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Background: Wearable devices that support activity tracking and other measurements hold great potential 
to increase awareness of health behaviors and support the management of chronic health conditions. There 
is a scarcity of guidance for researchers of all disciplines when planning new studies to evaluate and select 
technologies appropriate for study purpose, population, and overall context. The aim of this study was to 
develop and test an evaluation framework to rapidly and systematically evaluate and select consumer-grade 
wearable devices that serve individual study needs in preparation for evaluations with target populations.
Methods: The wearable evaluation framework was defined based on published literature and past research 
experiences of the research team. We tested the framework with example case studies to select devices for 
two different research projects focused on aging-in-place and gestational diabetes. We show how knowledge 
of target population and research goals help prioritize application of the criteria to inform device selection 
and how project requirements inform sequence of criteria application. 
Results: The framework for wearable device evaluation includes 27 distinct evaluation criteria: 12 
for everyday use by users, 6 on device functionality, and 9 on infrastructure for developing the research 
infrastructure required to obtain the data. We evaluated 10 devices from four vendors. After prioritizing 
the framework criteria based on the two example case studies, we selected the Withings Steele HR, Garmin 
Vivosmart HR+ and Garmin Forerunner 35 for further evaluation through user studies with the target 
populations. 
Conclusions: The aim of this paper was to develop and test a framework for researchers to rapidly evaluate 
suitability of consumer grade wearable devices for specific research projects. The use of this evaluation 
framework is not intended to identify a definitive single best device, but to systematically narrow the field of 
potential device candidates for testing with target study populations. Future work will include application of 
the framework within different research projects for further refinement.
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Introduction

Personal technologies—such as wearable devices—
that support activity tracking and other measurements 
hold great potential to increase awareness of health 
behaviors and support the management of chronic health 
conditions (1,2). Deploying wearable devices outside 
of controlled laboratory settings into everyday living, 
however, is fraught with unpredictable external factors 
that make study implementation difficult (3). Researchers 
designing and implementing wearable technology 
studies must select a wearable device that: (I) captures 
specific indicators of health status; (II) is usable by the 
population targeted for enrollment; and (III) serves other 
needs of the study, such as appropriate data granularity 
for analysis (4,5). Research-grade wearable devices, 
such as the Actigraph and activPal, are well-understood 
and have usable form factors, user communities, and 
copious published literature to guide device selection 
for their use in research (6-11). However, with the 
unprecedented availability of consumer-grade wearable 
devices in a rapidly changing technology landscape, 
there is little understanding of how consumer-grade 
wearable devices function under similar conditions (12).  
Indeed, there is a scarcity of guidance for researchers of 
all disciplines when planning new studies to evaluate and 
select technologies appropriate for the study purpose, 
population, and overall context. 

This paper introduces an evaluation framework for 
researchers to systematically and quickly evaluate and 
select commercial wearable devices that serve the needs of 
their projects. Similar to usability inspection methods, the 
goal of the framework is to enable experts to narrow down 
a large number of potential devices to a small number of 
devices for further evaluation with the target population 
(see Figure 1, where the portion of the selection process 
circled in blue is covered by this paper). After defining the 
framework, we present two case studies of how we used 
the framework to help select devices for two very different 
research projects. We conclude with a discussion of the 
next steps for researchers once they apply the framework 
to make a final selection of a wearable device for their 
project.

Methods

We developed a research evaluation framework for 

wearable activity monitors which includes 27 distinct 
evaluation criteria: 12 for everyday use by users, 6 on device 
functionality, and 9 on the research infrastructure required 
to obtain the data. These criteria were drawn from previous 
research, including our own, and refined through internal 
team discussion. We then tested the framework to select 
wearable devices using cases from two different projects: 
one promoting aging in place and one targeting gestational 
diabetes. Below we describe the evaluation criteria in the 
areas of everyday use, functionality, and infrastructure 
support with a description of how the framework can be 
applied based on project needs and resources.

Everyday use criteria

Four of the 12 everyday use criteria were adopted from 
design guidelines for wearable devices by Motti and  
Caine (13) and denoted with a word change for standalone 
recognition in the item list. The four items are: ease 
of use for device controls (2), device wearability (6), 
device aesthetics (11), device customization (12). These 
items focus specifically on the usability and wearability 
of the devices in daily living conditions. The everyday 
use criteria are classified as having both pragmatic and 
hedonic qualities (13). Pragmatic qualities refer to the 
functionality of the device and its capability to support 
the accomplishment of a set of goals. These tend to 
be objective. Hedonic qualities refer to the product’s 
perceived capability to support the achievement of user 
needs, and are subjective. These criteria are essential 
human factors considerations for ensuring the target user 
population will be able to use the devices over the course 
of a research project. We itemize the 12 everyday use 
criteria in Table 1.

While some criteria (items 7, 8, 12) are objective 
and independent of the population (e.g., the device 
specifications indicate if it is water resistant or waterproof), 
others are subjective (items 1–6, 9–11) and may depend 
on the population. For example, a device’s “Display 
Viewability” may differ between populations with differing 
visual acuity. Each item is ranked on a 5-point scale (with 
1 being “not at all/never” and 5 being “all the time/very”), 
with the exception of item 12, and includes qualitative 
descriptions where appropriate. Items 1–5 relate to ease of 
use and understanding the information, items 6–10 deal 
with wearing the device every day, and items 11–12 are 
related to the aesthetics of the device.
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Figure 1 Process for selecting wearable device for research study. This paper describes the evaluation framework, used in the early stages of 
devices selection to move from many devices to a few devices.

Table 1 Everyday use criteria

Criteria Definition Description

1. Ease of setupc Deals with the amount of effort invested to 
start using the device

Includes items such as pairing with mobile device, account setup, 
and finding the app from the app store

2. Ease of use for 
device controlsa*

Deals with effort needed to use the physical 
device controls 

Includes the comfort of using the controls, ease of accessing 
different screens using control buttons, and ease of navigating on 
the wearable device

3. Wearable display 
viewabilitya

Deals with the overall viewability of the 
wearable display

Includes simplicity of the display, size of the text or infographics, 
clarity with which data is displayed on the wearable device, and 
visibility of display under different light conditions

4. Wearable display 
interpretabilitya

Deals with cognitive load of interpreting the 
wearable display

Includes ease of accessing the different functions and data on the 
wearable device, as well as the granularity of the data displayed

5. Ease of use for 
mobile appb

Deals with cognitive load of accessing and 
interpreting the data on the paired mobile app

Includes ease of accessing the different data on the paired mobile 
app, as well as the granularity of the data displayed

6. Device 
wearabilitya*

Deals with parameters related to the user 
experience wearing the device/placing the 
wearable device upon the user’s body

Includes the size of the device, size of display, and comfort while 
wearing the device

7. Device water 
resistancea

Measures the water resistance of the wearable 
device, rated based on the scale shown in 
description

1: Not waterproof or resistant 

3: Water-resistant/splash proof 

5: Waterproof/submersible

8. Wearable device 
batterya

Deals with the battery life of wearable device 
(T) and is rated using a scale of 1–5 available 
in description based on evaluator experience 
with device

1: T ≤2 days

2: 2 days < T ≤1 week 

3: 1 week < T <1 month

4: 1 month < T <6 months

5: 6 months < T

9. Device effect on 
mobile batteryb

Deals with any effect on the mobile phone 
battery life

Includes information derived from typical use case scenarios for 
the target population, such as using GPS or not

10. Syncing 
performancec

Deals with the syncing performance of the 
device

Includes the max duration without syncing, number of day’s data 
the device can store, effect of not syncing on the device, ease of 
syncing device

11. Device 
aestheticsa*

Deals with overall look and feel of the device, 
such as modern, or classic, and bulky or slim

Includes subjective assessment of overall aesthetics, in which 
preferences will likely vary between individual users

12. Device 
customizationa*

Deals with the different customization options 
available

Includes available choices for color options, belt clip and strap 
options. Binary rating

*, items 2, 6, 11 and 12 were adopted from Motti & Caine (2014); a, applies to wearable device only; b, applies to mobile phone only; c, 
applies to the interaction of wearable device and mobile phone.



mHealth, 2021Page 4 of 13

© mHealth. All rights reserved. mHealth 2021;7:6 | http://dx.doi.org/10.21037/mhealth-19-253

Table 2 Functionality criteria

Criteria Definition Description

1. Parameter 
measures

Deals with overall functionality, availability 
and relative accuracy

Includes steps, sleep, elevation, intensity, activity recognition, heart 
rate, oxygen level, and GPS

2. Motivational 
features

Deals with availability of motivational 
features to encourage usage

Includes vibration, sounds or app notifications to encourage 
meeting goals, such as step count or sleep duration

3. Notifications Deals with availability of notification 
support

Includes mobile notifications to wearable device and do not disturb 
mode

4. Clock Deals with availability of clock function on 
wearable device

Includes glanceable vs. manually initiated (e.g., button press), and 
analog vs. digital

5. Availability of 
personal data inputs/
reminders

Deals with availability of adding personal 
data inputs and setting reminders

Includes if reminder can be set on wearable and/or mobile device

6. Connectivity to 
other apps

Deals with option to pair device or app 
with other 3rd party applications

Includes popular fitness apps and social media

Functionality criteria

Functionality criteria were informed by technical 
specification sheets provided for each device (www.garmin.
com, withings.com, www.fitbit.com, striiv.com) since these 
devices have wide adoption, high consumer reviews, and 
incorporate common features in the device marketplace. 
Many of these items have a binary rating in that the device 
either has the specified software feature or does not. We 
itemize these six functionality criteria with descriptions in 
Table 2.

When choosing a device, it is important to ensure it 
collects the data necessary and has the required functions 
for the proposed study. For example, an observational study 
may not want any motivational features or notifications since 
those may alter participant behavior; whereas an intervention 
study trying to increase the physical activity of participants 
with congestive heart failure may require these features (1).

Infrastructure criteria

Table 3 lists the criteria for evaluating the infrastructure 
support provided by device vendors. Most vendors 
provide a free application programming interface (API) 
for software developers to access user data, and some 
provide an additional API to access more features (e.g., 
computation of gait) for a charge. In addition, vendors may 
provide developer and runtime support, which is critical for 
projects that need to automatically download user data. The 
outcome of the infrastructure evaluation is primarily based 

on vendor documentation and requires a technical member 
of the research team to perform the evaluation. 

Contextualizing framework application by project

While the evaluation can be initiated independent of a 
specific research project, the target population and research 
goals should be known or estimated to most effectively 
prioritize the various criteria and make a final selection. For 
example, a project targeting a small number of participants 
that are at risk of developing a chronic health condition, 
such as congestive heart failure, may place a high priority 
on physiological measures like heart rate (1,12). Whereas 
a project targeting a large number (1,000+) of participants 
newly diagnosed with type 1 diabetes, may place a higher 
priority on the inclusion of notifications or aesthetics 
of the device because these factors may be a priority to 
young adults (14). Similarly, devices meant for users with 
functional limitations such as blindness or a loss of dexterity 
would require different usability parameters than those 
meant for the general population.

Some criteria  lend themselves more readily to 
straightforward quantitative measurements for comparison 
of evaluation metrics across devices and evaluators, while 
other items in the framework require a qualitative approach 
that relies on independent rating by multiple evaluators 
followed by a reconciliation process that establishes inter-
rater reliability (15). A quantitative measurement example is 
battery life which can be determined measuring the number 
of days or a calculation of the battery (mAh), components 

http://www.garmin.com, withings.com
http://www.garmin.com, withings.com
http://striiv.com
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Table 3 Infrastructure criteria

Criteria Definition

1. Ability to access device data Describes the availability of vendor API for accessing data in a secured and non-intrusive manner

2. API: cost to access data Describes the cost/fees or any special permission associated with using the Vendor APIs

3. API: data type availability Describes the type and the granularity of the data available through the APIs

4. API: scalability and rate limiting Describes the limitations on the number of API calls that can be made

5. API: data availability notification Describes the ability to receive real-time data pushed from the vendor, as opposed to periodically 
pulling data from the vendor

6. API: maturity of access path Describes the historic stability of major versions and the frequency of API changes. Newer 
technology and start-ups more likely to push frequent changes that can impact study 
infrastructure that uses APIs

7. API resources Describes the availability and quality of API reference material for developers

8. Developer support Describes the availability and quality of dedicated forums and teams to offer support for the 
developers. Some vendors have active and helpful developer groups, others have employees to 
respond to developer questions, and others have a combination of the two

9. API: system health check Describes the provision of broadcasting information to partners of any possible downtime

API, application programming interface.

(e.g., GPS, 3-axis accelerometer), and chipset used in a 
controlled test setting that allows comparison of function 
for multiple devices.

A qualitative measurement example, such as ease of 
physical controls or aesthetics, can vary widely based on 
user physical abilities (e.g., dexterity), and technology 
preferences (e.g., affinity for a traditional analog watch 
versus a digital device). For these types of qualitative 
measurements, we provide a priori codes that form the 
basis for qualitative evaluation items. For this approach, a 
minimum of two evaluators, with an understanding of the 
targeted population of users, should familiarize themselves 
with the evaluation framework and discuss the application 
of the criteria. Then, each should independently apply the 
framework criteria in a sample evaluation of one device, 
followed by a discussion of evaluation results, to establish an 
understanding of the application of the framework criteria 
within the evaluation team and reconcile disagreements. 
How framework criteria are applied within a given project 
should be documented in a codebook that can be referred 
to during successive device evaluations. To increase rigor, 
a third evaluator can be used to reconcile disagreements. 
Additional device evaluations are conducted iteratively, 
with successive reconciliations informing and refining 
the codebook for application of framework criteria. 
This evaluation process is informed by approaches from 

ubiquitous computing to “debug the viability of the systems 
in everyday use, using ourselves and a few colleagues as 
guinea pigs” (16) and usability inspection methods, such 
as heuristic evaluations (17), that rely on small evaluation 
teams to uncover usability issues (17).

After narrowing device candidates based on evaluations 
with team members, the next step is to perform testing with 
the targeted population of users to verify feasibility and 
usability of the device before moving to field studies that 
test the device in everyday living settings. This progression 
of testing includes needs assessment, design validation, 
usability testing, laboratory function testing, laboratory 
user effect through field tests and ultimately assessment 
of broader population impacts (18). Furthermore, this 
evaluation strategy follows recommendations to iteratively 
test using a series of small evaluation studies that progress 
to community-based studies (19).

Test application of framework using two cases

To test the evaluation framework and demonstrate how 
it may be used, we present an evaluation of ten wearable 
activity monitors available in the United States in early 
2017. We use the framework with case studies of the 
following two projects, each of which had IRB approval in 
place, separate from this investigation:
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HomeSHARE
The HomeSHARE project (20) provides wearable activity 
monitors to approximately 30 older adults (>65 years old) 
to be used for at least 2 years. This project was primarily 
observational, to better understand older adult activities 
and independent living. It created a data set that combined 
data from wearables, home-based sensors, surveys, and 
interviews. 

Precision Health Initiative
The Precision Health Initiative project (in progress, results 
unpublished) provides ~500 pregnant women a wearable 
activity monitor to wear for at least 12 months. This project 
is prospective in nature, seeking to build a model of women 
who had gestational diabetes that later develop type 2 
diabetes. As such, it is primarily observational, creating 
a data set that combined data from wearables, electronic 
health records, genetic mapping, surveys, and interviews.

Both projects require that the wearable device has 
some measure of physical activity and sleep. In addition, 
the investigators were interested in evaluating whether 
monitoring Heart Rate and GPS were feasible given 
their respective budgets. We evaluated ten commercially 
available activity trackers based on cost (≤$200 per device) 
and available features. The ten devices, listed in Table 4, 
collected sleep and activity information, and a subset of 
devices collected heart rate and/or GPS. 

Two researchers wore each of the ten devices for 1 week, 
removing the device only as needed for charging or if 
submerging in water for non-waterproof devices. A total of 
eight researchers from the same research lab participated in 

the evaluation, assisting with two devices each. Evaluators 
independently filled out a form for criteria #1–18 for each 
device they wore (the final version of the form available 
online: http://cdn.amegroups.cn/static/application/80aaea
b616cf1f7a5419149b997d5368/mhealth-19-253-1.pdf). On 
average, filling out the evaluation form took 42 minutes to 
complete for each device.

Because not all of the framework criteria are objective, 
prior to using the average ratings from the two evaluators, 
we analyzed the ratings and comments for inconsistencies. 
Any ratings that differed by a point or more, or comments 
that were contradictory between evaluators, were flagged 
for further discussion. These evaluators were gathered 
together, and each noted discrepancy was discussed and 
resolved. Most discrepancies were due to confusion about 
the definitions of the evaluation items, which led us to 
refine the definitions and improve the framework. Some 
discrepancies were due to different use cases encountered 
by the different evaluators for their regular routines. For 
example, one evaluator used a device more in an outdoor 
setting, helping them to notice a viewability issue in 
sunlight that another evaluator did not notice. In such 
cases, the evaluators discussed the differing experiences and 
adjusted their scores accordingly.

Results

Results for everyday use criteria 

Table 5 presents the average results for the criteria which 
could be mapped to ratings. Devices with heart rate or GPS 

Table 4 Ten devices evaluated using the framework. Price from summer 2017

Device Price Heart rate GPS

Garmin Vivofit 2 $69.95 – –

Withings Activite $129.95 – –

Withings Go $49.95 – –

Striiv Fusion $79.99 – –

Withings Pulse O2 $99.95 √ –

Fitbit Charge HR $149.95 √ –

Withings Steel HR $179.95 √ –

Garmin Vivosmart HR $129.95 √ –

Garmin Vivosmart HR+ $179.95 √ √

Garmin Forerunner 35 $199.99 √ √



mHealth, 2021 Page 7 of 13

© mHealth. All rights reserved. mHealth 2021;7:6 | http://dx.doi.org/10.21037/mhealth-19-253

Table 5 Everyday use ratings for wearable devices

Criteria

Withings Garmin Striiv Fitbit

GO Activite
Pulse  
O21

Steel 
HR1

Vivofit  
2

Vivosmart 
HR1

Vivosmart 
HR+1,2

Forerunner 
351,2 Fusion 2

Charge 
HR1

Ease of setup 3 3.75 4 4.5 4 5 4.5 4.5 2.75 4.5

Ease of use for device controls 1 4 2 4.75 4 5 5 4.5 2.75 4.5

Wearable display viewability 4.5 3.75 2 4.5 5 5 5 5 2.25 4.5

Wearable display interpretability 4.5 5 4 4.75 4.5 5 5 4.5 2 3.5

Ease of use for mobile app 4 3 4 4.5 4 4.5 5 4.5 2.5 5

Device wearability 2 4.5 3 4.5 4 4.75 4.75 5 3.5 4

Device water resistance 3.5 5 1 5 5 5 5 5 3 5

Wearable device battery 5 5 3 4 5 2 2.25 3 2 3

Device effect on mobile battery 4 4.5 4 4.5 4 5 4 4.5 4 3.5

Syncing performance 4 4 4 4 4 5 5 5 2.5 4.5

Device aesthetics 3 5 4 4.5 4 5 4.5 4 4 3.5
1, denotes device with Heart rate function; 2, denotes device with GPS function.

are identified by a superscript 1 or 2, respectively.
For the non-HR devices, the Withings Activite and 

Garmin Vivofit 2 easily outperformed the Withings Go 
and Striiv Fusion. The latter both scored low on physical 
controls, aesthetics, and wearability because they were 
found to have unmanageable buttons/screens, problematic 
band clasps and a clunky design. The Fusion scored low 
on water resistance because it offered minimal splash 
resistance. Thus, the Go and Fusion were eliminated from 
further contention.

For the HR devices, the Withings Pulse O2 and Fitbit 
Charge HR underperformed compared to the other four 
evaluated devices, receiving the poorest scores for water 
resistance, display viewability, ease of physical controls, 
and device battery (Fitbit Charge HR). Because of their 
low scores in these categories, the O2 and Charge HR was 
eliminated from further contention. The Withings Steele 
HR was considerably better than the others for battery life; 
otherwise, it compared comparably to Garmin Vivosmart 
HR, Garmin Vivosmart HR+ and Garmin Forerunner 35. 
The latter two are the only two to include GPS as part 
of their functionality. For the Ease of Setup criteria, the 
Vivosmart HR was the only device to receive a perfect 
score. The other devices received lower ratings because they 
suffered from multiple failed Bluetooth pairing attempts 
and/or difficulty finding the correct device among the many 

similarly named devices. These issues were documented in 
the notes of the evaluator worksheets.

Table 6 presents the binary items that could not be 
mapped to ratings. For these criteria, evaluators checked 
if devices supported these features or not. In the everyday 
use category, there is only one criteria (customization) 
rated this way.

Results for functionality criteria 

Table 7 presents the results for the binary items that were 
evaluated in the functionality category. Table 7 includes the 
example features/functions that the research team chose to 
evaluate the devices for, however depending on the study, 
these examples can be decided upon based on the research 
goals and target population.  Based on the research goals of 
a given project, the inclusion of these criteria could also be 
used to narrow the device pool.

Results for infrastructure criteria 

We provide infrastructure inspection results for Garmin, 
Withings (Nokia) and Fitbit in qualitative terms. We did not 
consider infrastructure for the Striiv device, as it was ruled 
out from the further study based on the results of applying 
the everyday use criteria. After reviewing API features, 



mHealth, 2021Page 8 of 13

© mHealth. All rights reserved. mHealth 2021;7:6 | http://dx.doi.org/10.21037/mhealth-19-253

Table 7 Functionality qualitative ratings for wearable devices

Category 2: functionality

Withings Garmin Striiv Fitbit

GO Activite Pulse O2
Steel 
HR

Vivofit 2
Vivosmart 

HR
Vivosmart 

HR+
Forerunner 

35
Fusion 2

Charge  
HR

Physiological measures

Steps, sleep, HR, calories – – √ √ – √ √ √ – √

Motivation

App badges √ √ √ √ √ √ √ √ √ √

Device motivation* √ – √ – – – – – – –

Notifications (text, calls, etc.) – – √ √ – √ √ √ √ √

Clock √ √ √ √ √ √ √ √ √ √

Manual inputs/reminders

Weight √ √ √ √ √ √ √ √ √ √

Food intake √ √ √ √ √ √ √ √ √ √

Connectivity to other apps

myFitnessPal √ √ √ √ √ √ √ √ – √

Strava – – – – √ √ √ √ – √

*, text encouragement and “move” bar that encourages walking after long periods of inactivity.

Table 6 Everyday use qualitative criteria 

Customization

Withings Garmin Striiv Fitbit

GO Activite Pulse O2
Steel 
HR

Vivofit 2
Vivosmart 

HR
Vivosmart 

HR+
Forerunner 

35
Fusion 2

Charge  
HR

Colored bands √ √ √ √ √ √ √ √ √ √

Belt clips √ – √ – √ – – – – –

Different band materials – √ – √ – – – – – –

members of the development teams for HomeSHARE and 
the Precision Health Initiative agreed that all three vendors 
provided support, to varying degrees, in each of the nine 
areas in Table 3. We provide a summary of this subjective 
review below.  

All three vendors provide basic access to data through 
their free APIs. All used RESTful APIs, a popular 
architecture for developing client-server applications. REST 
stands for Representational State Transfer and provides 
interoperability between software systems. Any system 
that complies with REST architectural style can provide 
services that can be accessed through world wide web (www) 
URLs (21). This architecture provides developers with 
an ease way to access API features by consuming URLs 

in the programming language of their choice. Software 
applications, including mobile as web-based applications, 
can use the APIs to retrieve health, fitness, and wellness 
data from vendor data repositories. No vendors provided 
access to raw sensor data. Garmin provides access to their 
“Garmin Health API” by request, after submission and 
approval of a required application. Withings/Nokia and 
Fitbit provide access to intraday minute and second-level 
data, upon request with justification of how the data will 
be used. 

With regard to scalability, all three vendors enforce rate 
limits for frequency of data access. This limitation should 
be considered when developing third party applications 
based on target number of users and vendor policies for data 
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access. Each vendor employs a Subscribe-to-Notification 
mechanism for third party apps to receive notifications 
whenever a wearable device is synced to its corresponding 
native application. For example, a Withings device syncs 
with the Nokia HealthMate mobile app over Bluetooth and 
a Garmin device syncs with the Garmin Connect mobile 
app. When a device syncs to a native mobile app, the third-
party app is notified of new data and the third-party app 
must retrieve data from the vendor system via the API 
within the constraints of the vendor data access policy. 

At the time of evaluation, Garmin and Fitbit had a 
more mature and stable APIs than Withings. During the 2 
years prior to our evaluation period, they both had regular 
major releases to their APIs to incorporate new features, 
such as Pulse Ox. Withings/Nokia, on the other hand, 
had virtually no releases in 2017–2018, the timeframe in 
which they were sold/rebranded two times. API reference 
documentation was comprehensive for Garmin and Fitbit, 
whereas Withings documentation was incomplete with 
regard to supported API features that were known to exist, 
requiring a team member to obtain the information from 
other developers. Garmin and Fitbit were responsive with 
regard to technical support. The Garmin technical support 
had a turn-around time of within a day for most of technical 
difficulties. Fitbit has an extremely active developer’s forum, 
with most questions being responded to within a day, often 
by Fitbit engineers, but also by other developers. Withings 
support was not responsive to our emails. Data such as heart 
rate on Withings HR Steel were only accessible through 
the intraday API. Withings did not respond to multiple 
requests for access to the intraday API which precluded us 
from exploring the intraday data capabilities. All vendors 
provide some support for a system health check with Fitbit 
providing status of each API service through a dedicated 
URL, and the others providing maintenance notifications in 
a developer portal website.

Results for contextualizing framework application by 
project

Each research project has different requirements for 
their target population and the infrastructure. Below, we 
give two examples of such projects in which the authors 
with significant experience with that population used the 
evaluation framework to narrow down the devices. We then 
briefly describe two follow-up user studies which resulted in 
a final device for each project.

HomeSHARE
Based on our experience in design of technologies for older 
adults, we prioritized seven criteria from the framework:
	1-Ease of Setup: as adults age, they may lose some 

cognitive abilities. Thus, the selected device should 
be easy to setup and learn. 

	2-Ease of Physical Controls: older adults may have 
challenges with dexterity and muscle grip. The 
physical controls on the device should be easy to use, 
including their size and pressure required to work 
them. Touchscreens can be particularly challenging 
for older adults, so should be evaluated with care.

	3-Display Viewability: older adults may have 
deteriorating eyesight, which makes it difficult to 
read small fonts on screens. When choosing a device, 
screen and text size must be considered.

	4-Display Interpretability: older adults can have 
difficulty with displays that are too distracting or 
complex to navigate. The display should be simple to 
interpret.

	6-Wearability: the device should be comfortable 
for short term and long-term use. The strap/band 
shouldn’t irritate the skin of older adults and should 
feel natural to them. The device should neither be too 
big nor too small. The device should be easy to put 
on/off and should avoid complicated/difficult clasps. 

	8-Device Battery: while many populations struggle 
with keeping devices charged, older adults are 
particularly challenged due to not being as familiar 
with such devices, age-related memory loss, 
difficulty taking the device on and off, and difficulty 
connecting the device to its charger. Battery life is 
critical for this population. Having a display that 
provides feedback when the battery is getting low 
will also help older adults remember to charge their 
device.

	11-Aesthetics: older adults, much like their younger 
counterparts, want a fashionable device that looks 
good. They may find devices that look more like a 
watch more pleasant than more modern designs. 
Additionally, older adults in various studies have 
indicated that devices should not be “stigmatizing” 
them as frail or in need of assistance with a “look” 
that indicates a medical (22,23). 

Precision Health Initiative
Based on our experience of design for pregnant women and 
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women with infants and toddlers, we prioritized different 
criteria:
	4-Display Interpretability: women with infants 

and young children have many demands on their 
attention, making an easily glanceable interface a 
high priority.

	6-Wearability: the device should be comfortable 
for short term and long-term use and should not 
problematic if young children pull on it.

	7-Water Resistance: mothers must often do a variety 
of household and childcare activities which involve 
water and will not want to have to remove the device 
frequently throughout their day.

	8-Device Battery: the battery life should be as long 
as possible, so women do not have to frequently 
remember to take the device off and charge it.

	9-Smartphone Battery: the drain on the phone 
battery should not require charging during the day.

	11-Aesthetics: women will want a device that fits in 
with their style.

	12-Customization: pregnant women may require 
different sized straps over the course of the 
pregnancy. They may also prefer to wear the device 
in different locations, depending on their activities 
(e.g., a belt clip if the device does not pick up on 
steps when pushing a stroller since the hands will not 
sway naturally).

Selecting devices for further investigation

Using our framework enabled us to quickly and easily 
narrow down the list of devices for the HomeSHARE 
and Precision Health Initiative projects. To narrow down 
and select a device, researchers selected items from the 
prioritized criteria for each project. From this, researchers 
highlighted any criteria for each device that scored ≥4 
and tallied how many categories each wearable scored this 
in. The five devices with the lowest tallied scores in the 
prioritized criteria categories were discounted from the 
list of possible devices. For the HomeSHARE project, 
researchers narrowed the list of devices down to five: the 
Withings Steel HR, Garmin Vivofit 2, Garmin Vivosmart 
HR, Garmin Vivosmart HR+ and Garmin Forerunner 
35. For the Precision Health Initiative project, multiple 
devices tied for the number of categories they received 
high scores, so researchers narrowed it down to six devices: 
the Withings Activite, Withings Steel HR, Garmin Vivofit 
2, Garmin Vivosmart HR, Garmin Vivosmart HR+ and 

Garmin Forerunner 35. Both projects, were interested in 
collecting HR and potentially GPS data, so the next step 
for researchers was to cut any devices that didn’t have at 
least one of these functions. Even though the prioritized 
criteria were different for the two projects, the final list 
of potential devices were the same: Withings Steel HR, 
Garmin Vivosmart HR, Garmin Vivosmart HR+ and 
Garmin Forerunner 35. These devices were then narrowed 
down to three devices after eliminating the Vivosmart HR. 
Researchers chose to eliminate this device because of its 
similarities to HR+ and lack of GPS. 

Once a smaller set of promising devices are identified 
with the framework, we suggest a user evaluation with 
the target population to make a final selection. Here, we 
summarize two such studies for our demonstration projects. 
Both studies were approved by the Indiana University 
IRB. For the HomeSHARE project, we conducted an in-
lab usability study with older adults (n=9) recruited locally 
using three potential devices (Withings Steel HR, Garmin 
ForeRunner 35, Garmin Vivosmart HR+). These semi-
structured interviews uncovered that most participants did 
not like the Withings Steel HR due to difficulties in screen 
readability and the overall weight of the device. Two of the 
participants preferred the Vivosmart HR+ because it had 
a slightly smaller form factor and was similar to what they 
already owned. However, seven of the participants preferred 
the Garmin Forerunner 35 over the Vivosmart and 
Withings devices because they felt the display was easy to 
see and intuitive, and they preferred the shape/size. Based 
on these results, we selected the Garmin Forerunner 35 for 
the HomeSHARE study.  

For the Precision Health Initiative, we conducted an 
identical study with a population of pregnant and recently 
(<2 years) postpartum participants. Recruited locally, 
participants (n=9) explored the same three wearables over 
the course of a semi-structured interviews. Above all, 
participants focused on the aesthetic of the devices. Many 
found the Forerunner 35 to be “outdated” and clunky when 
compared to the other devices. The Vivosmart HR+ and 
Steel HR both had mostly positive comments, however 
some participants preferred the Steel HR due to its more 
un-athletic appearance and perceived appropriateness in a 
workplace environment.

These two studies highlight the importance of direct 
evaluation with targeted populations, as seen through the 
different aspect of the devices focused on the differing 
populations. Through the user studies, we were able to 
further narrow down preferred devices and identify the 
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focal features different populations prefer. Based on the 
results of this user study, we selected the Vivosmart HR+ 
for the Precision Health Initiative study. 

Finally, while an in-lab user evaluation can help select 
the final device, it cannot fully replace in the wild testing (3). 
For both the Precision Health Initiative and HomeSHARE 
studies, we proceeded with in-situ pilot studies to ensure the 
target populations could, and would, use the devices in their 
everyday lives.

Discussion

The primary goal of this paper is to provide a framework 
for researchers to quickly evaluate the suitability of current 
commercial activity monitors for their research projects. 
The use of this framework is not intended to result in 
the identification of a single device that should clearly be 
selected. Instead, it allows researchers to narrow down 
prospective devices to a shortlist that can be tested further 
with the target population. The next steps should be to 
perform tests that evaluate the devices with the target 
population, including participants’ ability to use the devices 
and preferences. These tests could involve focus groups 
about technology perceptions and acceptability, lab-
based usability tests, or small “in the wild” field studies to 
understand real world implementation factors. There are 
some considerations that the evaluation framework does not 
address including device compatibility (e.g., some devices 
are only compatible with certain versions of iOS) and device 
availability. Research grade devices may prioritize longer 
term availability, where as those on the commercial market 
may become unavailable in a relative short period of time. 
Finally, there are two important additional considerations 
that the evaluation framework does not address, accuracy 
and privacy. We describe these in greater detail below. 

Accuracy

The evaluation framework does not itself include items 
for accuracy of the data that are collected. While this 
information is important, it would take an entire field 
study with an accurate baseline [e.g., comparison to an 
Actigraph (10)] to provide the accuracy of each device. The 
proposed framework is meant to support a streamlined 
evaluation that can occur in the lab as an initial screening 
and assessment of devices. For some projects, relative 
accuracy may be all that is required, allowing researchers 
to note trends for individual participants. If clinical 

accuracy is an important criterion for a research study, 
then a separate evaluation must occur. Research requiring 
clinical accuracy would need to compare prospective 
commercial wearable devices with a baseline device. 

Privacy

Continuous collection of data collected by wearable activity 
monitors can be useful but comes with issues (24). Data 
gathered by wearables can reveal sensitive information 
about the individual user and their surroundings which can 
raise privacy-related concerns (25). Some specific concerns 
are user knowledge and consent about personal health data 
collected from wearable devices. If data are transferred to 
external entities (e.g., device vendor or third party) outside 
of the control of the user who is producing the data this 
may result in a privacy invasion (26). These instances 
can lead to misuse of personal data to adjust healthcare 
insurance policies and premiums based on daily behaviors, 
activities and pre-existing medical conditions (27,28). In 
some instances, users may synchronize data collected by 
their wearable device with social media sites which present 
additional privacy-related threats and risks (28). 

Privacy is a key concern for users in their adoption 
of pervasive computing technologies (13,25,29), and has 
been cited as a particularly important issue to address in 
ubiquitous and wearable computing (13,25,29). To ensure 
privacy protection, it is necessary for users to understand 
the type of data the wearable devices collects, store, and 
share (30). In addition, it is important that users have 
control over their health-related information (31). The 
variability of useful data generated by wearable devices, 
along with an even more diverse collection of interfaces 
through which users interact necessitates a practical 
approach that ensures privacy protection for users (32). 
Given the many different factors involved in perceptions 
and need for privacy, privacy concerns should be evaluated 
by project and participant requirements and preferences.

Conclusions

We present the development and testing of a wearable 
evaluation framework for selecting devices for research. 
The evaluation framework includes 27 distinct evaluation 
criteria: twelve for everyday use by users, six on device 
functionality, nine on infrastructure for developing the 
research infrastructure required to obtain the data. We 
presented two case studies of how to use the framework to 
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determine a shortlist of devices that may be appropriate 
for a particular research project. We chose the initial 
set of devices for evaluation based on features and price 
point. Some researchers may consider existing published 
evaluation studies as a component for the initial device 
pool, if comparability to an existing population is desired. 
Others may prioritize a combination of other criteria, such 
as battery life, privacy, or cost. Given the ever-changing 
nature of the commercial activity monitor market, the aim 
of this framework is to enable researchers to quickly and 
systematically evaluate the state-of-the-art commercial 
devices for their particular research needs.
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