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Introduction

My first inception to the healthcare industry started 
when I started working on pharmaceutical data for a large 
hospital back in 2005. This era was before lawmakers in 
the United States decided to implement the HITECH 
act. The healthcare industry at that time was in a state 
where they wanted to move forward with information 
technology; however, there was no clear motivation to do 
so. Many departments would use a combination of tools 
for performing different tasks or sometimes a task may be 
performed using a combination of several tools and other 
resources (1). Additionally, it is important to mention that 
telemedicine was many times delivered through a telephonic 
conversation largely due to the lack of high-speed internet 

and other infrastructures. This and other such situations 
created the need for data semantics and linking data for the 
purpose of decision support; thereby, reducing the need 
for certain expensive infrastructures of the yesteryears. It is 
to be noted that some these infrastructures are now more 
easily available compared to the year 2005. 

As the saying goes that the necessity is the mother 
of innovation; the needs of yesterday have led to the 
innovations of today. Decision support using semantic 
web—a concept introduced by Tim Berners Lee gained 
momentum in the early 2000s since there was plethora of 
data generated by the World Wide Web. Researchers and 
other stake holders wanted to exploit this situation for a 
wide variety of purposes. This was perhaps the beginning of 
a new thinking in healthcare information technology. This 
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era led to the electronic health records being stored in the 
form of Resource Description Framework (RDF) and other 
eXtensible Markup Language (XML) formats. Here our 
research team while working on concept maps realized that 
concept maps could be converted into XML-based formats. 
Once the data is converted into such formats a suitable parser 
could be used to extract the required information for decision 
support. Let us keep in mind that this was only the first step. 
Further decision making needs a knowledge base, which 
leads to the question on how you could build a knowledge 
base. There were no clear answers to this difficult question. 
The other challenge here was that very few researchers 
ventured into this territory. Mainly because the chance of 
failure was extremely high. To add to this, it is a known fact 
that both government and private funders support the idea of 
feasibility of success while deciding to fund the project. This 
mindset was also found within private industry equipped 
with research departments. The change however manifested 
slowly with some early adapters such as companies that 
develop electronic health records capturing the ground while 
a few large organizations involved in software development 
underestimated the complexity involved in developing 
decision support systems for healthcare. However, many of 
these projects failed because the team members and especially 
the team leaders failed to comprehend the complexity of 
diseases and its relationship to human anatomy. This was at 
a time when the necessary infrastructure for such endeavors 
such as Unified Medical Language System (UMLS), and 
Bio2RDF were not fully available. 

This situation created a necessity for infrastructure to be 
developed in healthcare informatics. Federal organizations 
in the United States such as National Library of Medicine 
got involved in making such infrastructure available to 
researchers. Although these initiatives were started much 
earlier in the 1980s their representation using semantic 
web was presented much later in 2000s. Although, the 
infrastructure was available in a non-usable form previously 
it got transformed into a more usable format.

Current state of semantic networks for 
healthcare data management with electronic 
health records

Fast forward to the present scenario, there is a need to 
advance decision support science using: (I) new domain 
knowledge structures to integrate available data with 
domain knowledge to form the required information; (II) 
new heuristics on the acquired information to form new 

knowledge; and (III) using this knowledge to generate the 
required recommendation by introducing new algorithms 
for decision support. Many times, domain knowledge 
is available to scientists and researchers in different 
formats such as database tables, XML-based documents, 
textual data, and semantic networks. In this situation, 
the key challenge would be to introduce, methods, and 
algorithms to capture the domain knowledge available in 
different forms and to transform it into a machine-actable 
form of information by integrating this transformed 
domain knowledge with available data (2,3). To add to 
this, the information received from the aforementioned 
process by integrating domain knowledge and available 
data can be used to generate knowledge critical for 
decision support. This knowledge can be generated by 
applying the required heuristics (4-7) on the information 
generated. The form of heuristics applied here is that of 
representativeness described by Kahneman et al. (8). The 
term “knowledge” used here is considered with respect to 
active experimentation process described in (9).

Marewski and Gigerenzer (10) emphasized the need 
for and importance of heuristic decision making in  
medicine (11). They define heuristics as, “simple decision 
strategies that ignore part of the available information, 
basing decisions on only a few relevant predictors”. They 
also indicate the fact that heuristics outperform traditional 
information centered methods such as regressions and 
traditional medical diagnosis. Based on these discoveries 
we can ascertain that heuristic decision making can play a 
vital role in decision making. The key challenge here will 
be translating the knowledge associated with heuristics 
into the decision support system. This is often achieved 
by translating this knowledge into machine-actable form 
of information (12). Using domain ontologies to represent 
this information to delineate a causal connection is an area 
of computation that may need further exploration (13,14). 
Orgun and Meyer (13) state that, “semantic interoperability 
between ontologies is essential for enabling communication 
and sharing of information between heterogeneous systems”. 
Also, decision support makes use of patient data available in 
a machine-actable form. The strength of data completeness 
(15,16) is critical in this context. Majeed et al. (15) comment 
that, “the completeness and accuracy of data entry relies 
mainly on the enthusiasm of family practitioners. There 
are currently no agreed reference standards for reporting 
data quality in primary care and this limits measurement 
of data quality in electronic patient records”. Weiskopf 
and Weng (17) noted that “data completeness of electronic 
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health records is a real issue and there is no plausible 
solution available for looking at unstructured data”. In their 
research they highlighted the fact that there is a need to 
introduce a method that assesses the unstructured clinical 
data for data completeness. In their article they also cited 
the research work carried out by Hogan and Wagner (18)  
which highlighted the fact that “data completeness ranged 
between 1.1% and 100%, depending on the clinical 
concepts being studied”. Furthermore, Majeed et al. (15) 
further state that, “development of methods and incentives 
for significantly improving the coding of clinical data and 
data quality in electronic primary care records remains a 
priority for health care information technology programs”. 
Based on this statement the necessity of implementing an 
algorithm to assess data quality is extremely important. 
Here there is a belief that the solution to this problem does 
not lie in researching the methods and practices used in 
clinics (19). 

Here it is important to mention that Bayesian networks 
have been used extensively over the years for the purpose 
of implementing machine learning in Clinical Decision 
Support Systems (CDSS). CDSS is defined by Wyatt and 
Spiegelhalter (20) as “an active knowledge system which 
uses two or more items of patient data to generate case-
specific advice”. Several researchers have successfully 
used machine learning to advise clinical practices thereby 
improving patient satisfaction. This is especially true given 
the fact that clinical practices have to deal with a myriad 
of complexities including different types of diseases and 
disorders, patient lifestyles, nutrition, level of patient 
care, and other necessary factors that are of value when 
it comes to decision making. Nee and Hein (21) describe 
the use of Bayesian networks on cardiac tele-rehabilitation 
for patients with myocardial infarction. Here Bayesian 
networks have been used effectively to reduce the possibility 
of false alarms. A rule-based approach is used to for patient 
stabilization and alert generation. This confirms the idea 
that the use of Bayesian networks improves the efficiency of 
clinical decision support. Sesen et al. (22) illustrated the use 
of Bayesian networks in providing personalized treatment 
for lung cancer patients to improve the selection of the 
right treatment plan. The purpose of this analysis was to 
maximize the chances of patient survival. This research 
exemplifies the use of Bayesian networks in machine 
learning for the purpose of implementing expert systems 
to improve healthcare delivery. Yet et al. (23) describe the 
use of causal Bayesian networks in clinical decision making. 
Their research clearly indicates that the causal relationship 

between clinical intervention and observed results must 
be recorded to populate the required database. This 
information could be further used to identify the causal 
relationships that can be used to develop the Bayesian 
network. The network thus developed can be modified 
if required when there is a considerable change in the 
observed relationship. While these networks have been 
used in clinical interventions there is a critical necessity to 
use them in electronic health record systems to facilitate the 
necessary decision support on diagnosis. 

Markov decision process is another heuristic approach 
used in healthcare decision support. Hauskrecht and  
Fraser (24) describe the use of a Markov decision process to 
plan the treatment of patients suffering from ischemic heart 
disease. In this research they use the Markov modeling 
approach to map diagnosis and treatment to outcome. 
Here the researchers attempt to address the uncertainty 
associated with diagnosis and treatment. The authors 
identify the fact that decision trees that are rigid may not 
be able to address the complex and dynamic nature of issues 
related to patients. Instead, they recommend the use of 
dynamic decision trees that allow flexibility to deal with 
the inherent complexity of the problem domain. Markov 
decision processes have also been used in deciding the right 
time for intervention by Magni et al. (25). This is especially 
true when medical interventions are carried out during life 
threatening situations. At times it could be necessary for 
physicians to optimize the intervention time using Markov 
decision processes with the intention of maximizing the 
benefit gained from intervention. One form of intervention 
to be considered would be drug administration where 
dynamic decision models could be of much use when 
compared to static decision models as described in (25). 
Collier et al. (26) have described the use of tags to represent 
Hidden Markov Models. 

Models using ontology development is critical for 
implementing decision support while maintaining 
interoperability (27). Kataria and Juric (28) have illustrated 
the use of translating databases into ontologies and 
extracting necessary information from these ontologies for 
clinical decision support. It is to be noted that ontologies 
allow data to be self-descriptive in nature. Additionally, 
since these ontologies represent information in the 
form of hierarchy they are best suited for representing 
complex systems and situations. This is especially true if 
we believe Simon’s statement (29) that “complexity takes 
the form of hierarchy”. An important aspect of semantic 
web technologies is the representation of information to 
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emphasize the required meaning between its individual 
components in a machine-actionable format. These 
meaningful representations could be characterized at 
multiple levels of computation. For example, representing 
information using RDF is the simplest with the highest 
level of computational guarantee. However, a higher 
computationally complex model such as forms of Web 
Ontology Language (OWL) may be best used for more 
complex relations at the cost of reduction in computational 
guarantee (28). Ontologies are many times associated 
with parsing Application Programming Interface (API) 
such as Clinical Text Analysis and Knowledge Extraction 
System (cTAKES) (30). cTAKES is an important API 
associated with the Unstructured Information Management 
Architecture (UIMA) Framework. The development of 
cTAKES started in 2006 under the leadership of computer 
scientists working with the Mayo Clinic. 

Some of the well-known knowledge repositories include: 
(I) UMLS (31); (II) Bio2RDF; and (III) Systematized 
Nomenclature of Medicine-Clinical Terms (SNOMED-
CT) (20). UMLS was developed by U.S. National Library 
of Medicine and is a tool that brings together biomedical 
and health related vocabularies in the form of a semantic 
network. This network could be used to develop decision 
support systems. UMLS is equipped with lexical tools 
used for annotating information which also helps in 
information extraction. Information is grouped together 
to form concepts. Bio2RDF (32) is a network of linked 
data pertaining to life sciences. This data is available to 
researchers in the form of RDF triples. These RDF triples 
could be parsed to perform reasoning and inferences. 
SNOMED-CT (20,33) is a collection of medical terms 
used for representing them in a machine-actable format. 
SNOMED-CT encompasses synonyms, findings, and 
other necessary elements of clinical terms in a hierarchical 
format.

Based on the discussion provided the following 
conclusion on existing knowledge gaps could be derived 
in the following situations: (I) while there is abundance of 
general standards for representing electronic health records 
and interoperability there is a need for integrating heuristic 
models into the existing standards to advance the science 
of decision support for healthcare; and (II) there is a need 
to introduce data completeness algorithms for patient data 
using advances in decision science since this has not been 
done in the past. Any attempt to bridge these knowledge 
gaps will lead to a new area of science that deals with 
heuristics of decision making.

A key observation in electronic health records 
affecting mHealth

Our key contribution in this area lies in our solution to 
assess and analyze data incompleteness of electronic health 
records. The author first received the NSF award (CNS-
1735841) in seed funding from Fall 2018 UCF I-Corps 
Site program titled, “I-Corps: Data Completeness and 
Data Inconsistency in healthcare Data” and then received 
from award number 1928279 from the National I-Corps 
Teams program titled “Analyzing Data Completeness 
and Inconsistency to Reduce Misdiagnosis and Mitigate 
Re-imbursement Errors”. In addition to this, the patent 
(US 10,790,049 B2) for measuring data completeness of 
electronic health records was issued by the United States 
patent office. This ground breaking research is not only 
applicable to regular monolithic systems that manage 
electronic health records but also to telehealth since many 
times patient data may be collected over the phone using 
an app. In this invention data completeness is defined using 
the Record Strength Score (RSS) score by first developing 
a concept map of an ideal complete electronic health record 
and then measuring the missing elements. This algorithm 
explained by Nasir et al. (34,35) happens to be generic 
in nature and will lead to more sophisticated algorithms 
depending on the scenario, data lifecycle, data transmission 
process, or specialization under consideration.

It is to be noted that, outpatient clinics in rural areas lack 
clients, exacerbating the need for cost effective automated 
solutions to patient data problems. Based on the interviews 
conducted, some believe that data incompleteness can 
be resolved by full implementation of interoperability 
standards. However, most of the interviews showed that 
implementing interoperability between different electronic 
health record systems alone cannot solve this problem. 
Adibuzzaman et al. (36) points to this problem and addresses 
the need of having a continuously learning healthcare 
system. This further ascertains the need for implementing 
machine learning algorithms within the electronic health 
record systems. Further, while blockchain technologies 
can be of much help with regards to enhancing security of 
healthcare data it cannot be a solution for mistakes that can 
occur due to pitfalls in processes and tasks implemented 
within the healthcare data cycle.

The interviews conducted during the National I-Corps 
provided an opportunity for the author and his team 
members to approach many potential partners. Based on 
these interviews the potential partners who can benefit 
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Increase in revenue through 
reimbursements by at least 12% 

per year

NurseValue Propositions	 User Segments

Reduction in staffing needs due to the 
completion of patient documentation 

by at least $200,000/year

Reduce provider negligence along 
with associated patient harm by 

at least 100 patients per year and 
associated lawsuits

Avoid treatment delays to patients by 
at least 24 hours

Darker color indicates a higher need

Physician/NurseValue

CEO/CFO/COO/CIO of large 
hospitals

Risk Managers for large hospitals

Health Information Manager of 
outpatient clinic

CEO of outpatient clinic 
(Especially in rural United states)

Figure 1 Value propositions and user segments for a data incompleteness solution. CEO, Chief Executive Officer; CFO, Chief Financial 
Officer; COO, Chief Operating Officer; CIO, Chief Information Officer. 

and positively impact the society solving the problem of 
data incompleteness in electronic health records are: (I) 
vendors of the electronic health record systems; (II) owners 
of outpatient clinics in rural areas; (III) organizations 
that provide data solutions; and (IV) health care process 
improvement organizations as indicated in Figure 1. This 
is especially true for vendors who have not yet captured 
a large section of the market and would like to expand 
their outreach into the market by having a cutting-edge 
solution that can be useful in providing better services to 
healthcare providers. As discussed before outpatient clinics 
in rural areas (37) have much to gain from this invention. 
The invention can be used as an add-on to the existing 
electronic health record solutions. This can be achieved 
by using the algorithm in a cloud-based application service 
with a monthly or annual subscription fee. Additionally, 
organizations that provide data solutions to the healthcare 
providers (38) other than the electronic health record 
vendors can be a potential partner and will enable the 
invention to be used as an application service with large 
healthcare providers. Last but not the least, organizations 
that work with large healthcare providers in improving their 
processes termed as “Healthcare Process Improvement 
Organizations” can benefit by using this invention in 
identifying pitfalls in the lifecycle of patient data (39-42).

The algorithm used here takes into account three 
important variables: (I) the existence or non-existence of 
an attribute value in an electronic health record; (II) the 

importance weight for each of these attributes; and (III) 
the sum of these weights. It is common knowledge that the 
electronic health records are stored in the form of relational 
databases. These databases contain rows and columns 
identified as tuples and attributes by computer scientists. 
The algorithm analyzes the presence or absence of 
important attributes in tuples. A particular attribute may be 
important due to two reasons: (I) diagnostic reasoning; and 
(II) reimbursement for services provided by the provider. 
The value proposition illustrated in Figure 1 focuses more 
on the latter. This is mainly because it has been noticed that 
healthcare providers have been going out of business due to 
dearth of timely reimbursements.

Conclusion and future work

Overall,  the article discussed the some of the key 
complexities and an important problem associated with 
electronic health records (43). The discussion presented in 
the article proceeded with the critical contribution made 
by the author and his colleagues made towards the specific 
problem of data incompleteness applied to electronic health 
records (44) that applies to the delivery of mHealth. Some 
of the key contributions provided by the article are as 
follows: (I) a discussion on the complexities of technologies 
associated with electronic health records adding to the 
body of knowledge in this area; (II) identification of data 
incompleteness as a critical problem that needs further 
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investigation.
It is perhaps worthwhile exploring the use of right type 

of technologies that will mitigate the problem of data 
incompleteness; although, many of the factors that lead 
to data incompleteness are human factors that may not 
be influenced by a particular technology. Here the author 
believes that the research conducted in this area of science 
is still very embryonic in nature and much more needs 
to be achieved. Additionally, the discussion presented in 
this article will motivate researchers and developers of 
technology (45) to seriously consider working on some 
of the critical problem areas (46) that need to be targeted 
mentioned in this article.
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