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Pancreatic cancer stem cells (CSCs)

CSCs are cancer cells that possess the ability to self-renew 
and persist in tumors as a specific cancer cell population 
that can contribute to relapse and metastasis by re-emerging 
or by initiating new tumors. The first conclusive evidence 
showing the existence of CSCs was provided in 1997 by 
Bonnet and Dick (1). In this study, a subpopulation of 
leukemia cells expressing CD34, but not CD38 (CD34+/
CD38−), could initiate tumors in NOD/SCID mice that were 
histologically similar to the donor cells. Cancer stem-like 
cells were first identified in human cortical glial tumors and 
were highly similar to neural stem-like cells, but expressed 
astroglial and neuronal markers (2).

The first pancreatic CSC population was identified in 
2007 using xenografts of human pancreatic adenocarcinomas 
grown in immunocompromised mice. In these mice, a 
highly tumorigenic subpopulation of pancreatic cancer 

cells expressing the cell surface markers CD44, CD24, and 
epithelial-specific antigen (ESA) were isolated (3). It was 
shown that the CD44(+)CD24(+)ESA(+) subpopulation 
of cells shared stem cell properties, such as self-renewal, 
pluripotency, and increased expression of developmental 
signaling pathways, such as the sonic hedgehog pathway (3).  
One of the most important aspects of CSC research is 
the identification of surface markers that can be used to 
define and isolate CSCs. The widely accepted common 
CSCs markers are CD44(+) and CD24(+) (4), which are 
also applicable to pancreatic CSCs. Other surface markers 
identified for pancreatic CSCs include ABCG2, ALDH1, 
CD133, c-Met, CXCR4, nestin and nodal-activin (5). 

The clinical significance of CSCs has been well 
described. The concept that CSCs are responsible 
for the initiation of tumor metastases is supported by 
the association of CSCs with epithelial-mesenchymal 
transition (EMT) (6-9). In pancreatic cancer, hedgehog-
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signaling was found to regulate EMT in cancer “stem-
like” cells and promote tumor genesis and metastasis (10). 
A recent report further indicates that exosomes, a group 
of secreted membrane-bound vesicles, from pancreatic 
CSCs can reprogram neighboring non-CSCs toward 
EMT and function in metastatic niche preparation in 
distant tissues (11). In addition to their role in promoting 
tumor metastasis, pancreatic CSCs also contribute to 
chemo-resistance (12). Therefore, targeting CSCs may 
enhance drug sensitivity and inhibit tumor metastasis (12). 
Interestingly, CSCs in peripheral blood may also serve as 
tumor biomarkers for diagnosis or prognosis (13). 

microRNAs (miRNAs) and pancreatic CSCs

miRNAs are short non-coding RNAs (19–22 nucleotides 
in length) that primarily function to repress target mRNA 
translation through complementary binding in the 3' 
untranslated region (3' UTR) of mRNAs (14,15). miRNAs 
are transcribed as primary transcripts (pri-miRNA) by 
RNA polymerase II. The pri-miRNAs are then processed 
in the nucleus by RNA enzymes into 70–100-nucleotide-
long precursors (pre-miRNAs) (16,17). The pre-miRNAs 
are then translocated to the cytoplasm (18) and further 
processed by a complex composed of the RNase III 
enzyme Dicer and the trans-activating response RNA-
binding protein (TRBP) (19,20), leading to the generation 
of the mature miRNA and the consequent degradation of 
the complementary strands (21,22). The mature miRNAs 
are loaded onto Argonaute proteins within the RNA-
induced silencing complex (RISC) and function to guide 
the RISC to complementary sequences in the 3' UTR 
of specific target mRNAs (23-25). Previous studies have 
shown that some of the miRNAs highly expressed in 
cancer are oncogenic, such as miR-21, miR-155, miR-17-
5p, miR-19, and miR-92, etc. (26-28); whereas miRNAs 
with reduced expression in cancer often act as tumor 
suppressive regulators, such as miR-34, miR-15, miR-16, 
and let-7, etc. in pancreatic cancer (29-31). 

Many studies have shown that miRNAs play a critical 
role in the regulation of CSCs in malignant tumors, 
including pancreatic cancer, and are involved in the 
initiation, propagation, and regulation of EMT and the 
Notch-signaling pathway in CSCs (32-39). miRNAs that 
have been reported to regulate pancreatic CSCs include 
miR-21, miR-34, miR-1246, miR-221, miR-145, the 
miR-17-92 cluster, and the let-7, miR-200, and miR-30 
families. 

miRNAs that regulate pancreatic CSCs through 
the Notch-signaling pathway 

The Notch-signaling pathway is associated with the 
regulation of cell development in mammary epithelial cells 
and has been implicated in cancer initiation and progression 
(40-43). It is deregulated in many kinds of CSCs, including 
pancreatic CSCs. Recent studies found that Notch-signaling 
regulates miRNA expression, and in return miRNAs modify 
Notch-signaling in pancreatic CSCs. For example, over-
expression of Notch-1 in pancreatic CSCs led to an increase 
in expression of miR-21, and a decrease in expression of 
miR-200b, miR-200c, let-7a, let-7b, and let-7c in vitro (37).  
Furthermore, metformin, an experimental anticancer drug, 
decreased the expression of Notch-1, thereby elevating 
expression of miRNAs such as let-7a, let-7b, miR-26a, 
miR-101, miR-200b, and miR-200c in a xenograft mouse 
model (38). With regard to miRNA regulation of Notch 
signaling, over expression of miR-34 in pancreatic cancer 
cells either by transfection of miR-34 mimics or infection 
with lentviral miR-34-MIF led to a significant reduction 
of cancer initiating cell population likely due to the down-
regulation of Notch1/2 and Bcl-2 by this miRNA (34). 
Similarly, DCAMKL-1 (a putative pancreatic stem cell 
marker) knockdown resulted in down-regulation of Notch-1 
expression in a miR-144-dependent mechanism (44).  
Garcinol, a known plant-derived antioxidant, could down-
regulate Notch-1 signaling via up-regulation of miR-
200c, thereby suppressing oncogenic properties of PANC-
1 cancer stem-like cells (45). Notably, quercetin-induced 
let-7c was shown to decrease pancreatic cancer initiating 
cell growth by posttranscriptional activation of Numbl and 
indirect inhibition of Notch in a fertilized chick egg tumor 
xenotransplant model (46). 

In addition to targeting Notch-signaling, let-7 and 
miR-34 can regulate pancreatic CSCs through other 
cellular mechanisms. The let-7 family, which is one of the 
first discovered miRNAs (47) and the first known human 
miRNA family (23), was shown to be deregulated in cancer-
stem-like cells and display tumor suppressor activity (48). In 
pancreatic cancer, down regulation of let-7 was associated 
with increased chemotherapy resistance (49,50). In these 
cells, DCAMKL-1 acted as a master regulator of pancreatic 
tumor genesis through regulation of multiple tumor 
suppressor miRNAs including let-7a in a xenograft tumor 
model (51). Diflourinated-curcumin (CDF) was found to 
decrease formation of pancreatospheres (spheres generated 
from pancreatic cancer cell lines’ sphere formation assay), 
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cell invasiveness, and CSC function in human pancreatic 
cancer cells by reducing expression of EZH2 and increasing 
expression of a panel of tumor-suppressive miRNAs, 
including let-7a-d (52). Treatment of pancreatic CSCs 
with metformin could decrease the expression of the CSC 
markers CD44, EpCAM, EZH2, Notch-1, Nanog and 
Oct4, and induce re-expression of miRNAs (let-7a, let-
7b, miR-26a, miR-101, miR-200b, and miR-200c) that 
are typically lost in pancreatic cancer and especially in  
pancreatospheres (38). Compared to its parental BxPC-3 
cells, BxPC-3-LN (highly lymphatic metastatic pancreatic 
cancer cells derived from BxP-3 cells) cells showed stem 
cell-like properties, including high lymphatic metastasis 
potential, self-renewal and chemoresistance (53). The 
BxPC-3-LN cells also expressed higher levels of migrating 
CSC surface markers (CD133 and CXCR4) and lower 
levels of let-7 compared to the parental BxPC-3 cells (53), 
further supporting the role of let-7 in regulating pancreatic 
CSCs. 

miR-34a is a transcriptional target of p53 and is down-
regulated in pancreatic cancer (54). For example, highly 
lymphatic metastatic pancreatic cancer cells possess stem 
cell-like properties and express low levels of miR-34 in a 
xenograft model (53). miR-34 was found to be involved 
in pancreatic CSCs self-renewal by modulation of its 
downstream targets, Bcl-2 and Notch, implying that miR-
34 may play an important role in pancreatic CSCs self-
renewal and/or cell-fate determination in vivo (34). The 
restoration of miR-34 expression by demethylating agent 
5-Aza-2'-deoxycytidine (5-Aza-dC) and HDAC inhibitor 
Vorinostat (SAHA) in CSCs could boost patient response to 
existing chemotherapies potentially by eliminating the CSC 
characteristics, which provided mechanistic insight into 
new therapeutic strategies against pancreatic cancer (54).  
Another example is that systemic intravenous delivery 
of miR-34 with nanovectors regulated pancreatic CSCs 
survival and inhibited growth of MiaPaCa-2 subcutaneous 
xenografts (P<0.01). This effect was more pronounced in 
the orthotropic (intrapancreatic) setting (P<0.0005) when 
compared to vehicle controls (55).

miRNAs that regulate EMT in pancreatic CSCs

EMT refers to a process in which epithelial cells lose 
their epithelial properties and gain mesenchymal cell 
characteristics. Cancer cells that undergo EMT acquire 
stem cell-like properties, thus giving rise to CSCs. The 
miR-200 family is involved in the regulation of EMT 

in pancreatic CSCs. Over-expression of miR-200c had 
an inhibitory effect on human pancreatic CSCs by 
deregulating EMT-related genes in vitro and in vivo (39).  
It significantly down-regulated expression of zinc-finger 
E-box binding homeobox 1 (ZEB1) and vimentin (markers 
of mesenchymal cells), and up-regulated expression of 
E-cadherin (marker of epithelial cells), and decreased 
colony formation, invasion, chemoresistance, and xenograft  
growth (39). The loss of miR-200a expression was 
associated with an EMT phenotype and stem-like cell 
features, characterized by the expression of the cell surface 
markers CD24, CD44 and ESA in pancreatic cancer cells in  
vitro (56). Knockdown of DCAMKL-1 up-regulated miR-
200 expression, resulting in a decrease in the expression of 
VEGFR1, VEGFR2 and the EMT-related transcription 
factors ZEB1, ZEB2, SNAIL and SLUG in a xenograft 
model (51). It was also reported that knockdown of 
DCAMKL-1 induces miR-200a, along with the down-
regulation of EMT-associated transcription factors ZEB1, 
ZEB2, Snail, Slug, and Twist in human pancreatic cancer 
cells using (44). miR-200 could antagonize EMT driven by 
mutant KRAS (57,58) and suppression of miR-200 expression 
by activated oncogenic KRAS promoted cell survival and 
EMT in KRAS-driven pancreatic cancer in cell lines. 
Likewise, the activation of Notch-1 signaling contributed 
to the acquisition of EMT phenotype, which was mediated 
through miR-200b and CSC self-renewal capacity, and could 
be attenuated by genistein treatment in vitro (37).

Hypoxia and the HIF pathways also contribute to the 
acquisition of EMT and maintenance of CSC functions (59).  
For example, hypoxia could induce mR-21 expression 
in pancreatic cancer cells via the HIF-1α pathway. miR-
21 over-expression in these cells allowed them to escape 
apoptosis in a hypoxic microenvironment using a xenograft 
model (59,60). In addition, over-expression of Notch-1 
increased expression of miR-21 which led to the acquisition 
of EMT phenotype in pancreatic cancer cells in vitro (37). 

In addition to regulating EMT in pancreatic CSCs, 
the miR-200 family and miR-21 are also involved in 
regulating pancreatic CSCs through other mechanisms. 
The miR-200 family, which consists of miR-200a,  
miR-200b,  miR-200c,  miR-141,  and miR-429,  i s 
involved in cancer metastasis in vitro, as evidenced by 
a transwell migration assay (61). It was reported that  
miR-200c overexpression decreases colony formation, 
invasion and chemoresistance of pancreatic CSCs (62). As 
described above, CDF, a novel analogue of the turmeric 
spice component curcumin, decreased pancreatic cancer 
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cell survival, clonogenicity, formation of pancreatospheres, 
and cell invasion. These effects were associated with 
decreased expression of EZH2 and increased expression 
of a panel of tumor-suppressive miRNAs, including 
miR-200b and miR-200c in vitro and in vivo (52). In a 
xenograft mouse model of human pancreatic cancer, 
CDF treatment significantly inhibited tumor growth, and 
was associated with increased miR-200 expression (63).  
miR-21 was highly expressed in pancreatic cancer 
cell lines, tissues and the plasma of pancreatic cancer 
patients (64,65) and could promote pancreatic CSCs 
growth via regulation of FoxO1. FoxO1-negative cells 
are considered to have CSCs properties in pancreatic 
cancer and null expression of FoxO1 was associated with 
a high expression of miR-21 and rapid cell growth in cell 
lines, primary tumor tissues and a mouse model (66). 
Moreover, miR-21 expression was related to chemotherapy 
resistance in pancreatic cancer (49). Inhibition of  
miR-21 in pancreatic CSCs suppressed tumor genesis, 
metastasis, and chemotherapy resistance in cell lines (67). 
CDF treatment of pancreatic cancer in vivo significantly 
inhibited tumor growth, which was associated with 
decreased miR-21 expression in tumor remnants (63).

Other miRNAs that are related to pancreatic CSCs

miR-221 expression was described in pancreatic cancer 
holoclone-forming cells (a colony-forming stem cell that 
has a higher growth potential than a meroclone because 
it does not contain differentiated cells) (68). Inhibiting  
miR-221 in tumor-initiating stem-like cells could modulate 
tumor genesis, metastasis, and chemotherapy resistance in 
pancreatic cancer. The administration of antagomir-221 
significantly reduced the stem-like cancer cell fraction, 
decreased stem-like cancer cell differentiation, thereby 
reducing chemoresistance to gemcitabine and 5-Fluorouracil 
in pancreatic cancer cells in vitro  and in vivo (67).  
The miR-17-92 cluster could inhibit tumorigenicity, but 
enhanced chemoresistance in pancreatic CSCs via the 
TGF-β1 pathway (49). DNMT1 [DNA (cytosine-5)-
methyltransferase] inhibition was reported to reprogram 
pancreatic CSCs in part via reactivation of the miR-17-92  
cluster in primary tissue cultures and in vivo (69).  
miR-145 is a tumor suppressor miRNA that could 
regulate expression of critical pluripotency factors and 
oncogenes, such as OCT4, SOX2, NANOG, KLF4, KRAS 
and RREB1, resulting in repressed metastatic potential 
in pancreatic cancer cells in a xenograft model (51). 

miRNA-1246 expression was associated with CCNG2-
mediated chemoresistance and stemness in pancreatic 
cancer in primary tissue cultures and an animal model (70). 
The miR-30 family could promote migratory and invasive 
characteristics in CD133(+) pancreatic cancer stem-like  
cells (71). miR-26a expression was reportedly lost in 
pancreatic cancer and especially in pancreatospheres (38). 
Finally, miR-99a, miR-100, miR-101, miR-125b, miR-
192, miR-183 and miR-429 were differentially expressed 
in pancreatic CSCs compared to non stem-like pancreatic 
cancer cells (16,72,73).

Future perspectives

Differential expression of certain miRNA species in 
pancreatic CSCs and the involvement of these miRNAs 
in regulation of pancreatic CSCs has been recently 
documented. These discoveries provide new directions for 
the development of therapeutics and diagnostics against 
this malignancy. It remains inconclusive as to whether the 
miRNA species differentially expressed in pancreatic CSCs 
are also involved in regulating CSCs in other cancer types. 
Furthermore, detailed information on how these miRNAs, 
individually or in combination, regulate pancreatic CSCs 
thereby contributing to pancreatic cancer progression, 
merits further exploration. Current management strategies 
against pancreatic cancer, especially metastatic pancreatic 
cancer, are not effective. Pancreatic CSCs play a significant 
role in pancreatic cancer cell self-initiation, metastasis and 
chemo-resistance, therefore targeting pancreatic CSCs is a 
promising strategy that could lead to improved pancreatic 
cancer outcomes.
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