EMR integration. Boussadi et al. (12)  
and Wagholikar et al. (13) use a system-integrated approach 
to develop a FHIR layer above the i2b2 software, allowing 
FHIR queries to translate to the i2b2 database system. 
In contrast with their approach, FHIR integration with 
the LAMP Protocol is trivially implemented as a set of 
adapter queries using such a framework and does not 
require additional computing power or storage space for 
translating any functions of the data. The XML format used 
by FHIR supports a pair of frameworks called XPath and 
XQuery, outlined in Supplement I, to perform these tasks, 
but no such universally accepted framework exists for the 
JSON format. In response, HL7 developed the standards-
incompatible “FHIRPath” framework to replicate these 
features in FHIR (14). The decision was made to support 
the “JSONPath” framework, used in industry by Amazon, 
Google, eBay, and others, though not ratified by any 
standards committee. With a concise implementation and 
large developer community contributing to implementations 
in many programming languages, the level of integration, 
support, performance, and quality of code would be higher 
than if we had developed a custom framework as HL7 did. 

Tags
The expected lifespan of clinical systems suggests there is 
a need to support backwards compatibility, communication 
with other coexisting clinical systems, as well as future 
systems whose protocols may not exist today. Thus, we 
aimed to further develop integration with external data 
and future-proof the protocol. The protocol’s schema 

thus supports the “Tag” data type; though similar to the 
mechanism utilized by FHIR, XML DTD-based document 
extensions, the content of a Tag is lacking a schema. The 
protocol in this case declares that it does not understand 
or even directly handle the content of Tags, and instead 
acts only as a broker or middleman for two other entities 
that do understand the data to communicate. As they are 
out-of-line from the rest of the protocol, they may hold 
binary data, arbitrary strings, or well-structured objects. 
Though the protocol itself uses JSON Schema, within 
a Tag, the provision of schema, definition language, 
storage and access mechanism are left to other entities 
instead. A further benefit of Tags is the ad-hoc integration 
with clinical dashboards supporting patient, family, and 
care team messaging, as explained further in Section 
“Clinical intervention support”. Detail on the reference 
implementation is provided in Supplement II. 

Automations
Digital health platforms must not only capture data but 
offer actionability towards improving patient health. 
Most REST-based protocols are designed without the 
ability to perform an action unlinked to a resource; that 
is, actions may only take the form of verbs attached to 
nouns, such as “CREATE activity_event”. FHIR supports 
“OperationDefinition,” the definition of a computable result 
yielded from an operation or complex query. Similarly, 
building upon Tags, we introduce Automations, resources 
that act as modular “applets” around static data, supporting 
different data formats and external resources, shown visually 
in Figure 4. Automations are run in isolated environments 
through carefully configured system containers, currently 
supporting the R, Python, and JavaScript languages. 
Though this incurs a slight latency cost in retrieving data 
from an Automation applet, it enables complete data and 
algorithmic reproducibility when used in tandem with 
“live citations.” Each container is identical to every other 
container of the same Automation, and so applets when run 
with some input identical at different time points yield the 
exact same output, also identical at the same time points. 
This reproducibility offers the key advantage of analytic 
validity within and between applet results, such as those 
producing visualizations that can be shown by another 
entity. 

Containerized replication of programmable scientific 
methods has been shown before in bioinformatics by 
Challis et al. (15), Hung et al. (16), and Ríos et al. (17); we 
however present a layer of meta-programmability through 
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Figure 4 Multiple automation applets layered atop one-another with inputs and outputs chained together; the final applet represents the 
deployment of an intervention after statistical analysis is performed on data both internal and external to the protocol, after it is harmonized. 

the program code attached to Automations. By abstracting 
the semantics of system containers, package dependencies, 
configuration, and data pre-processing away from the user 
“installing” the Automation, we aim to reduce the level of 
systems engineering knowledge required to develop truly 
reproducible research methods. Where the ActivitySpec data 
type provides to the protocol reproducible patient-facing 
activities mirroring experimental methods, Automations 
mirror the role of post-collection data analysis linked 
to a specific context of data. Thus, all data collection, 
schema-validation, homogenization, and further post-
processing steps are performed by the main LAMP Platform 
itself. Furthermore, these applets can be configured to 
automatically run when changes are detected on any 
Resource, or when Events enter the stream for a particular 
set of Participants, making the framework truly dynamic and 
researcher input or configuration no longer required.

Clinical intervention support

Clinical case
The protocol now forms the underpinnings of a simple, 
secure, and efficient pipeline for reproducible and actionable 
data and also builds native extensibility and interoperability 
with other entities and protocols. FHIR integration into 
existing EMR and billing systems would establish the 
ability to able to span the continuum of care in the hospital 
setting. Walking through the advanced features detailed 
in Section “Network modeling”, we share tangible use-
cases from workflows currently in use in several research 
studies. Integrating custom functions into the document 
manipulation framework allows for building expressive 
data queries that stitch together different resources and 
events, aggregating calculation and computation, obtaining 
data from remote sources, and exporting in Excel or CSV 
formats efficiently. With an expressive query language and 
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Figure 5 An example of reactive data providing clinical decision support.

document manipulation framework well integrated into the 
protocol, clinicians can apply such transformations to data 
and mold the various facets of data into the custom domain-
specific model suitable to their needs. 

An example of Tags used in current studies is the 
manual coding and entry of pencil-and-paper tests taken 
by participants during their first and last in-person visit. 
Once attached to the participant data, it can be accessed, 
updated, or deleted through the protocol in the same way 
as active or passive data from the app. This data integration 
allows for effective coercion and harmonization of external 
data sources, and therefore integrated analytics, displaying 
visualizations, and further research goals. An example 
of Automations is the download and storage of remote 
resources from isolated or foreign remote servers, after 
which different Automations can process and transform the 
data into mindLAMP-supported schema types. This allows 
multiple systems such as Apple HealthKit and Google Fit 
to integrate with the system and be seen by a researcher or 
data scientist as if it were a single unified platform.

Considering a hypothetical scenario integrating these 
framework components together, detailed in Figure 5, a 
machine learning algorithm is used by a clinician to better 
understand the baseline of a patient as compared to other 
patients with the same illness and to patients without the 

same illness. To automatically tune the algorithm, incoming 
events for each patient would be fed through an automation 
applet, then producing a set of outcome metrics. Supposing 
the algorithm reports feedback visually with an alert 
placed in the dashboard for the clinician to see, a new tag 
containing the alert is created with a pre-negotiated name 
known to both the algorithm and the dashboard. When 
the dashboard sees the tag attached to the patient, it shows 
the clinician along with further actions suggested by the 
algorithm. If the algorithm has determined that the patient 
is in a state of high anxiety, it may suggest the clinician to 
activate a soothing breathing exercise intervention. This 
Activity would have been configured before-hand and 
available to the patient, but if the clinician decides to accept 
the suggestion, a notification is sent to the patient that will 
open the Activity. The dashboard visualizations shown to 
both the clinician and the patient in this case would be 
recomputed and automatically adjusted to show data both 
pre and post intervention deployment. The clinician would 
have access to feedback data on whether the deployment of 
the intervention was successful or not. 

Furthermore, another automation applet would in 
this case be configured to generate weekly reports for 
the patient of progress over previous weeks, highlighting 
whether interventions taken by the patient were successful, 
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such as walking more often or sleeping more often. These 
reports are then emailed or physically mailed to the patient 
before their next appointment at the clinic. With automated 
medication tracking from auxiliary services such as Apple’s 
HealthKit, a full mental health profile can be managed by 
the clinician within one session with the patient.

Conclusions

As mobile computing and technology continue to develop 
rapidly, a careful standards-oriented approach must be 
taken to ensure the field of psychiatry is ready and able to 
harness it both in its current incarnation as well as embrace 
its future potential and possibilities. It is crucial to accept 
existing well-accepted standards and extend the ecosystem 
of tools, libraries, applications, and products built around 
them. We identified an unmet need in such a standard, 
FHIR, taking the opportunity to design a cooperative and 
coexisting protocol as well as develop a corresponding 
reference implementation. Our proof-of-concept platform, 
mindLAMP, is currently being used in clinical research 
studies across medical domains including psychiatry, 
anesthesiology, neurology. By architecting this standard 
and platform with current and well-accepted medical/
psychiatric, computer engineering, and biostatistical best 
practices in mind, and sharing such in the public domain, 
we invite others to contribute, expand, and explore this 
intersection of digital health, data standards, and mobile 
healthcare.
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Supplementary

Supplement I Comparison of open standards

The following diagram details our research into HTTP-based transmission formats: (I) Remote Procedural Calls, (II) Resource-oriented RPC, and (III) 
RESTful. The model chosen in our reference implementation is indicated with a bubble.

Client Server

POST /api
{ 
    method: new_researcher, 
    params: … 
} 

POST /api 
{ 
    method: get_researcher, 
    params: … 
} 

Handling Errors

200 OK
{
    error: 4874,
    msg: "Already exists"
}

200 OK
{ 
    error: 1928,
    msg: "Does not exist" 
}

Client Server

POST /api
{ 
    method: new_researcher, 
    params: … 
} 

POST /api 
{ 
    method: get_researcher, 
    params: … 
} 

200 OK
{
    data: null
}

200 OK
{ 
    data: … 
}

Calling Methods

Remote Procedural Call

Client Server

POST /researcher
{ 
    action: create, 
    data: … 
} 

POST /researcher 
{ 
    action: read, 
    data: … 
} 

Handling Errors

400 Bad Request
{
    error: 2482,
    msg: "Not authorized"
}

400 Bad Request
{ 

    error: 1928,
    msg: "Does not exist" 
}

Client Server

POST /researcher 
{ 
    action: create, 
    params: … 
} 

POST /researcher 
{ 
    action: read, 
    data … 
} 

200 OK
{
    data: null
}

200 OK
{
    data: …
}

Manipulating Resources

Resource-oriented RPC

Client Server

Handling Errors

POST /researcher 
{ 
    … 
} 

GET /researcher/123 

403 Forbidden
{
    msg: "Not logged in"
}

404 Not Found
{
    msg: "Invalid resource"
}

Client Server

POST /researcher 
{ 
    … 
} 

GET /researcher/123 

201 Created
{
    link: …
}

200 OK
{
   …
}

Manipulating Resources

RESTful API

Decreased HTTP Protocol Reliance Increased HTTP Protocol Reliance

LAMP



The following diagram details our research into various HTTP-based event stream delivery methods: (I) Wait-polling, (II) Long-polling/XHR, and (III) Server 
Push Notifications. The model chosen in our reference implementation is indicated with a bubble.

Wait-polling

Client Server

GET /resource/123

(no change)

{ data … }

GET /resource/123

GET /resource/123

(no change)

 30 s

 30 s

Long-polling XHR

Client Server

GET /resource/123

GET /resource/123

{ data … }

unknown t

…

Server Push NotiÞcation

Client Server

{ data … }

{ data … }

{ data … }

GET /resource/123

unknown t

 10 s

15 s

Increased I/O Bandwidth & Usage Decreased I/O Bandwidth & Usage

LAMP

Increased CPU Deadlock Decreased CPU Deadlock



The following diagram details the differences between the XML and JSON ecosystems; additionally, XML typically is used 
with a SOAP transmission model where JSON is used with a REST transmission model.

XML

PresentationContent

XML XSLT

Structure

XML-DTD

XPath
XQuery

JSON

PresentationContent

JSON JavaScript + HTML

Structure

JSON Schema

JSON Pointer
JSONPath/JMESPath



Supplement II Automations in-depth

Automations and Tags are implemented as multiple planes existing on the same data format; the use of an alternation data type extension marks a Tag as an Automation to be handled differently. The visual 
layering in the diagram shown below corresponds to the method by which different Tags and Automations relate to one-another.

Object Header

Out-of-line
Attachments

In-line 
Data

org.lamp.key1

org.lamp.key2

org.beiwe.study_id

com.test.viz1

com.test.viz2

1010100010100111101110110101010101010101110
1010101010110101010101001011010101001010100
0101010001010011110111011010101010101010111
0101010101011010101010100101101010100101010
0010101000101001111011101101010101010101011
10101010101011010101

{
    "data": 123,
    "some_dat": [
        "my name",
        "some other name"
    ]
}

dh3948jf

10101000101001111011101101010101010101011101010
10101011010101010100101101010100101010001010100
01010011110111011010101010101010111010101010101
10101010101001011010101001010100010101000101001
11101110110101010101010101110101010101011010101
10101010101001011010101001010100010101000101001
11101110110101010101010101110101010101011010101
10101010101001011010101001010100010101000101001
11101110110101010101010101110101010101011010101

{}

Static Data Plane

org.lamp.key2

org.beiwe.study_id

com.test.viz2

      time_table[i,3*(j-1)+1]= mean(temp$answer)
      time_table[i,3*(j-1)+2]= mean(temp$time)/1000
      time_table[i,3*(j-1)+3]= nrow(temp)
    }
  }
  time_table=data.frame(time_table)
  column = c()
  for (i in 1:length(cat)){
    column = c(column,c(paste0(cat[i],'_score'), ...
  }
  colnames(time_table)=column
  time_table$date = unique_t

import zip
for data_stream in stream_zip:

…

Dynamic Data Plane

{
    "data": 123,
    "some_dat": [
        "my name",
        "some other name"
    ]
}

survey_reform=function(survey) {
  survey$answer=as.numeric(as.character(survey$answer))
  cat = c('sleep','medication','social','psychosis','depression','anxiety')
  unique_t = unique(survey$start)
  time_table = matrix(0,nrow = length(unique_t), ncol=length(cat)*3)
  for(i in 1:length(unique_t)){
    for(j in 1:length(cat)){
      temp = subset(survey,start==unique_t[i] & name==cat[j])
      time_table[i,3*(j-1)+1]= mean(temp$answer)
      time_table[i,3*(j-1)+2]= mean(temp$time)/1000
      time_table[i,3*(j-1)+3]= nrow(temp)
    }
  }
  time_table=data.frame(time_table)
  column = c()
  for (i in 1:length(cat)){
    column=c(column,c(paste0(cat[i],'_score'),paste0(cat[i],'_time'),paste0(cat[i],'_row')))
  }
  colnames(time_table)=column
  time_table$date = unique_t
  row.names(time_table)=NULL
  time_table
}

input parameter

static: org.lamp.key2

dynamic: org.lamp.key2



The following diagram shows the available script runtime execution pathways available for Automation applets in the current 
reference implementation.



The following is an example of using a JSONPath transformation to re-model data into a domain-specific schema for 
visualizing events in a timeline shown in a dashboard.

Query Transform
{

events: {
result: ResultEvent_all_by_participant(`U2591503941`)[].{

timestamp: timestamp,
activity: Activity_all_by_participant(`U2591503941`)[?id == activity],
activity_name: static_data.survey_name,
summary: static_data,
details: temporal_events

},
metadata: MetadataEvent_all_by_participant(`U2591503941`).{

timestamp: timestamp
},
sensor: SensorEvent_all_by_participant(`U2591503941`).{

timestamp: timestamp
},
environment: EnvironmentEvent_all_by_participant(`U2591503941`).{

timestamp: timestamp
coordinates: split(`,`, coordinates),
context: [social_context, location_context]

},
Þtness: FitnessEvent_all_by_participant(`U2591503941`).{

timestamp: timestamp,
summary: join(`, `, record)

}
} | sort_by(@[*], &timestamp)

}

Study

ActivityActivity

Participant

Result
Event

Metadata
Event

Sensor
Event

Fitness
Event

Timeline

Event Event …Event


