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Objectives: The present narrative review aims to collate the literature regarding the current use 
of wearable gait measurement devices for falls-risk assessment in neurological and non-neurological 
populations. Thereby, this review seeks to determine the extent to which the aforementioned barriers inhibit 
clinical use. 
Background: Falls contribute a significant disease burden in most western countries, resulting in increased 
morbidity and mortality with substantial therapeutic costs. The recent development of gait analysis sensor 
technologies has enabled quantitative measurement of several gait features related to falls risk. However, 
three main barriers to implementation exist: accurately measuring gait-features associated with falls, 
differentiating between fallers and non-fallers using these gait features, and the accuracy of falls predictive 
algorithms developed using these gait measurements. 
Methods: Searches of Medline, PubMed, Embase and Scopus were screened to identify 46 articles relevant 
to the present study. Studies performing gait assessment using any wearable gait assessment device and 
analysing correlation with the occurrence of falls during a retrospective or prospective study period were 
included. Risk of Bias was assessed using the Centre for Evidence Based Medicine (CEBM) Criteria. 
Conclusions: Falls prediction algorithms based entirely, or in-part, on gait data have shown comparable or 
greater success of predicting falls than existing stratification scoring systems such as the 10-meter walk test 
or timed-up-and-go. However, data is lacking regarding their accuracy in neurological patient populations. 
Inertial measurement units (IMU) have displayed competency in obtaining and interpreting gait metrics 
relevant to falls risk. They have the potential to enhance the accuracy and efficiency of falls risk assessment 
in inpatient and outpatient setting.
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Introduction

Injuries are the fifth largest disease burden in Australia and 
falls alone account for 40% of injury-related admissions (1). 
A fall is an event in which a person inadvertently comes 
to rest on the ground (2). Falls are overrepresented in 
elderly populations and mostly occur during walking (3). 
A neurogenic gait alteration (NGA) is an alteration to 
gait due to abnormalities of the central or peripheral 
nervous system(s) resulting in changes to ambulation (4). 
The presence of an NGA doubles an elderly person’s risk 
of falling by altering postural stability, limb dynamics, 
movement speed, symmetry and smoothness (5). Multiple 
sclerosis, Parkinson’s disease, stroke, cerebral palsy, 
neurogenic claudication and peripheral neuropathy are 
common causes of NGA (3). Historically, tests like the 
Timed Up-and-Go (TUG), Berg-Balance-Scale (BBS), 
10-Meter-Walk Test (10MWT) and Physiological Profile 
Assessment (PPA) were used for clinical assessment of falls-
risk. These ‘test batteries’ require the patient to perform 
compound movements that assess balance and coordination 
during walking and completing questionnaires on existing 
risk-factors. However, they have high inter- and intra-
observer variability and only provide an overall falls-risk 
without identifying which gait metrics are contributing, 
or where to intervene (6,7). With advances in gait-analysis 
technology, the gait perturbations prevalent in patients 
prone to falling can be assessed. Then, accurate capture 
of a patient’s gait metrics in a clinical setting would allow 
the clinician to make unbiased recommendations for 
intervention based on the perturbations of gait displayed

Wearable devices capture the ‘free-living’ gait of 
unobserved and routine walking behaviours (8). Wearable 
sensor technology also enables for remote monitoring of 
many patient metrics by feeding data from small wearable 
devices to a database on a phone or cloud accessible by 
the patient and physician (9). For gait analysis, the most 
common device is a single Inertial Measurement Unit (IMU) 
or ‘single-point’ wearable at the pelvis or sternum near the 
centre of mass (COM), at the ankle or feet for more precise 
step-recognition, or at multiple points with integrated 
signals (multi-point wearable sensors) (10). IMUs comprise 
of at least an accelerometer and gyroscope, sometimes 
accompanied by magnetometer. Recent IMUs employ 
tri-axial accelerometers which measure in 3 axes, antero-
posterior (AP), medio-lateral (ML) and vertical (VT) (11). 
IMUs can calculate some gait metrics such as velocity, 

distance, step and turning occurrences and durations (12), 
from raw inertial measurements (and accompanying 
noise). To become the gold-standard clinical falls-risk 
assessment tool, IMUs must accurately capture and process 
relevant gait metrics to create falls-risk profiles from 
short walking bouts (WBs) to generate falls-risk profiles. 
These falls-risk predictions derived from IMU-derived 
gait metrics are consequently compared to patient-report 
of falls over a set retrospective period of time, acquired 
through a questionnaire and/or interview. This requires 
prior understanding of literature using quantitative gait 
assessment comparing fallers and non-fallers to identify 
which gait parameters are implicated in falls (13). Recent 
reviews have found that, compared to non-fallers, fallers 
have reduced gait velocity (GV) (13-17), cadence and step 
length (SL) (13,16), increased dynamic sway (13) and more 
variability in gait speed (GSV), step time (STV) and step 
length (SLV) (16). Table 1 summarises the gait variables 
often used to compare fallers and age- and disease-matched 
non-fallers using these variables and four others, step width 
(SW), step count (SC), static sway and turning kinematics, 
that have not been reviewed. For explanation of gait 
metrics, see Figures 1-4. We present the following article in 
accordance with the Narrative Review reporting checklist 
(available at https://dx.doi.org/10.21037/mhealth-21-7).

Rationale

This review aims to investigate the application of wearable 
technology in capturing and processing relevant gait data 
for falls-risk analysis. In particular, this study aims to explore 
the presence of three barriers to the implementation of 
IMU devices in clinical falls-risk assessment: (I) accurately 
measuring gait metrics which are proven to be associated 
with high falls risk (mentioned above), (II) identifying 
differences in these metrics between groups of patients who 
have fallen, and those who have not, (III) accuracy of falls-
prediction algorithms developed from IMU-collected gait 
metrics (Appendix 1).

Objectives

To perform a narrative review involving collection and 
critical appraisal of literature pertaining to the use of 
wearable devices in the prediction of falls, and identify 
factors limiting clinical implementation of IMU devices in 
falls-risk assessment.

https://cdn.amegroups.cn/static/public/mHealth-21-7-supplementary.pdf
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Methods

Review protocol registered on PROSPERO (Appendix 2).

Eligibility

Included studies comprised of: 
(I) Cohort studies or case-control studies;
(II) Studies with 6 or greater month follow up;
(III) Studies conducting gait analysis with wearable 

technologies measuring relevant gait metrics and/
or used relevant gait metrics to assess falls-risk with 
analysis of diagnostic test accuracy; 

(IV) Studies written in English and available in full-text. 
It should be noted that information could not be 

presented from papers in which methodology was not 
adequately discussed, in particular if they failed to 
provide detailed description of data capture, processing, 
and statistical analysis. This resulted in one paper being 
discounted from qualitative synthesis. 

Information sources

Databases used to search for articles were Medline, PubMed, 
Scopus and Embase. All articles with results discussed 
came from a structured literature search. A similar search 
strategy was used across all databases for consistency, done in 
February 2020.

PubMed example: (((acceleromet* OR gyrometer OR 
magnetometer OR gait analysis) AND (sensor OR tracker 
OR device OR detector OR wearable) AND (gait OR 
posture OR ambulation)) AND (falls risk OR fall risk OR 
fall prediction OR falls prediction)). 

Study selection

Studies were collated in EndNote X9 and duplicates 
removed. Studies were then screened based on inclusion/
exclusion criteria by 2 independent reviewers (CB and 
DH) on an online reviewing software by Rayyan (Qatar 
Computing Research Institute). Discrepancies were 

Table 1 Definitions of all gait metrics which were used from included studies

Simple metric Definition Units Derivative metrics

Daily step count The number of steps taken over an entire day N/A N/A

GV Average distance travelled in the ambulant 
direction per second.

Meters per 
second

GSV, the standard deviation of GV

ST Average amount of time between two consecutive 
contacts of the same foot with the ground

Seconds STV, the standard deviation of ST

Step time Average amount of time between two consecutive 
contacts of any foot with the ground.

Seconds Cadence, average number of steps per minute, Step 
time variability, the standard deviation of step time, Step 
time asymmetry, the asymmetry of step times between 
the left and right feet

SL Average distance between two consecutive 
contacts of the same foot with the ground

Meters SLV, the standard deviation of SL

Step length Average distance between two consecutive 
contacts of any foot with the ground

Meters Step length variability, the standard deviation of step 
length, Step length asymmetry, the asymmetry of step 
lengths between the left and right feet

Dynamic  
balance

Aberrant movement of the centre of mass within a 
single gait cycle. Several ways to measure.

Several N/A

Static  
balance

Movement of the centre of mass whilst standing 
still with feet together

Meters N/A

Turning  
kinematics

Number of steps taken, or time taken to complete 
a 180-degree turn

s N/A

See available online: https://cdn.amegroups.cn/static/public/mhealth-21-7-1.xlsx for more details. m, meters; s, seconds; m/s, meters per 
second; Hz, Hertz (number of steps per second); GV, gait velocity; ST, stride time; SL, stride length; GSV, gait speed variability; STV, stride 
time variability; SLV, stride length variability.

https://cdn.amegroups.cn/static/public/mHealth-21-7-supplementary.pdf
https://cdn.amegroups.cn/static/public/mhealth-21-7-1.xlsx
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Figure 1 Gait bout. S0=step that begins measurement window, turning occurs from S8-S14 (7 steps). S18 and S19 represent a variation in step 
length. SL, stride length; SW, step width; VT, vertical; ML, medio-lateral; COM, Centre of motion; AP, antero-posterior; S (n), nth step.
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Figure 2 Timing of gait bout in Figure 1. S (n)=nth step, t (n)=time at nth step, t0=time at start. t4t5 represents a variation in step time. ST, 
step time.

resolved by cross-examination until consensus was reached. 

Individual analysis of study bias

Critical appraisal of literature was conducted throughout 
the review process, with summaries concluding each 
section. For assessment of potential sources of bias, and 
level of evidence for each article based on criteria from 
the Centre for Evidence Based Medicine (CEBM) (18,19), 

see the available online: https://cdn.amegroups.cn/static/
public/mhealth-21-7-1.xlsx. 

Data extraction 

The following information was collected from each article 
which met eligibility criteria by 2 independent reviewers 
(CB and DH), and documented available at available online: 
https://cdn.amegroups.cn/static/public/mhealth-21-7-1.xlsx :

https://cdn.amegroups.cn/static/public/mhealth-21-7-1.xlsx
https://cdn.amegroups.cn/static/public/mhealth-21-7-1.xlsx
https://cdn.amegroups.cn/static/public/mhealth-21-7-1.xlsx
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(I) Number of subjects.
(II) Type, number, and placement of IMU device on 

subjects.
(III) Gait features that were measured by the IMU 

device (s) used in the study.
(IV) Length and setting of WB used to measure gait 

features.
(V) Gait features used in the falls-risk algorithm (if any) 

produced by the study.
(VI) Tool used to classify subjects into high and low 

falls-risk group 
(VII) Study period over which patients were assessed  

for falls.
(VIII) Participant demographics, including the presence 

of any neurological disease affecting gait (NGA).
(IX) General data from the article such as year of 

publication, journal, objectives, level of evidence, 
risk of bias and funding sources.

Data synthesis

Following data collection, studies were sorted into 3 groups 
pertaining to the barrier to clinical IMU implementation 
that they addressed, those being device accuracy, device 
sensitivity, and algorithm predictive accuracy. Qualitative 
analysis was performed to provide an appreciation of the 
results of existing literature and discuss whether any barriers 
remain to implementation. 

Results

Characteristics of included studies

Since 2002 (20), researchers have investigated the use of 
single-point or multi-point IMUs to measure gait metrics 
(Table 2). In total, 46 articles met the eligibility criteria for 
inclusion in this study (Figure 5). While most used single-
point IMUs, they examined fewer variables, had more 
disagreement with gold-standard measurements, and only 
5 studied NGAs. Single-point wearables are much easier to 
use in a clinical setting or home, but they cannot compare 
data from numerous sensors to reduce false-positive errors 
in data capture, which may be enhanced in NGAs where 
movement is less smooth. Inaccuracies also mean that 
algorithms interpreting the data must provide leeway when 
identifying steps to avoid false-negative errors in data 
processing. 17 papers compared IMUs to gold-standard 
gait-analysis technologies and one (21) assessed test-retest 
reliability to validate wearables in clinical assessment of 
relevant gait parameters. 25 papers investigated the ability 
of IMUs to detect expected gait changes between groups of 
fallers and age-matched non-fallers. 33 studies used IMUs 
from 50–100 Hz to distinguish populations of high and low 
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Figure 4 Calculations of key gait and balance variables. S’f=final 
step of first bout, Stn=nth step of turn, S’’i=Initial step of  
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Figure 3 Static balance testing. Blue represents lateral movement of COM relative to the feet, orange represents anterior movement of the 
COM relative to the feet. ML, medio-lateral; COM, Centre of motion; AP, antero-posterior.
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Table 2 Characteristics of studies validating the use of IMU in falls

Type of study Total
Single 
point 

Multi 
-point

Gait metrics studied [n] Control variables [n]
Medan CEBM level of evidence 
and risk of bias [Range=a, b]

Validation against 
gold standard

18 9 9 SL [8], GV [7], cadence [4], SC [4], 
Turning kinematics [3], dynamic sway 
[2], static sway [2], STV [1], SLV [1]

3D motion capture [8], 
gait mats/force plates 
[6], videography [5]

1b [1b, 4].  
Low-moderate  
[low, moderate-high] 

Prediction of falls 12 10 2 SL [3], GV [6], cadence [9], SC [4], 
turning kinematics [2], dynamic sway [6], 
static sway [1], STV [5], SLV [4]

N/A 2b [1b, 4]
Low [low, moderate]

Classification of 
faller/non-faller

13 11 2 SL [2], GV [4], cadence [4], turning 
kinematics [1], dynamic sway [7], static 
sway [3], STV [1], SLV [1], 

N/A 4 [4, 5]
Moderate  
[low, moderate-high]

Classification of 
high/low falls risk

6 6 0 GV [1], cadence [5], SC [3], turning 
kinematics [1], dynamic sway [5], static 
sway [1], STV [2]

TUG [3], PPA [1], BBS 
[3], STRATIFY [1],  
Tinetti [1], DGI [1]

4 [4]
Moderate  
[low, moderate-high]

CEBM, Centre for Evidence Based Medicine; GV, gait velocity; SC, daily step count; ST, stride time; SL, stride length; GSV, gait speed 
variability; STV, stride time variability; SLV, stride length variability; STRATIFY, Ontario Modified Stratify; Tinetti, Tinetti Balance Assessment 
Tool; DGI, Dynamic Gait Index.

PRISMA 2009 Flow Diagram
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(n=327)
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for eligibility
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Figure 5 PRISMA flow diagram of the article selection process showing yields at each stage of the process.
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falls-risk determined by fall history (22), test battery score 
or prospective falls. The 46 studies included in the analysis 
typically presented with a low-to-moderate risk of bias 
(available online: https://cdn.amegroups.cn/static/public/
mhealth-21-7-1.xlsx)

Discussion

Accuracy and reliability in measuring spatiotemporal gait 
metrics

Studies using multi-point sensors on the limbs and trunk 
verified that whether accelerometers were used alone (23,24) 
or with gyroscopes and magnetometers (12,25,26), they 
could capture gait with comparable accuracy compared to a 
gold-standard. GV was accurately detected by multi-point 
IMUs sampling at 32 Hz (24) to 500 Hz (27), SLV and STV 
at 130 Hz (23), dynamic balance in ML and VT directions 
at 130 Hz (26) and SC as low as 20 Hz (12). However, one 
study (27) found a significant discrepancy between IMU 
data at 500 Hz and force-sensitive treadmill data for cadence 
and SL, while other studies found IMUs 100–200 Hz 
to be accurate for cadence (26) and SL (20,23,24). Given 
otherwise similar methodology and low risk of bias, one 
possible reason for this discrepancy may be location of 
sensor placement, which was on the feet in the 500 Hz 
trials. This may have caused the IMU to detect noise 
from smaller movements of the foot during a gait cycle, 
compared to an IMU placed on the trunk which detects 
overall motion. 

Studies using single-point wearables from 31.26–255 Hz 
(21,28) have more disagreement between gold-standard and 
sensor data. For example, when compared to the Centre 
of Pressure sway (COP) from a force plate during static 
posturography, IMU data (sampled at 52 Hz) captured from 
the COM had poor correlation (29), while data capture at 
200 Hz from the sternum highly correlated (30). It is unlikely 
the difference sampling rates account for this discrepancy 
(given both are above the Nyquist sampling thresholds 
of around 30 Hz for detecting human motion) (31). 
Perhaps placing the IMU above the COM magnifies small 
movements in the AP and ML directions, thus being able to 
distinguish sway from noise. This translates into the sternum 
being a key location for single-point fixation wearables for 
gait and falls assessment. When single-point sensors were 
used to measure SL (8,28,32), cadence (8,28), GV (8), SC 
(28,33), STV (8), dynamic sway (34) and turning (35), they 

demonstrated good-to-excellent agreement with gold-
standard methods of gait analysis. The findings of these 
studies thus suggest the gait metrics measured by wearables 
have sufficient accuracy and reliability to be used in 
clinical setting, but the consistency of this agreement from 
condition-to-condition is yet to be assessed.

Sensitivity in detecting differences between fallers and 
non-fallers

Regarding the ability to differentiate between groups of 
age- and disease-matched fallers and non-fallers, studies 
tended to show that wearable devices were able to detect 
subtle differences in relevant biomechanical gait metrics 
between these groups. Overall, IMUs were sensitive enough 
to detect differences in GV (25,36-42), SL (25,37,39,40), 
turning kinematics (25,41,43), GSV (39), SLV (37), STV 
(36,44), cadence (25,36,39-41,45) and postural sway in 
single (39,46,47) or multiple axes (25,38,40-42,48-50) 
between fallers and non-fallers. Only one retrospective 
study did not identify dynamic imbalance during treadmill 
walking as significantly different between fallers and 
non-fallers (51). However, it should be noted that past 
fallers tend to consciously widen their stance for lateral 
stability, and this effect is enhanced on a treadmill (52). 
Moreover, this study had a moderate-high risk of bias 
according to CEBM criteria. Interestingly, most studies 
assessing SC using single-point IMUs at 50–100 Hz, did 
not find that fallers had a significantly lower SC than non-
fallers (37,39,44,49,50,53), while one did (40). This may 
be because waist, thigh and wrist-worn high-frequency 
single-point sensors underestimate SC by 2–10% (54) and 
SC seems to only be altered in fallers with NGAs, which 
only one study (50) assessed. IMU devices accurately 
measure gait factors related to falls-risk and appear able to 
differentiate between groups of fallers and non-fallers using 
these factors. However, for clinical implementation this 
sensitivity in detecting differences in gait metrics needs to 
be confirmed in continuous real-world data collection in 
home and community environments. 

Classification accuracy of falls-prediction tools

Regarding the accuracy of falls-prediction algorithms 
developed based on biomechanical data collected by IMUs, 
studies were considered successful if biomechanical data 
was used by an algorithm to accurately sort patients into 

https://cdn.amegroups.cn/static/public/mhealth-21-7-1.xlsx
https://cdn.amegroups.cn/static/public/mhealth-21-7-1.xlsx
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high- and low-falls-risk groups. In successful studies, these 
algorithms were developed post-hoc by neural network, 
machine learning or decision trees, trialling sets of 5–30 gait 
parameters to determine the most successful combination. 
Limiting the number of gait parameters trialled at 
once prevents ‘over-training’, which increases internal 
classification accuracy but reduces generalisability (55). 
Nonetheless, these post-hoc selected ‘inputs’ into the 
algorithms increases risk of a ‘contextualised’ model and 
its accuracy, reliability and validity to the generalised 
population of fallers is unknown without validation in 
external data-sets. 

Additionally, there is limited evidence verifying the 
role of static balance in falls, several papers utilising 
biomechanical data algorithms to classify fallers performed 
static posturography. 5 papers utilised static postural stability 
in their algorithm yielding faller classification accuracies of 
71.2–85% (25,56,57) and falls-risk classification accuracies 
of 90.5% (36) and 97% (58) to Tinetti and STRATIFY 
scores respectively. While their results seem impressive, it 
should be noted that multiple measures like SD and CV 
were used for sway, and the algorithm tested combinations 
of them until it yielded the highest classification accuracy. 
By inputting the same variable multiple times, false-positive 
results are more likely, and this can only be accounted for 
by testing the algorithm against novel data to test true 
classification accuracy, known as ‘cross-validation’ (24,59). 
The majority of these papers had a moderate risk of bias 
according to CEBM criteria (36,56-58). 

That  sa id ,  when papers  did  not  include s tat ic 
posturography, classification of fallers was still accomplished. 
A study by Iluz et al., (38) using a 100 Hz IMU at the 
COM identified lower GV, and higher sway in AP and VT 
directions during daily-life sit-to-walk transitions in fallers 
compared to age-matched adults. Combining this data 
into a faller identification algorithm yielded a classification 
accuracy of 88% however, using data captured during lab-
based gait yielded 71% accuracy. This may imply that 
algorithms should be specific to the gait-capture setting. 
Iluz’s paper is one of many to combine dynamic sway with 
metrics including GV (25,47,60), SL (25,60), turning 
kinematics (25,59), cadence (25,59-62), STV (60,63), 
SLV (60) and GSV (60) in algorithms with moderate-
good classification accuracies of 68-85%, consistently out-
performing existing test batteries (36,38,43,47,56,57). One 
study (64) used cadence, SL and GV measured by a triaxial 
accelerometer at 100 Hz at the COM in an algorithm which 
classified 6-month prospective fallers with an Odds-Ratio of 

3.89 if the cut-off value was exceeded. An algorithm using 
SLV, cadence and turning kinematics from 102.4 Hz sensors 
at each shank had a predictive accuracy of 2-year prospective 
falls of 83.02% and another algorithm using SL, STV and 
turning kinematics had an accuracy of 72.97% (43). 

Feasibility and limitations

No studies thus far have attempted falls-risk classification 
using IMU data from NGA populations. As such, 
limitations still exist when it comes to the assessment of 
falls-risk in neurological populations which make up a 
large portion of hospital inpatients and clinical visitors. 
Falls-classification tools in elderly populations used single- 
or multi-point IMUs with various sensor configurations, 
walking settings and gait-metrics. Although, IMU devices 
are able to assign falls risk using algorithms developed 
with gait metrics collected from WBs for non-neurological 
populations, these are yet to be extensively validated in 
large external populations. Current falls-prediction tools 
therefore require validation in external data-sets before 
clinical implementation Moreover current classification 
accuracy is limited by comparison against self-report of 
retrospective falls (over a set period) by patients which 
is not an accurate nor reliable gold-standard of objective 
measurement.  Additionally,  fal ls-prediction tools 
constructed from ‘walking bouts’ may not reflect falls-risk 
during ‘free-living’ gait and thus future studies employing 
gait metrics from continuous monitoring of walking in the 
community and in the home are warranted. 

Despite these limitations, IMUs placed at the COM, 
chest or limbs, sampling at 50–250 Hz have been validated 
against gold-standard methods in capturing various gait 
metrics. They also have the potential to distinguish fallers 
and non-fallers based on gait deterioration patterns and use 
this to accurately assign falls-risk. Single-point wearables 
are more viable in clinical settings but have not been 
thoroughly tested in NGA populations nor validated for 
SLV, static sway or GSV. Moreover, the studies have a lot 
of heterogeneity in methodology, with no clear standard. 
Finally, our review included insufficient studies of NGA 
populations and more data is required to justify using 
single-point IMUs for gait analysis and falls prediction in 
NGAs, primarily those of spinal origin. 

Conclusions

Currently, the literature is divided on metrics like GV 
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and SL as predictors of falls, and advents such as turning 
kinetics are in the immature stage of research. In addition, 
the bulk of studies examine community-dwelling elderly, 
with few investigating NGAs and none investigating spinal 
NGAs. Moreover, while the use of sensor technology in 
falls-risk analysis has been investigated, the studies examine 
very few gait metrics at once, and comparing studies 
reveals a wide variety of sensor types in use. Future avenues 
of research thus include investigations of multiple gait 
metrics simultaneously especially in NGA and spinal NGA 
populations. 
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Supplementary

Appendix 1 Research question 

A search of the literature was conducted to address the research question “What is the current use of wearable technologies 
for falls-risk assessment” as shown in the PICO format below. A search strategy was created to identify relevant studies based 
on the research question below (set out in the PICO format):

A search of Medline, PubMed, Scopus and Embase databases was performed in February 2020. The complete search 
strategy can be obtained from the attached PROSPERO registration (ID: CRD42020195861)

Included Studies:

Medline, Embase, Pubmed and Scopus were systematically searched from their date of inception to February, 2020. A manual 
search for other relevant articles was also conducted by examining the references and citations of key papers. Database and 
bibliographic search identified 662 relevant studies. After removal of duplicates, 493 studies remained. 327 references were 
excluded on title and abstract screen and 120 references were excluded by full-text analysis, leaving a final 46 studies to be 
included in qualitative synthesis (see Figure 5 for PRISMA flow chart). Reasons for exclusion during full text review include: 
not involving falls-risk prediction tool/model (73), not involving wearable technologies (47).

Appendix 2 Review registration 

Do fallers walk funny? A systematic review of gait metrics that predict falls in high-risk populations
Callum Betteridge, Daniel Ho

To enable PROSPERO to focus on COVID-19 registrations during the 2020 pandemic, this registration record was 
automatically published exactly as submitted. The PROSPERO team has not checked eligibility.

Citation

Callum Betteridge, Daniel Ho. Do fallers walk funny? A systematic review of gait metrics that predict falls in high-risk 
populations. PROSPERO 2020 CRD42020195861 Available from: https://www.crd.york.ac.uk/prospero/display_record.
php?ID=CRD42020195861

Review question

P: In adult patients (normal or neurogenic gait alterations) at risk of falls/with a history of falls
I: Which aspects of gait or posture change
C: Compared to adult patients without falls risk/history of falls
O: And are predictive of falls risk

Searches

MEDLINE, PubMed, EMBASE, Scopus, Search date 28/02/2020

Search strategy

https://www.crd.york.ac.uk/PROSPEROFILES/195861_STRATEGY_20200628.pdf

Types of study to be included

Cohort or case control

Condition or domain being studied

Risk of falls in adults with and without neurological disease

Participants/population

Adult fallers versus non-fallers, with or without neurological disease

Intervention(s), exposure(s)

Changed gait parameters

Population Falls-risk individuals in both neurological and non-neurological populations

Intervention Wearable technology based gait analysis tools for fall-risk assessment

Control (Reference Clinical Tool) Other clinical fall-risk assessment tools based on gait analysis e.g. laboratory-based 3D motion 

Outcome Successful/accurate falls-risk prediction
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Comparator(s)/control

Gait parameters in non-fall patients

Main outcome(s)

Main outcome is either history of falls or prospective falls events

* Measures of effect

Relative risks and odds ratios

Additional outcome(s)

None

* Measures of effect

None

Data extraction (selection and coding)

Papers are cohort, with 6 or greater month follow up, or case-control studies comparing groups of age and/or disease-
matched fallers and non-fallers with validated methods of gait analysis and be published after January 1st, 2015. 
Data collected from articles post-screening documenting which gait variables are measured, and their effects on risk of falls. 
Additionally, how gait metrics and falls risk were assessed, patient numbers and broad demographics (esp whether or not there 
was a neurological alteration to gait)

Risk of bias (quality) assessment

Risk of bias and level of evidence for each article is assessed using the Oxford University Centre for Evidence Based Medicine 
(CEBM) criteria

Strategy for data synthesis

If consistent measures of falls-risk and gait metrics are used, data will be synthesised assuming that there are more than 3 
studies for that gait metric.
Method will be using forest plots if this is available.

Analysis of subgroups or subsets

'Subgroups' will be defined by each gait metric, for example for gait velocity, any paper studying it will be examined and 
the results combined if gait velocity is measured consistently, if falls-risk is measured consistently, and if there are 3 or more 
applicable studies.

Contact details for further information

Callum Betteridge
cbetteridgeresearch@gmail.com

Organisational affiliation of the review

University of New South Wales
https://www.unsw.edu.au/

Review team members and their organisational affiliations

Mr Callum Betteridge. University of New South Wales
Mr Daniel Ho. University of New South Wales

Collaborators

Professor Ralph Mobbs. University of New South Wales
Mr Wen Jie Choy. University of New South Wales

Type and method of review

Diagnostic, Prognostic, Systematic review
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Anticipated or actual start date
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Anticipated completion date
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Funding sources/sponsors
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#Conflicts of interest

Language

English

Country

Australia

Stage of review

Review Ongoing

Subject index terms status

Subject indexing assigned by CRD

Subject index terms

MeSH headings have not been applied to this record

Date of registration in PROSPERO

30 July 2020

Date of first submission

28 June 2020

Stage of review at time of this submission

Stage Started Completed

Preliminary searches Yes Yes

Piloting of the study selection process Yes Yes

Formal screening of search results against eligibility criteria Yes Yes

Data extraction No No

Risk of bias (quality) assessment No No

Data analysis No No

The record owner confirms that the information they have supplied for this submission is accurate and complete and they understand that 
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that they will update the status of the review when it is completed and will add publication details in due course.


