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Introduction

The past several decades have seen the rapid development 
of cell-based regenerative medicine (1,2). Cell therapy has 
shown increasing advances with numerous cell-products 
based on autologous peripheral blood lymphocytes, 
allogeneic or autologous mesenchymal stromal cells (MSCs), 
hematopoietic cells, fibroblasts, chondrocytes, etc. (3,4). 

MSCs were recognised as easy derivable and the most 
applicable choice among the other cell-sources for a wide 
range of pathologies (5-10). These cells are commonly 
obtained from the bone marrow (11), adipose tissue (12), 
umbilical cord (13), dental pulp (14), gingiva (15), perinatal 
tissues (16), etc. Cell profile of low differentiated MSCs is 
generally characterized as positive for CD73, CD105 and 
CD90 cell surface markers and negative for hematopoietic 
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Figure 1 Key factors of negative effects in mesenchymal stromal cell therapy. MSC, mesenchymal stromal cell.
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markers CD19, CD20, CD34 and CD45 (17). MSCs secrete 
multiple growth factors and cytokines that also determine 
their regenerative effect.   In particular, being derived from 
human umbilical cord, MSCs release keratinocyte growth 
factor (KGF) (18), hepatocyte growth factor (HGF) (19), 
transforming growth factor-β (TGF-β) (20) and exosomes, 
which suppress inflammation and lead to improved 
vascularization and epithelialization in affected tissues (21).

The proliferation of MSCs-related studies created 
a ‘cure-all’ paradigm with a trend to apply MSCs for 
the treatment of various diseases: leukemia, anemia, 
autoimmune, degenerative and cardiovascular diseases, 
and malignant tumors (22). Recently, MSC-based cell 
therapy has even been used to treat coronavirus disease 
2019 (COVID-19) (23,24). However, novel clinical trials 
dramatically increased the reports on adverse events and 
side effects of MSCs-based therapy. In some cases, the 
effectiveness of cell therapy appears to be overestimated, 
which potentially may lead to tragic tolls in patient 
outcomes (25,26).

We aimed to overview and systemate all the adverse events 
and side effects reported after clinical application of MSCs. 
Some of them occurred due to the nature of this kind of cells, 

and others may be related to MSCs-cell culture conditions 
(Figure 1). Thus, we are raising clinical and scientific 
awareness on reported adverse events and side effects.

Cell transformation in culture (change in 
morphology, growth inhibition, aberrations)

Cells are capable of transforming in culture due to 
modification of their regulatory activity by growth factors, 
cell medium, adhesion, and intercellular connections. 
Culture-expanded MSCs exhibit notable differences in 
terms of cell morphology, physiology, and function, which 
decisively contribute to the heterogeneity of MSC’s (27). 
The heterogeneity of MSCs during in vitro expansion 
led to morphological alterations, modifications in the 
gene and protein expression profile, discrepancies in the 
differentiation potential, and physiological changes in cells 
(28,29) The majority of cell cultures are characterized by 
heterogeneity in subpopulations due to the influence of 
multiple factors arising during protocol reproduction. In 
particular, the cell-phenotype of MSCs are influenced by 
confluence density at the end of each passage (30). The 
density of cell confluence in bone marrow MSC culture 
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affects the expression of more than two thousand genes, 
leading to changes in cell profile and cytokine synthesis (31). 
Thus, cell products and experimental models reproducible 
under the same conditions may have unpredictable 
affinity. However, scientists generally still use a qualitative 
assessment of the monolayer density when checking one 
or several fields under the microscope. These factors 
may change cell profile in products prepared for clinical 
application, causing adverse events. 

Cell proliferation in vitro may be associated with 
replicative stress. Kim et al. showed that in MSCs, the 
majority of single-nucleotide variations (C > A transversions) 
occur in late passages (P7-P9) (32). 

Importantly, the number of passages does not equal the 
cell divisions. Usually passing means that cellular monolayer 
grown on a dish bottom plated on the same dishes as 1:4. 
This cell concentration completely covers the bottom of the 
dish within one week.

Røsland et al. reported a spontaneous malignant 
transformation of approximately 46% of human MSC after 
four weeks in culture (33). A similar effect was observed 
for monkey MSCs after long-term cultivation (34).  
Transformed cells showed changes in growth and 
morphology similar to those of tumor cells. Furthermore, 
subcutaneous administration of transformed cells into 
NOD/SCID mice led to tumor formation.

 Some studies noted that long-term cell culture leads to 
accumulation of chromosomal abnormalities. Froelich et al. 
reported that chromosomal abnormalities in adipose-derived 
MSCs increased significantly starting from passage 5 (35). 
In general, chromosomal aberrations occur in human MSCs 
in 4% of cases (primary monosomies) compared to 9% 
(primary trisomies) in pluripotent stem cells and neuronal 
stem cells (36). Research by Omel’chenko et al. showed 
that human MSCs with a perivascular immunophenotype 
during cell culture expressed the HSPB6, PLAC9, FEZ1, 
DTWD1, APH1A, and ATP5L genes associated with cell 
transformation (37).

However, human MSCs obtained from chorionic villi 
and amniotic fluid or umbilical cord (hUC-MSC) showed 
no signs of malignant transformation or chromosomal 
aberrations after in vitro culture up to the 15th passage 
(38,39). hUC-MSC cells in different passages had 
similar morphology, biomarker expression, and cytokine 
secretion (40).

In vitro cultivation of MSCs does not always cause 
chromosomal abnormalities, however, they have been 
reported in <10 passage cells conditioning the need for 

examination of MSCs before clinical use in order to avoid 
undesirable consequences.

Viral and mycoplasma containment in MSCs

When using allogeneic MSCs, donors are routinely tested 
for the presence of viruses such as human immunodeficiency 
virus (HIV), however, transplanted MSCs can contain 
genetic material of other types of viruses (41). According 
to Sundin et al. MSCs derived from various tissues may 
contain persistent viruses (42). The authors found that the 
MSCs derived from healthy donors contained viral DNA of 
parvovirus B19. Viral DNA has also been found in human 
bone marrow (43). The most common were B19V and 
torque teno virus (TTV): 62.9%, Epstein-Barr virus (EBV): 
14.8%, Merkel cell polyomavirus (MCPyV): 11.1%, and 
human herpesvirus 7 (HHV-7): 7.4%.

MSCs may be infected with various viruses, among which 
respiratory syncytial virus (RSV), avian influenza A H5N1 
(44,45). The presence of viruses in MSCs may be caused not 
only by viral infection of a cell donor. Viral contamination 
of different types of cells may also occur during cell 
processing and culture (46). For this reason, when working 
with MSCs, it is necessary to strictly follow the established 
requirements in order to avoid viral contamination. 

Mycoplasma contamination can also be a serious 
threat for cultured cells. Interruptions of laminar flow, 
incomplete sterilization cycles, inappropriate lab clothes 
(dirty lab coats, reuse of same gloves, etc.) and enhanced 
doses of antibiotics in culture can lead to mycoplasma 
contamination (47). Cryopreservation in Dewar tanks 
containing viral or mycoplasma contaminated cell-probes 
may cross-contaminate other cells even when infected and 
‘healthy’ cells are stored in different cryovials (48,49).

Xeno-contamination reactions caused by 
components of culture medium

Xeno-contamination reactions are rare and commonly 
associated with the presence of supportive xenogenic 
components in cell products. Commonly cryopreservation 
(50,51) and expanding media containing fetal bovine serum 
(FBS), human serum albumin, or patient’s autologous 
plasma (52-54). Today, FBS is excluded from the majority 
of clinical protocols due to the risk of disease transmission 
and xenogeneic immune reactions and replaced by 
alternative protein sources (55,56). Currently, autologous 
blood plasma could be considered a ‘gold standard’ for cell 
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cryopreservation in clinical practice, which has been well 
studied since the 1990s (57,58). Human cord blood plasma 
has also recently been described among the novel alternative 
FBS compounds for MSC culture (59-62).

Major adverse events after cell injection: 
thromboembolism and fibrosis

The issue of numerous reported adverse events has to 
receive considerable critical attention. Some of them could 
be interpreted as the result of disease progression despite 
the provided cell-therapy with insufficient therapeutic 
effect. Thus, loss of vision was a negative reaction to 
adipose-derived MSC therapy in three patients with age-
related macular degeneration (63). In another study, MSCs 
therapy alone does not lead to the full-thickness restoration 
of ulcerated skin after topical administration (64).  
The effectiveness of adipose- and bone marrow-derived 
MSC in the treatment of lateral amyotrophic sclerosis is 
also controversial. For example, a clinical trial conducted 
by Syková et al. revealed a slow down in disease progression 
only in some patients within 6 months after bone marrow-
derived MSC application (65). Another clinical trial 
did not show any positive effects after adipose-derived 
MSC therapy (66). This raises the point of actual clinical 
significance of MSCs for tissue repair. Furthermore, 
MSCs caused side effects in 12% of cases after COVID-19 
treatment in a small cohort of patients. The safety and 
effectiveness of COVID-19 treatment with MSCs therapy 
were criticized in the sense of known blood clotting effects 
triggered by MSCs. In particular MSCs could promote 
tromboembolism via release of procoagulant tissue  
factor (10). In general, reported adverse events also included 
liver dysfunction, heart failure, and allergic rash, which are 
typical complications of severe pneumonia (23,67). 

Wu et al. reported two cases of inflammatory associated 
thromboembolism in kidney transplant patients and chronic 
kidney disease following after infusion of hUC-MSC (68). 
Importantly, the overdosing of cell therapies is more likely 
to cause glomerular and tubular damage in the kidneys (69). 
MSCs-therapy may also cause pulmonary embolism (70). 
Importantly, the risks of thromboembolization, as well as 
effectiveness of cell therapy, were shown to be determined 
by the recipient anamnesis and phenotyping features (71). 

Večerić-Haler et al. described a clinical case of a 
complication that mimics capillary leak syndrome with 
ultimate kidney graft failure after autologous MSCs 
transplantation in the patient with a history of acute 

lymphoblastic leukemia (72). 
However, we have to distinguish these cases from the 

following major adverse events, which appeared due to 
weakly controllable differentiation of MSCs. Recently, 
interstitial tissue fibrosis and tubular atrophy have been 
observed in a patient with chronic kidney disease following 
infusion of autologous adipose-derived MSCs (73). 
Importantly, the capability of MSCs of differentiation 
into myofibroblasts with the development of fibrous tissue 
was already well-demonstrated in previous experimental 
studies (74). 

In the multicenter study, 2,372 patients with degenerative 
joint disease treated with autologous MSCs injections were 
enrolled (75). The majority of adverse events were just 
post-procedure pain or complications of the treated disease. 
However, neoplasms, neurologic, and vascular signs were 
among the serious adverse events. The authors reported 
about 7 cases of neoplasms that represent 0.3% of the study 
population, with an incidence of 0.14/100 PY. However, the 
authors disclaimed associations between the neoplasms and 
cell therapy. Serious neurologic and vascular events were 6 
and 5 cases, respectively, representing 0.25% and 0.21% of 
the total population.

The well-known suppression of immune responses 
determined by MSCs explains the success of MSC 
therapy for graft-versus-host reactions and other various 
autoimmune disorders (76). Subsequently, systemic 
administration of MSCs caused major adverse events due 
to their immunosuppressive properties. In particular, 
MSCs therapy increases the risk of pneumonia-related 
death after allogeneic hematopoietic stem cell (HSC)  
transplantation (77). Interestingly, stem cell transplantation 
is also related to alterations in different lymphocyte 
populations (CD4+ T-helper cells, CD8+ T-cells, CD19+ 
and CD20+ B-lymphocytes). The CD4/CD8 ratio as well 
as CD19+ and CD20+ cell populations decreased in patients 
responded to stem cell therapy (78).

Minor side effects after cell injection: fever and 
local pain

The majority of clinical studies report that the use of 
MSCs is safe and feasible, with only minor side effects. 
The most common example is fever that occurred in 22% 
of patients following hUC-MSC infusion for COVID-19 
treatment (79), in 9.8% of patients after the hUC-MSCs 
therapy for treatment of Crohn’s disease (80), in 85% of 
patients with progressive multiple sclerosis after treatment 
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Table 1 Adverse events, side effects and complications in mesenchymal stromal cell therapy

Adverse events and side effects Causes Implications Refs

Cell transformation in culture 
(change in morphology, growth 
inhibition, aberrations)

Long-term culturing (10+ passages) 
Mutagenic components of cell media 
Cells differentiation in culture with specific 
antigen presenting

Systemic immunogenic responses on injected 
cells 
Local inflammation and prolonged 
immunological reactions

(27-40)

Viral containment in MSCs Cryobanking with contaminated cultures 
Violations of biosafety protocols during cell 
processing and culture

Cellular dysfunction 
Viral infection 
Infection complications after injection

(41-49)

Xeno-contamination reactions Exogenous growth factors in media 
Using of cell media contained animal serum

Acute inflammation (50-62)

Major adverse events after cell 
injection: thromboembolism and 
fibrosis

Injection of cell aggregates 
Personal phenotyping properties 
Personal sensitivity

Pulmonary and renal thromboembolism 
Cardiac and liver fibrosis

(10,23,63-78)

Minor side effects after cell 
injection

The injection contains remnants of the PBS 
buffer; Intra-articular injection

Fever; local pain (79-84)

Effects on tumors and 
neoplasms

Expression of proangiogenic factors; 
immunosuppression

The formation of malignant neoplasms (85-90)

MSC, mesenchymal stromal cell; PBS, phosphate-buffered saline.

of autologous BM-MSCs (81). The use of allogeneic MSCs 
for the treatment of liver failure caused fever in 19.2% 
of patients during 5–24 weeks of follow-up. One of the 
causes of fever was supposed to be a reaction to the residual 
phosphate-buffered saline (PBS) buffer (82). Meta-analysis 
of the prospective clinical trials of intravascular injections 
of MSCs identified a significant association between MSCs 
and transient fever (83). Intra-articular injection of MSC 
mild effusion and increased local pain in patients within 
48–72 hours (84).

Effects of MSC’s cell therapy on neoplasms

Oncological anamnesis remains a well-known exclusion 
criterion for clinical studies, explained by the controversial 
impact of MSCs on the tumor growth and behavior. 
Nevertheless, some publications suggested that the MSCs 
administration had no effect on the tumor, or even inhibited 
its growth in vivo (85,86). However, the study by Ning et al. 
reported a statistically significant increase in relapse rates 
(60 % vs. 20%, P=0.02) and a decrease in 3-year relapse-
free survival (30% vs. 66.7%, P=0.035) in patients co-
transplanted with HSCs and culture-expanded MSCs versus 
patients transplanted with HSCs only. The authors pointed 
out the need for additional large-scale randomized clinical 
trials in order to evaluate the potential benefits and hazards 
of MSC-cotransplantation in malignant hematopoietic 

diseases (87). In addition, some animal and in-vitro studies 
showed that MSCs administration may promote growth of 
different tumors through a variety of mechanisms, including 
expression of proangiogenic factors and immunosuppression 
(88,89). We consider it crucial to perform a comprehensive 
patient examination in order to find possible malignancy 
and exclude patients before initiation of a cell-based therapy. 
However, it is vital to understand that there are more than 
100 types of cancer-related diseases (90), and that tumor 
diagnostics remains a complicated task and not always 
results in the identification of neoplasms at early-stages, 
imposing certain risks and limiting cell-based therapy. 
Safety concerns gave us reason to suggest that currently, 
cell-based therapy should be administered with great 
precaution in cases where the possible benefit outweighs the 
risk (Table 1). 

Discussion

One of the major tasks is to ensure the effectiveness of 
treatment and patients safety under cell therapy. Currently 
limited success of MSCs-therapy could be a subsequence 
of transformations during cell-culture or the result of 
major adverse events appearing due to uncontrollable 
differentiation. Notably, MSCs exhibit advanced pro 
chondrogenic, osteogenic, and adipogenic differentiation 
potential. Manifestations of their mis-differentiation were 
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Figure 2 Complications caused by adverse events and side effects of MSCs cell therapy. MSC, mesenchymal stromal cell.

evaluated in multiple animal studies. Direct transplantation 
of unselected bone marrow cells  into the acutely 
infarcted myocardium was shown to induce significant 
intramyocardial calcification (91). Liao et al. indicated the 
calcification of the injured abdominal aorta after BM-MSC 
administration in the experimental rat model (92). Several 
studies reported that BM-MSC precultured under hypoxic 
conditions demonstrated superior vascularisation effects 
via miR-16 (93). Those cells also had enhanced migratory 
and self-renewal or clonogenic capacities (94,95). However, 
besides the regenerative advantages, scientists have shown 
increased activity in the mTOR signaling pathway leading 
to autophagy. Furthermore, hypoxic pre-cultured MSCs 
had pro-senescent cell profile and up-regulated activity of 
superoxide dismutase consequenced in inhibited apoptosis 
(96,97). Thus, routine hypoxic cell culture for therapeutic 
administration requires further in-depth research of 
modulated gene expression and metabolic changes. 

The majority of clinical studies with MSCs have 
included a limited number of patients, which may affect the 
assessment of statistical significance (Figure 2). The major 
adverse events were reported as presumably associated 
with systematic intravascular administration of low 

differentiated cells (i.e., MSCs) (98-100). Essential part of 
performed studies administered MSCs in combination with 
biomaterials and biomolecules, that masked therapeutic 
effect of cells. An additional factor may have been the lack 
of predictive methods and quantitative approaches in the 
planning of cell therapies (27,101,102).

Therapeutic effect and frequency of complications 
after multipotent cell therapy remain questionable  
(103-105). The therapeutic effects are generally based on 
anti-inflammatory effect caused by prolonged paracrine 
activity of injected cells (106). Thus, special attention 
should be paid to the age of the donor. MSCs donated by 
elderly patients have altered immunomodulatory profile. 
Adipose-derived MSCs obtained from elderly donors with 
atherosclerosis were characterized by a higher level of 
proinflammatory cytokines IL-6 and IL-8 (107).

Multiple complications can be explained by the 
mesenchymal phenotype causing their migration and 
adhesion. Unlike multipotent cells, the use of highly 
differentiated somatic cells remains harmless. Hence, we 
conceive that highly differentiated cells could be a feature 
‘gold standard’ in regenerative medicine. The reported 
major adverse events were generally caused by inappropriate 
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understanding of risk factors associated with stem cell 
therapy. In accordance with observed clinical reports we 
designed a short checklist, recommended for acceptance in 
all cases of MSCs transplantation (Table 2).

Another effective alternative could be non-cultured cells, 
cryopreserved immediately after harvesting. This type is 
already well-known as minimally manipulated cells. Recent 
trends in legal regulations all over the world already paved 
the way for wide spreading of minimally manipulated cells 
for clinical application as a safe and effective alternative to 
pre-cultured cells with an unpredictable risk of phenotypic 
changes (108). However, regenerative products based 
on minimally manipulated MSCs generally contain 
mesenchymal stromal fraction with a minor presence of 
CD90-positive low differentiated cells (109). 

MSCs-derived extracellular vesicles also appeared as a 
novel therapeutic alternative to cultured cells (110,111). 
Exosomes could be collected either from normal or from 
hypoxic cell culture (112). The advantages and limitations 
of promising cell-free regenerative medicine are expected to 
be in a focus field of upcoming publications.

Conclusions

Our short review set out with the aim of assessing the 
safety of stem cell therapy with low differentiated cells. 
We observed numerous adverse events associated with 
uncontrollable cell differentiation and transformation. 
We found that safety and feasibility of stem cell therapy 
are still weakly estimated in cases with low differentiated 
and multipotent cells. Currently, the privilege in clinical 
trials should be addressed to minimally manipulated and 
high-differentiated cells. Despite many positive reports, 

MSCs therapy remains a risky therapy with delayed adverse 
effects. Their manifestation generally depends on the 
manufacturing quality and patient individual phenotype. 
Possible complications should be considered for the 
planning and administration of clinical trials with obligatory 
inclusion in the patient’ informed consents.
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Table 2 Recommended check-list for cell therapy planning

Before every MSCs transplantation check whether:

The donor’s anamnesis contains no information about any infectious diseases

MSCs are under 9 passages

PCR testing for mycoplasma and herpesviruses were performed

Cryobanking dewar contain no untested (i.e., mycoplasma and HHV-6) or unknown cell probes

Cell quantity and concentration are adjusted and do not exceed the necessary therapeutic limits

Way of systemic delivery have been chosen in accordance to expected cell homing

Antihistamine and anti-inflammation therapy is prepared and not contraindicated

MSC, mesenchymal stromal cell; PCR, polymerase chain reaction; HHV-6, human herpesvirus 6.
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