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Introduction

Adipose-derived stem cells (ADSCs), a mesenchymal 
stem cell (MSC) type, are of particular interest given that 
they are multipotent in vitro and are easily obtained via 
subcutaneous adipose tissue liposuction. This is a less 
invasive procedure compared to other common stem cell 
collection methods like bone marrow aspirates but still 
yields high cell numbers (1-6). ADSCs have the potential 
to differentiate into adipogenic, chondrogenic, osteogenic, 

myogenic, and neurogenic like cell lineages (7-10), making 
them suitable for many applications. Additionally, ADSCs 
have also been found to express b-III tubulin and NeuN 
in their undifferentiated state, two well-known markers 
of neuronal differentiation, hinting at their potential to 
become neural-like cells (11). 

The differentiation of ADSCs into neural-like cells 
challenges the dogma that adult stem cells are multipotent 
and are restricted to differentiating into cell types derived 
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from the same embryonic germ layer; ADSCs are derived 
from the mesoderm while neural cells are derived from the 
ectoderm (12,13). Stem cell phenotypic signatures can be 
mapped out through several analytical techniques. These 
result in the identification of molecular and cellular markers, 
including surface makers, secreted proteins, and cytokines. 
These types of analyses highlight aspects of the cells’ 
differentiation potential, while others suggest functions of 
specific molecules during the various differentiation states. To 
date, several different growth factors and chemicals have been 
explored to induce neural differentiation in ADSCs; rodent 
ADSCs have been successfully differentiated into neural stem 
cells (NSCs) and dopaminergic neurons following a two-
step protocol of overnight pre-induction with basic fibroblast 
growth factor (bFGF), butylated hydroxyanisole (BHA), and 
B27 supplement followed by a 14-day treatment with sonic 
hedgehog (SHH), fibroblast growth factor 8 (FGF8) and B27 
supplement over 14 days (14). 

Human ADSCs (hADSCs) have been successfully 
differentiated towards neuronal l ineages and into 
neurospheres by using a mixture of B27 supplement, bFGF 
and human epidermal growth factor (hEGF) for a week 
and then further differentiated into neuron-like cells by 
following treatment with a mixture of by L-glutamine, non-
essential amino acids, N2 supplement and B27 supplement 
for another week (15). hADSCs have also been differentiated 
into dopamine-secreting cells using a growth factor cocktail 
composed of SHH, bFGF, FGF8, and brain derived 
neurotrophic factor (BDNF) in low-serum conditions (16)  
and in B27 supplemented serum-free conditions (17). 
Neural differentiation in hADSCs has also been induced 
with valproic acid (18) and isobutylmethyl xanthine 
(IBMX) (19). MSCs have also shown to differentiate 
towards neural stem cells (NSCs) and neurons and increase 
the secretion of BDNF and nerve growth factor (NGF) 
when co-cultured with NSCs (20). Additionally, ADSC 
transplants with or without prior differentiation have been 
reported to be beneficial in animal models of neuronal 
disorders such as Parkinson’s disease, (21) peripheral nerve 
injury (22), epilepsy (23) and stroke (24), indicating their 
neuroregenerative potential. 

A great variety of growth factors and chemicals are being 
studied alone or in combination as potential protocols for 
hADSCs differentiation into neural-like cells. Here, we 
will explore three readily available media supplements in 
isolation to distinguish the effects of the supplements on the 
hADSC differentiation process. In this current study, the 
potential of B27, CultureOne (C1) and N2 will be examined 

for neural differentiation of hADSCs in vitro using 
microscopic analysis to track morphological changes and 
cell numbers, immunocytochemistry to detect changes in 
neural marker expression and Bioplex analysis to investigate 
the changes in cytokine and chemokine secretion levels by 
the cells. Cytokines and chemokines investigation provides 
valuable insight into the secreted cytokines and their role in 
activating differentiation pathways in cells (25). As per the 
manufacturer’s descriptions, these are commercially available 
neural differentiation and proliferation supplements and 
have been used for maintenance, maturation, proliferation 
and differentiation of neuronal stem cells (26,27). 

Methods

Cell culture

Maintenance
hADSCs from a single donor were isolated and expanded 
as previously described (28) with approval from the 
UTS Human Research Ethics Committee (Ethics No. 
2013000437). The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). Written 
informed consent was acquired for donor lipoaspirate 
release for research purposes only. After isolation, hADSCs 
were maintained in control media [Dulbecco’s Modified 
Eagle medium (DMEM)/F12 + Glutamax media] (Gibco, 
Life Technologies, Carlsbad, CA, USA) with 10% 
heat inactivated foetal bovine serum (FBS, Gibco, Life 
Technologies, Carlsbad, CA, USA) and 1% Antibiotics/
Antimycotics (ABAM, Gibco, Life Technologies, Carlsbad, 
CA, USA) and incubated at 37 ℃ at 5% CO2. hADSCs were 
passaged five to seven times post isolation by stripping cells 
with TrypLE Express (12604 Gibco, Life Technologies, 
Roskilde, Denmark) before being cryostored by storing the 
cells in 90% FBS/10% DMSO v/v at −80 ℃.

Differentiation
Cells were revived from cryostorage under sterile conditions 
at passage 7 into control media DMEM/F12 + Glutamax 
media with 10% FBS and incubated at 37 ℃ with 5% CO2. 
Cells were expanded until passage 9, and when they reached 
80% confluency, they were seeded into either 6 well plates 
at 40,000 cells/mL or 24-well plates at 20,000 cells/mL 
for molecular or imaging analysis, respectively. Once cells 
reached 95%±2% confluence, treatment commenced. 
There were 3 biological replicates. 

hADSCs were treated under sterile conditions at all 
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times, and media were changed every 84 hours for 7 days. 
All cells were treated with either control media DMEM 
(DMEM/F12 + Glutamax + 10% FBS) (Gibco, Life 
Technologies, Carlsbad, CA, USA) or with Neurobasal 
media (Gibco, Life Technologies, Carlsbad, CA, USA) 
with 1% abam [antibiotic-antimycotic (100×) #15240-062 
Invitrogen, CA, USA] and the addition of supplements 
shown in Table 1. The treatments used are commercially 
available media supplements for the purpose of neuronal 
cell maintenance, survival and differentiation in vitro. 
During treatment, at every media change, conditioned 
media were collected for further testing, and phase images 
at 10x magnification were taken of each treatment condition 
on the same marked area using the EVOS XL Core 
microscope (Thermofisher, Massachusetts, USA).

After 7 days of treatment, cells were either fixed for 
immunocytochemistry with 10% formalin for 30 min at 
room temperature, or they were harvested using a cell 
scraper and frozen at −80 ℃ for further testing. 

Cytokine analysis

Bioplex
The Bioplex assay is a commercially available immunoassay 
kit (Bio-plex Pro human cytokine 27-plex, M50-0KCAF0Y 
BioRad Laboratories, Hercules, CA, USA) for investigating 
and quantitating cytokine concentration changes relative 
to the baseline levels of up to 27 cytokines across multiple 
sample types simultaneously. 

During treatment, 500 μL aliquots of conditioned media 
from each treatment group were collected at time 0 h and 
after every 84 h and stored at −80 ℃ until the assay was 

conducted. Concentrations of 27 cytokines consisting of 
interlukins IL-1b, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, 
IL-8, IL-9, IL-10, IL-12, IL-13, IL-15, IL-17A, Eotaxin, 
fibroblast growth factor (FGF) basic, granulocyte colony-
stimulating factor (G-CSF), granulocyte-macrophage 
colony-stimulating factor (GM-CSF), interferon (IFN)-g, 
interferon gamma induced protein-10 (IP-10), monocyte 
chemoattractant protein-1 (MCP-1),  macrophage 
inflammatory protein-1a (MIP-1a), platelet derived growth 
factor-bb (PDGF-bb), macrophage inflammatory protein-
1b (MIP-1b), RANTES, tumor necrosis factor (TNF)-α 
and vascular endothelial growth factor (VEGF)] were 
simultaneously assessed using the Bioplex kit. Assays were 
performed according to the manufacturer’s instructions. 

Protein analysis

Immunocytochemistry
After a primary wash with phosphate-buffered saline (PBS 
0.01 M), fixed cells underwent a second wash step for  
15 minutes in phosphate buffered saline triton-x (PBST) 
[0.01 M PBS and 0.1% Triton X-100 (BDH #30632) at pH 
7.4]. They were then blocked in 5% normal goat serum 
(NGS) (Sigma-Aldrich #G9023) in PBST for 30 minutes. 
Primary antibodies were diluted in PBG [0.1 M PBS, pH 
7.4, 0.1% Triton-X, 2% NGS, 1% bovine serum albumin 
(BSA) (Sigma-Aldrich #A9647)] and were added to the 
relevant wells and incubated overnight at room temperature 
with gentle agitation. Primary antibodies were rabbit 
anti-glial fibrillary acidic protein (GFAP) (1:1,000, Dako, 
Denmark #Z0334) as an astrocyte marker; rabbit anti-β-
III tubulin (1:500, Abcam, Cambridge, UK #ab18207) as an 

Table 1 Treatment groups

Treatment Cell type Base media Supplement

B27 hADSC Neurobasal media B27 supplement (50×) #17504-001  
(Gibco, Life Technologies)

N2 hADSC Neurobasal media N2 supplement (100×) #17502-048  
(Gibco, Life Technologies)

CultureOne hADSC Neurobasal media CultureOne (C1) supplement (100×) 
#A33202-01 (Gibco, Life Technologies)

DMEM (undifferentiated control) hADSC DMEM/F12 + Glutamax—control media 10% FBS (Gibco, Life Technologies)

Staining controls SHSY-5Y (NBCs) or 
U87MG (GBCs)

DMEM/F12 + Glutamax—control media 10% FBS (Gibco, Life Technologies)

DMEM, Dulbecco’s Modified Eagle medium; hADSC, human adipose-derived stem cell; FBS, foetal bovine serum; NBC, neuroblastoma 
cell; GBC, glioblastoma cell. 
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early neuronal marker; mouse anti-CNPase (1:200 Abcam, 
#ab6319-100) as an oligodendrocyte marker; rabbit anti-
Ki67 (1/50 Abcam, #ab833) as a proliferation marker; and 
rabbit anti-DoubleCortin (1:1,000 Abcam, #ab18723) as a 
neuron developing maker. Cells were then washed with three 
changes of PBST and incubated with goat anti-mouse AF488 
(1:200, Invitrogen, #A11001) or goat anti-rabbit AF488 
(1:200, Invitrogen, #A11008) secondary antibodies in PBG 
for two hours at room temperature with gentle agitation. 
Following an additional wash with PBST, and counterstained 
with Hoechst (1:5,000 Invitrogen) for 30 minutes to stain 
the nuclei and finally washed twice with PBST. Plates 
were imaged using an IN Cell Analyzer 2200 high-content 
cellular analysis system (GE Healthcare Life Sciences, UK). 
Positive staining control cells were included in all staining 
runs. Glioblastoma U87MG cells were used for GFAP, 2',3' 
cyclic-nucleotide 3' phosphodiesterase (CNPase), and Ki67 
positive staining controls. Neuroblastoma SHSY-5Y cells 
were used for β-III tubulin positive staining controls. Both 
U87MG and SHSY-5Y cells were grown in separate plates 
from the experimental cells; however, the cells were stained 
in parallel with the experimental plates for each antibody and 
were fixed and stained following the same protocol as the 
experimental cells. U87MG and SHSY-5Y cells were grown 
in a 24-well plate with DMEM/F12 + Glutamax media 
(Gibco, MA, USA) enriched with 10% heat-inactivated FBS 
(Sigma-Aldrich, MO, USA) until confluent.

Image analysis
For each stained plate, 10 randomised immunofluorescent 
images of each well were taken with a 20× objective using 
the GE Healthcare Life Sciences-IN Cell analyser 2200 
high-content cellular analysis system. ImageJ 1.52p software 
was used for automated unbiased image analysis to count 
stained nuclei and positive stained area using threshold and 
analyse particles functions in a macro and create a ratio of 
stained area to number of nuclei. False positives and low-
quality images (e.g., out of field, out of focus) were manually 
excluded from the analysis. Cell counts at each treatment 
were conducted using the same automated image analysis to 
count for cell nuclei for 20 fields of view at 20×. 

Enzyme analysis

Protein extraction
Cell protein extraction protocol was adapted from Santos 
et al. 2017 (28). Cells were harvested by decanting culture 
media, rinsed twice in sterile 1× PBS and detached using 

a cell scraper and 1× PBS. The detached cells were then 
collected and centrifuged at 1,000 relative centrifugal force 
(rcf) for 5 minutes. The supernatant was decanted, and 
the cell pellet was frozen at −80 ℃ until ready for testing. 
Samples were defrosted on ice and resuspended in 10 μL 
of 1.5 M tris-HCL (hydrochloric acid) buffer. They were 
then pipette lysed on ice following 1min sonication in the 
sonicator bath.

Dot blots
CNPase plays an important role in myelin formation 
and oligodendrocyte development (29,30). To detect 
the presence of CNPase enzymes in the conditioned 
media, circles of 2 mm in diameter were drawn on the 
polyvinylidene difluoride (PVDF) membrane with graphite 
pencil, and the membrane was activated by wetting in 
methanol. It was then rinsed twice with 0.5 M Tris and then 
air dried. Subsequently, 2 μL of sample were added to the 
marked area and left to bind to the PVDF membrane. Once 
dry, it was rinsed in Tris-buffered saline, pH 7 (TBS) and 
blocked by washing 3 times, for 5–10 min each wash, in a 
solution of skim milk powder and MilliQ water (0.1% w/v). 
Then 2 μL of mouse anti-CNPase (1/200 Abcam, #ab6319) 
and rabbit anti-Glutaminase (1:1,000 Abcam, # ab156876) 
primary antibodies diluted in PBS was added to the 
respective marked areas and incubated at room temperature 
until absorbed. After, PVDF was rinsed 3 times for 5–10 
min each wash with TBS; 2 μL of secondary antibody anti-
mouse immunoglobulin G (IgG) alkaline phosphatase 
(1:30,000 A4312 Sigma-Aldrich) and Anti-rabbit IgG 
peroxidase (1:6,000 A6154 Sigma-Aldrich) was added 
to the marked areas and incubated at room temperature 
until absorbed. The PVDF was then collected and rinsed  
3 times for 5–10 min each wash with TBS. The blot was 
then developed appropriately with 3',3-Diaminobenzidine 
tablets for developing peroxidase (D4293 Sigma-Aldrich) 
and BCIP/NBT for alkaline phosphatase (B5655 Sigma-
Aldrich) and the blot was imaged.

CNPase enzyme assay
CNPase catalyses the hydrolysis of 2'3'-cAMP to 2'AMP 
(30,31). This reaction can be used to test for the presence or 
absence of functional CNPase enzyme secreted by the cells 
(Figure 1). 

The methodology used was adapted from Dreiling and 
Mattson [1980], where CNPase + 2'3'-cAMP + Water + 
phenol red = 2'AMP + H+ causing a decrease in pH that 
can be detected using a colourimetric assay (32). When 
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CNPase activity increases, pH will decrease (32), and when 
measuring that pH change with phenol red at 560 nm, it 
will result in a drop in absorbance (33). 

Cells were first lysed on ice by adding equal parts by 
volume of buffer (1.5 M tris-HCL buffer at pH 8.8) and cells 
with gentle pipetting. Following a subsequent sonication, 
5 μL of cells were loaded into a 96 well plate with 5 μL 
of Phenol red at 1 mM in NaOH pH 8.4 with 40 μL  
of 2'3'-cAMP (Sigma-Aldrich) 15 mM in MiliQ water. 
Test samples consisted of cells treated with either B27, N2, 
C1 or DMEM and of conditioned media following 84 hrs 
incubation of ADSC with either B27, N2, C1, or DMEM. 
Absorbance was measured at 560 nm for 90 min with  
30 min interval reads and then during a further overnight 
incubation with reads every hour in the TECAN Infinity 
200 plate reader. The blanks included consisted of Phenol 
red at pH 8.4 + substrate for the cell blanks and of Phenol 
red at pH 8.4 + substrate + clean media (B27, N2, C1, 
DMEM). A colourimetric result indicates the presence 
of CNPase secreted by the ADSC. An increase from 
the baseline DMEM sample indicates that the cells are 
differentiating towards an oligodendrocytic cell lineage in 
the presence of a growth factor. 

Statistical analysis

Data analysis for the raw imaging data was conducted using 
GraphPad Prism 8 using One-way analysis of variance 
(ANOVA), with a P value of <0.05 being considered 
statistically significant. Data analysis for Bioplex results 
was completed in R studio (version 1.3.959), where a single 
tail dendrogram heatmap was generated using Euclidean 
hierarchical clustering using R software for grouping 

cytokines trends over the different time points within each 
treatment. 

Results

Cell culture

Cell morphology and survival
Morphological changes were observed between the 
treatments and the DMEM (undifferentiated control) 
(Figure 2)  on both days 3.5 and 7. Individual cell 
morphology in the treatment groups becomes more 
polarised, and cells align more with each other in parallel 
bundles compared to the undifferentiated control cell 
organisation, specifically for B27 and N2 treatments. Cell 
counts did not significantly change between the treatments 
and the undifferentiated control DMEM (Figure 2I). 

Immunocytochemistry and cellular differentiation
CNPase was not detected in undifferentiated cells and was 
expressed in all treatment groups (Figures 3,4), with the 
highest expression levels seen in the C1 group (Figure 4A) 
(P≤0.0001) and N2 group (Figure 4B) (P≤0.01). Doublecortin 
expression was absent in the undifferentiated ADSCs  
(Figure 3B1, Figure 4B) and only seen at low levels in the 
B27 and C1 treatment groups and significantly increased in 
the N2 treatment group (Figure 3B3, Figure 4B) (P≤0.0001). 
GFAP was absent in the undifferentiated ADSCs (Figure 3C1, 
Figure 4C), and GFAP levels were significantly increased in 
all treatment groups compared to the undifferentiated control 
(Figure 3C2-C4, Figure 4C) (P≤0.0001); however, these levels 
were lower than CNPase and Doublecortin expression 
levels in each treatment. b-III tubulin was expressed in the 
undifferentiated ADSCs (Figure 3E1) and did not significantly 

Adenosine-2',3'-cyclic phosphate Adenosine 2'-phosphate H2O H+

22 '3' 2 'CNPasecAMP H O AMP H ++ → +

Figure 1 Chemical reaction used to detect the presence of functional CNPase. 2'3' cAMP and water in the presence of CNPase will be 
hydrolised to 2' AMP and hydrogen. AMP, adenosine 2'-phosphate.
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increase following differentiation with any treatment  
(Figure 3E2-E4, Figure 4D) (P>0.05). Undifferentiated cells 
expressed high levels of Ki67 and are undergoing proliferation 
(Figure 3D1). This was similar to the proliferation 
levels seen in all treatment groups (Figure 3D1-D4,  
Figure 4E). Overall, immunocytochemistry results (Figure 4)  
show that while all treatments co-express all markers, C1 
is the treatment that shows the highest levels of CNPase, 
followed by N2 with CNPase expression and the highest 
levels of Doublecortin. 

Cytokine analysis 

Bioplex
Bioplex assay was utilised to simultaneously investigate 

relative quantitative changes of 27 human cytokines across 
the different treatments and time points (Figure 5). The 
hierarchical clustering groups the cytokines with similar 
concentration trends over the treatment time points. Changes 
in cytokine levels for each treatment are shown as heatmaps in 
Figure 4. The heatmap provides an overview of all cytokines 
in relation to each other for each specific treatment over the 
two time points, day 3 and day 7, within each treatment. 

The changes within each treatment can be observed 
on the heat maps (Figure 5). Overall, we find that IL-6, 
VEGF, and IL-8 cytokines continued to be the highest 
expressed cytokines regardless of treatment and IL-5 
remained the cytokine with the lowest concentration across 
all treatments. However, when we look at differences 
between treatments on day 7 (Figure 6), it can be observed 
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that while the cytokines that were originally secreted in the 
highest concentrations in DMEM undifferentiated control 
stayed the highest secreted cytokine within each treatment 
when comparing treatments, C1 treatment had the lowest 
concentration of those cytokines. C1 treatment also showed 
a decrease in all cytokines compared to DMEM except 
in MCP-1, IL-8 G-CSF and GM-CSF cytokines, which 
showed an increase compared to DMEM. N2 treatment 
showed a similar cytokine expression pattern with several 
upregulated cytokines compared to undifferentiated 
hADSCs. N2 expressed increased GM-CSF, IL-8, GM-
CSF, MCP-1, IL-7, IP-10, PDGF-BB, IL-17A, VEGF, 

MIP-1b, IL-2 and FGF basic. 
The cytokines secreted in untreated ADSCs (DMEM 

control) stayed the highest within each treatment; however, 
the treatment that secreted the least of those cytokines 
was C1. Cytokines in C1 treatment decreased to those 
compared in DMEM. Additionally, when looking at the 
cytokine secretion trends, C1 and N2 treatments have 
a similar pattern, whereas B27 has an entirely different 
pattern of secretions. 

In summary, a clear trend can be seen, with C1 being the 
treatment with an overall decrease in cytokine concentration 
over the 7-day treatment compared to DMEM. 
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Enzyme analysis 

Dot blot
The dot blot was used to detect any CNPase present in the 
media after treatment, indicative of CNPase secretion. Figure 6  
shows that there was little difference in CNPase secretion 
between all treatments. Day 3 (Figure 7) shows all treatments 
had higher CNPase secretion than DMEM undifferentiated 
control, whereas on day 7 (Figure 8), B27 and N2 CNPase 
secretion increased and C1 decreased by half.

CNPase assay
CNPase assay was conducted to detect the functionality 
of the CNPase enzyme present inside the cells as well as 
the CNPase enzyme secreted by the cells. When CNPase 
activity increases, it results in more H+ and, therefore, a 
drop in pH. The pH decrease changes phenol red from 
fuchsia to yellow, and that results in a descending gradient 
on the graphs (Figure 8). 

In Figure 6, CNPase activity can be observed in both 
intercellular CNPase (Figure 8A) as well as extracellular 
CNPase (Figure 8B). C1 treatment shows the highest activity 
of CNPase over time intracellularly, while DMEM shows 
the highest activity of CNPase over time extracellularly. 

Discussion

This study’s hypothesis was that MSCs would commence 
differentiation towards neuronal-like lineage in all three 
treatments, given that B27, N2 and C1 are commercially 

available supplements used for neuronal differentiation 
and maintenance in neural cultures. However, when using 
these treatments on hADSCs, the results indicate that 
the cells may be differentiating towards different neural 
cell types under different growth conditions. Following 
treatment of hADSCs with B27, N2 and to a lesser extent 
C1, cells became polarised and aligned with one another; 
morphological changes indicative of neural differentiation. 
Additionally, cells survived and continued to proliferate as 
all cells were found to express Ki67 proliferation marker. 
Furthermore, immunocytochemistry results showed that 
cells in all treatments expressed some level of CNPase, a 
well-known oligodendrocyte marker, with C1 treatment 
expressing the highest levels of CNPase and all treatments 
increased GFAP to a lesser extent. N2 treated cells also 
expressed the neuronal marker doublecortin. Additionally, 
all cells, including undifferentiated hADSCs, expressed 
B-tubulin marker, a well-known early neuronal marker; 
however, the levels between undifferentiated cells and 
treated cells did not increase significantly. Cytokine levels 
following C1 treatment were reduced compared to the 
DMEM undifferentiated control in all cases but four: GM-
CSF, IL-8, G-CSF and MCP-1. N2 showed a similar but 
reduced change compared to C1 except for FGF basic and 
IL-8. On the other hand, B27 presented a distinct cytokine 
expression pattern whereby most cytokines are upregulated 
except for RANTES, IL-12, 1L-13, IFN-g, IL-1ra, IL-10 
and Eotaxin and where the upregulation or downregulation 
compared to DMEM undifferentiated control is not as 
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notable as C1. The most notable finding of this study was 

the presence of high intracellular and extracellular levels of 

functional CNPase after a 7-day treatment with C1 and N2, 

and to a notable but lesser extent with B27. 

CNPase expression is increased in hADSCs following C1, 
N2 and B27 treatment

Intracellular and extracellular functional CNPase was 
detected in all three treatments, with C1 having the 
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highest expression of CNPase. Immunocytochemistry 
(Figures 2,3) showed that all treatments being investigated 
expressed markers indicative of commencement of neural 
differentiation. As seen in Figures 2,3, this change is most 
pronounced in C1, with the highest expression of CNPase 
and low levels of any other marker. Additionally, CNPase 
enzymatic assay results (Figure 7) showed that the cells 
expressed intracellular and secreted extracellular functional 
CNPase. CNPase is a well-established oligodendrocyte 
marker (29,30) that is mainly expressed in glial cells, with 
oligodendrocytes having the highest expression of this 
enzyme of the four major CNS cell types. This enzyme is 
necessary for oligodendrocyte development and branching 
and plays a critical role in early myelin formation (29) and 
neuronal health more generally (34). CNPase deficiency 
in the brain has been associated with multiple neurological 
diseases (31), including Down syndrome, Alzheimer’s 
disease (35), and Multiple Sclerosis (36). Furthermore, it 
is a key component of the 2'3'-cAMP-Adenosine pathway 
responsible for the production of adenosine (30). Adenosine 
is a neuromodulator that increases significantly following 
injury and plays a role in neuroprotection post CNS injury 
(30,37-40). In the 2'3'-cAMP-Adenosine pathway, this 
occurs largely via CNPase present in the oligodendrocytes 
suggesting that oligodendrocytes have a role protecting 
the axons making CNPase a necessary enzyme for 
sustained function of the axon-myelin unit and for long-
term axonal health (30). Furthermore, CNPase expression 
in MSCs has been previously seen in rodent cells. Rat 
ADSCs expressed CNPase marker after being treated with 

isobutylmethylxanthine (IBMX) induction (41). IBMX is a 
small molecule chemical that has since been successfully used 
in hADSCs neurodifferentiation inductions (19). Additionally, 
it has been observed that human foetal MSCs upregulate 
CNPase expression after exposure to oligodendrocyte 
differentiation medium (42) and that rat MSCs have a 
strong oligodendrogenic effect on rat neural progenitor cells  
(NPCs) (43). hADSCs have also shown increased CNPase 
expression after 2 week neural differentiation treatment 
with bFGF and forskolin (8), suggestive of the capacity for 
hADSCs to express CNPase marker as a sign of neuronal 
differentiation and supporting the idea that CNPase 
expression in hADSCs following treatment with B27, C1 
and N2 is indicative of neural like differentiations especially 
oligodendrocytic lineage following C1 treatment. 

CNPase expression is influenced by the presence of different 
cytokines

Cytokine changes are commonly seen following ADSC 
differentiation in a number of conditions (18,44,45). CNPase 
expression can also be influenced by the presence of different 
cytokines. Both IL-1b and TNF-a have been shown to inhibit 
the expression of CNPase in human oligodendrocytes (46).  
These two cytokines have been downregulated in C1 and 
N2, while they were upregulated in B27, consistent with 
the different levels of CNPase expression in the different 
treatments, with C1 having the highest expression and B27 
having the least CNPase expression (Figure 3). Additionally, 
IL-8 has been shown to increase mouse oligodendrocyte 
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precursor proliferation as well as stimulate myelin basic 
protein in vitro (47), and this cytokine was upregulated in 
all treatments but particularly in C1 and N2 (Figure 5).  
G-CSF is another cytokine that was also found to be 
upregulated in all three treatments. Normally considered 
a growth factor for haematopoietic progenitor cells and 
neutrophils, it can also potentially be used for neural injury 
treatment such as spinal cord injury (48). G-CSF has been 
shown to protect oligodendrocytes from SCI-induced death 
by attenuating white matter loss and promoting functional 
recovery (49). G-CSF also has been shown to suppress 
the expression of pro-inflammatory cytokines IL-1b and 
TNF-a both in vitro (50,51) and in vivo (49,52); Therefore, 
G-CSF may have a role in upregulating CNPase expression 
indirectly through suppressing IL-1b and TNF-a given IL-
1b, and TNF-a have been linked to CNPase expression 
suppression in human oligodendrocytes (46). Another 
cytokine that was upregulated in C1 and N2 is GM-CSF, 
generally associated with macrophage and eosinophil 
proliferation and maturation. This cytokine has also been 
shown to have neuroprotective effects in CNS diseases 
(53,54) and plays a role in NPC activation both in vitro and 
in vivo (55). Eotaxin-1 was found to be downregulated in 
all three treatments, with the most notable decrease in C1; 
Eotaxin is usually an immune modulator associated with the 
recruitment of eosinophils into inflammatory sites and is 
high in conditions such as asthma (56). It has recently been 
found to influence NPCs and microglia and can be secreted 
by several central nervous system cells (57). It is increased 
in neurodegenerative conditions such as schizophrenia and 
Alzheimer’s disease (57,58) but appears to be active during 
accelerated aging and is stimulated by IL-4 and IL-13 (58), 
both of which are also downregulated in C1 and N2 treated 
ADSCs. 

hADSCs differentiation differs following C1, N2 and B27 
treatment 

In the current experiments, the analysis showed that C1-
treated hADSCs had the highest levels of functional 
intracellular CNPase, suggesting that they were actually 
differentiating towards the oligodendrocytic lineage. 
However, according to the manufacturer, C1 is reported 
to inhibit glial cell proliferation in primary neural cell 
cultures. hADSCs are of mesenchymal cell origin rather 
than nervous system origin. When treated with C1, they 
appear to downregulate common haemopoietic cytokines 
that are normally present in mesenchymal cell lines (as 

seen by a downregulation from the untreated cells in 
Figure 6), suggesting that the cells may be reverting from 
the mesenchymal to a less differentiated or neural-like 
lineage. 

hADSCs treated with B27 presented the lowest 
expression of all immunocytochemistry markers (Figures 2,3)  
as well as the least CNPase activity in the CNPase 
enzymatic assay (Figure 7), indicative of the least neural 
differentiation. B27 is a very commonly used neural 
supplement; however, it is generally used for the long-
term survival of neurons rather than initial commitment 
and differentiation (26,27). The hADSC treated with B27 
did not express significantly higher levels of CNPase and 
doublecortin than the undifferentiated control cells and 
may not have developed expression of neural cell markers 
(CNPase and doublecortin) at these early time points. 
In contrast, N2 treatment showed mixed levels of neural 
differentiation, with similar levels of both CNPase and 
doublecortin. Doublecortin is a well-established marker 
for immature neurons and for neurogenesis (59-61). It is 
possible that N2 is showing a mixed population of cells given 
the expression of both CNPase and doublecortin markers 
or that the cells are co-expressing both markers; however, 
the co-expression of both CNPase and doublecortin has not 
been reported before. There were small increases of GFAP 
following incubation with all three supplements compared 
to the non-differentiated ADSCs. GFAP is typically used 
to identify mature astrocytes but in this short time frame 
and in the absence of large fold change it is unclear whether 
there is a robust differentiation pathway towards astrocytic 
lineage. However, GFAP expression even at low levels, in 
these mesenchymal ADSC does indicate an early neural 
differentiation, possible towards a more glial lineage (62).

Conclusions 

Neural differentiation of hADSC can be successfully initiated 
using commonly available neuronal cell supplements C1 
and N2. Although each supplement is usually used for 
neuronal differentiation and maintenance, we have shown 
that neural differentiation of hADSC can be initiated 
by these supplements with C1 pushing cells towards an 
oligodendrocytic lineage (increased CNPase) and N2 
supporting neuronal differentiation (increased Doublecortin). 
B27 does not have a strong differentiating effect on hADSC 
at these early time points. Future work may investigate 
longer time intervals with further supplementation to further 
elucidate hADSC neural differentiation and would need to be 
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demonstrated in additional patient samples.
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