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Stem cells and lung repair

Cell-based therapies have been widely used in experimental 
and clinical studies as a new therapeutic approach for lung 
diseases, since they modulate inflammation and affect the 
remodeling process (1).

The main source of adult stem cells for cell therapy is the 
bone marrow. Hematopoietic stem cells have been studied 
due to their capacity to differentiate into immune cells 
and modulate immune-cell proliferation and activity (1,2). 
Mesenchymal stem (or, more properly, stromal) cells (MSCs) 
are also present in bone marrow, and play a primary role in 
stimulating the maintenance, growth, and survival of other 
cells. MSCs are multipotent and have been found in many 
sources, such as adipose tissue, amniotic fluid, cord blood, 

and the lungs (3). Beyond their stromal properties, MSCs 
are known to have plastic capacity and immunomodulatory, 
antifibrotic, and microbicidal properties (4), which has 
motivated many groups to study their therapeutic potential 
in experimental lung diseases and test them in phase I and II 
trials for acute respiratory distress syndrome (ARDS) (5-7),  
chronic obstructive pulmonary disease (COPD) (8-10), 
silicosis (11), and idiopathic pulmonary fibrosis (IPF) (12).

The mechanisms by which MSCs might mitigate 
inflammation and injury are not completely understood, 
and likely involve multiple pathways mediated by the 
release of soluble mediators, extracellular vesicles (EVs), 
and/or organelle transfer, as well as through cell-to-cell 
contact (1,4). Secretory mediators were first proposed as a 
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mechanism of action for stem cells because very few stem 
cells engraft after injection into recipient animals (13).  
Recent data from a variety of preclinical lung disease 
models, including ARDS, asthma, emphysema, and 
pulmonary arterial hypertension (PAH), have demonstrated 
that systemic administration of conditioned media (CM) 
obtained from MSCs alone can lead to protective effects 
similar to those of MSCs (14-21). Recent data suggest 
that EVs, also known as exosomes, microvesicles, or 
microparticles, which are released by the MSCs and present 
in CM, may yield beneficial effects (21-26). However, the 
specific mediators responsible, such as soluble proteins, EV 
components, or other components of the CM, have not yet 
been identified, and are likely to be different depending 
on the lung injury model (22). Information has emerged 
regarding the roles of specific miRNAs and other EV 
components as mediators of the protective effects of MSC 
administration in preclinical lung disease models, but much 
remains unknown (21-26).

EVs

Recently, in order to standardize the nomenclature, the 
International Society for Extracellular Vesicles established 
a definition of EVs and the minimal experimental 
requirements for research about EVs (27). EVs are defined 
as small membrane vesicles, which includes exosomes, 
microvesicles and apoptotic bodies. They are distinguished 
by specific membrane markers, origin, and size (exosomes, 
40–150 nm; microvesicles, 0.1–2 μm; apoptotic bodies, 1–4 
μm). Because of the overlapping sizes and lack of specific 
markers for each EV component, the International Society 
for Extracellular Vesicles recommends use of the term EVs 
to describe all types of such vesicles. EVs are considered 
mediators of intercellular communication, as they contain 
several proteins, microRNAs, mRNAs, long noncoding 
RNAs, lipid mediators, and even organelles with biological 
relevance (28).

A wide variety of cell types have been shown to release 
EVs, including immune cells, epithelial cells, endothelial 
cells, and tumor cells. EVs have been isolated and 
characterized from different body fluids, such as plasma, 
urine, and bronchoalveolar lavage fluid (BALF). Of interest 
to respiratory medicine, EVs are reportedly released from 
both immune and structural cells in the lungs, and have 
recently been reported to play a role in pathophysiology 
of asthma (29), COPD (30), and pulmonary artery 
hypertension (29,31). Potential applications of EVs as 

biomarkers for lung diseases and novel therapeutic targets 
have emerged (32-35). In this line, MSC-derived EVs can 
be an important tool for obtaining the clinical benefits of 
MSC treatment (22). Recently, a Good Manufacturing 
Practices-grade standard protocol for obtaining exclusively 
human MSC-derived EVs was proposed (36). The 
characterization and establishment of MSC-derived EVs 
will help to identify active components in therapeutic EVs 
for future clinical applications.

Effects of EVs in vitro

A significant body of literature obtained in animal models 
of inflammation has shown that stem cell-derived vesicles 
are also immunosuppressive, probably through the transfer 
of both RNA and proteins carried by EVs (37-41). EVs 
derived from MSCs exposed to normoxic or hypoxic 
conditions are efficiently internalized by bone marrow 
macrophages, eliciting their switch from M1 to M2 
phenotype, downregulating interleukin (IL)-6 and nitric 
oxide synthase, and upregulating arginase 1 and chitinase-
like 3 protein—typical markers of alternative macrophage 
activation (37). Mechanistically, it has been shown that the 
MSC exosomal miR-146a, a well-known anti-inflammatory 
microRNA, when transferred to macrophages, results in 
M2 polarization and increases survival in septic mice (42).  
In lipopolysaccharide-primed human monocytes, EV 
transfer of microRNAs and mitochondria have restored 
intracellular ATP, reduced levels of pro-inflammatory 
mediators, and greatly increased their phagocytic properties 
(43,44). Moreover, MSC-EV treatment induces tolerogenic 
signaling through promotion of T regulatory cells, apoptosis 
of effector T cells, and an increase in immunosuppressive 
cytokine IL-10 concentration when co-cultured with T 
lymphocytes (39,45).

EVs are taken up by other cell types. Injured human 
monocytes, as well as alveolar epithelial cells, uptake 
hMSC-derived EVs through the CD44 receptor (44). 
MSC exosomes obtained from human umbilical cord 
MSCs act directly on hypoxic vascular endothelial cells, 
inhibiting STAT3 signaling (23). Moreover, EVs have 
strong antiapoptotic and pro-proliferative effects in vitro 
(46-48). Finally, MSC-derived EVs have been implicated 
in the tissue-restoring effects of MSCs, including wound 
healing (49), antioxidant and antitumor effects (50), 
and microbicidal activity (51) (Figure 1). In short, EVs 
released from MSCs, which can be rapidly isolated by 
ultracentrifugation and filtration, exhibit anti-inflammatory 
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properties, decrease oxidative stress, increase ATP, reduce 
alveolar edema, and can promote bacterial clearance. These 
properties suggest they could be safely and easily used for 
therapy of lung diseases.

Effects of EVs in vivo

Stem cell-derived EVs have been tested in experimental 
lung injury, including models of asthma, ARDS, COPD, 
IPF, pneumonia, pulmonary artery hypertension, and 
silicosis (Table 1).

Asthma

Asthma is a common respiratory disease (affecting 1–18% of 
the population in different countries) usually characterized 
by chronic airway inflammation. It is defined by a history 
of respiratory symptoms such as wheezing, shortness of 
breath, chest tightness, and cough, which vary over time 
and in intensity, as well as variable expiratory airflow  
limitation (60). Among patients with asthma, 5–10% have 
severe disease, a result of mixed Th2/Th17-mediated 

neutrophilic airway inflammation. These patients experience 
poor clinical control and are resistant to corticosteroids and 
most other available treatments. Hence, new therapeutic 
options are still needed (61).

In this context, an increasing number of studies on cell 
therapy have demonstrated beneficial effects of systemic or 
local administration of syngeneic, allogeneic, or xenogeneic 
MSCs derived from bone marrow, adipose tissue, placenta, 
and other sources in a wide spectrum of preclinical 
asthma models. Therapy with MSCs during either 
antigen sensitization or challenge mitigates both airway 
hyperresponsiveness and lung inflammation in a variety of 
asthma models (21,52,62-74).

There is a growing experience demonstrating the benefit 
of MSC-derived EV therapy in experimental asthma 
(21,52). When administered systemically, both CM and, 
in particular, EVs isolated from human and murine bone 
marrow-derived MSCs at the onset of antigen challenge 
in previously sensitized mice were as potent as MSCs 
themselves in mitigating Th2/Th17-mediated allergic 
airway inflammation in a mouse model of severe refractory 
clinical asthma. Human MSCs (hMSCs), CM, and EVs 

Immunomodulation Bacterial clearance Alveolar fluid
clearance

Epithelial and endothelial
cell repair

Extracellular vesicles

Figure 1 Effects of extracellular vesicles in the lungs. Microvesicles, exosomes, and vesicles containing mitochondria induce endothelial and 
epithelial repair, promote alveolar fluid clearance, and exert immunomodulatory and microbicidal effects.
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were effective in this immunocompetent mouse model, 
ameliorating Aspergillus hyphae extract-provoked increases 
in airway hyperreactivity, lung inflammation, and the 
antigen-specific cluster of differentiation (CD)-4 T-cell 
T helper (Th)-2 and Th17 phenotype. Notably, both CM 
and EVs from hMSCs were generally more potent than 
those from mouse MSCs (mMSCs) in most of the outcome 
measures (21). When both soluble mediators and EV 
secretion were blocked by the cross-linking agent 1-ethyl-
3-(3-dimethylaminopropyl)carbodiimide hydrochloride, the 
observed effects of hMSCs were fully abolished, whereas 

with the administration of mMSCs, they were partly 
ameliorated. These results demonstrated potent xenogeneic 
effects of CM and EVs in an immunocompetent mouse 
model of allergic airway inflammation (21).

A recent study assessed the effects of systemically 
administered adipose tissue-derived MSCs and their EVs. 
Both presented beneficial effects in ovalbumin-induced 
allergic asthma, acting on the inflammatory process and 
reversing tissue remodeling (52). While the effects of each 
were largely similar, differences were observed in outcome 
assessment of lung mechanics and inflammation: MSCs and 

Table 1 Experimental studies with stem cell-derived extracellular vesicles in lung diseases

Study Experimental model Cell type Effects

Cruz et al. (21) Aspergillus extract 
hyphae-induced 
asthma

Murine and 
human BM-MSCs

EVs improved lung mechanics, reduced peribronchial inflammation and 
Th2/Th17 responses

de Castro et al. (52) OVA-induced 
asthma

Human AD-MSCs EVs reduced lung elastance, collagen deposition and local inflammation

Zhu et al. (25) LPS-induced ARDS Human BM-MSCs EVs reduced lung edema, lung protein permeability, inflammation and 
effects were partially due to KGF

Song et al. (42) CLP induced ARDS Human UC-MSCs Exosomes resulted in M2 polarization, increased survival

Morrison et al. (44) LPS-induced ARDS Human MSCs EVs transferred microRNAs and mitochondria, promoting an anti-
inflammatory and highly phagocytic macrophage phenotype

Monsel et al. (53) E. coli pneumonia Human MSCs Microvesicles increased macrophage phagocytosis, increased ATP 
levels of epithelial cells and reduced inflammation

Kim et al. (54) Elastase-induced 
COPD

Human AD-MSCs Nanovesicles inhibited morphofunctional changes mainly through FGF

Choi et al. (55) Silica-induced lung 
fibrosis

Human BM-MSCs EVs reduced collagen and inflammation in the lungs

Phinney et al. (56) Silica-induced lung 
fibrosis

BM-MSCs EVs reduced lung inflammation and fibrosis, through mitochondria and 
microRNAs transfer, which inhibit macrophage activation and increase 
their bioenergetics

Shentu et al. (57) Bleomycin-induced 
lung fibrosis

Human MSCs EVs downregulated pro-fibrotic mediators and collagen deposition

Lee et al. (23) Hypoxia-induced 
PAH

Human HC-MSCs Exosomes inhibited PAH through suppression of hyperproliferative 
pathways, including STAT-3 mediated signaling

Aliotta et al. (58) Monocrotaline-
induced PAH

MB-MSCs Exosomes reduced PAH, based on their increased levels of anti-
inflammatory, anti-proliferative miRNAs including miRs-34a, -122, -124, 
and -127

Chen et al. (59) Monocrotaline-
induced PAH

Rat BM-MSCs EVs reduced pulmonary artery pressure and cor pulmonale

Therapy with extracellular vesicles (EVs) in lung diseases. AD, adipose-derived; ARDS, acute respiratory distress syndrome; BM, bone 
marrow; COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis; LPS, lipopolysaccharide; CLP, cecal ligation 
and puncture; MB, menstrual blood; miRs, microRNAs; MSC, mesenchymal stromal cells; OVA, ovalbumin; PAH, pulmonary arterial 
hypertension; UC, umbilical cord.
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EVs provoked different effects on eosinophil cell counts, 
levels of eotaxin, IL-4, and IL-13 in lung parenchyma, 
CD3+CD4+ T cells in BALF, and lung mechanics (52). 
This highlights the importance of in-depth studies of the 
differential mechanisms by which MSCs versus EVs might 
act in respiratory diseases.

ARDS

ARDS is a devastating condition that affects around 
200,000 people each year in the United States alone, with 
mortality rates around 34.9–46.1% (75). Over the last 
decades, many novel therapeutic approaches have been 
tested for the treatment of ARDS, but none has proven 
efficient at targeting disease-specific pathways or reducing 
mortality; thus, supportive care measured, including 
antibiotics, protective mechanical ventilation strategies, 
and fluid restriction, remain the mainstays of therapy (76). 
With recent progress in the field of stem cells revealing 
their immunomodulatory, antibacterial, and regenerative 
properties (4), cell therapy has emerged as a potential 
candidate for ARDS treatment (77-79). Currently, eight 
clinical trials assessing the safety of cell therapy in patients 
with ARDS are registered in ClinicalTrials.gov (4-7); of 
these, several have demonstrated that administration of 
MSCs is not associated with adverse events (5-7), and 
one reported beneficial results when administered to two 
patients in a compassionate use setting (6).

Therapy with MSC-derived CM has already been tested 
and shown to lead to improvement of acute lung injury 
in mice (16,17). Additionally, EVs derived from human 
MSCs, when administered following E. coli endotoxin-
induced acute lung injury in mice, reduced extravascular 
lung water by 43% and total protein levels in BALF by 
35%, with a reduction in pulmonary edema and lung 
protein permeability (25). EVs also reduced neutrophil 
infiltration and macrophage inflammatory protein-2 
levels in BALF by 73% and 49%, respectively, indicating 
a reduction in inflammation. Silencing KGF via siRNA 
pretreatment of MSCs partially abolished the therapeutic 
effects of the secreted EVs, suggesting that KGF played an 
important role in the underlying mechanism (25). In recent 
ARDS research, MSCs were shown to promote an anti-
inflammatory and highly phagocytic macrophage phenotype 
through EV-mediated mitochondrial transfer. MSC-
induced changes in macrophage phenotype depend critically 
on enhancement of macrophage oxidative phosphorylation. 
Furthermore, adoptive transfer of alveolar macrophages 

previously treated with MSC-derived EVs has been shown 
to reduce lung damage (43,44).

Pneumonia

Despite rapid advances in our armamentarium of 
antimicrobials, bacterial pneumonia is still associated with 
respiratory failure, and the case-fatality rate for this widely 
prevalent disease remains high in critically ill patients. In 
some settings, common treatment options may actually 
contribute to poor outcomes, as rapid lysis of pathogenic 
bacteria on the backdrop of an activated immune system 
may lead to inflammatory damage in the lung (80,81).

Therapy with MSCs has shown to be interesting due to 
its antimicrobial properties, as they are involved especially 
in dynamic coordination of the pro- and anti-inflammatory 
elements of the immune system or in increasing phagocyte 
activity, and directly by secretion of antimicrobial peptides 
and proteins (AMPs) (51). AMPs are evolutionarily 
conserved, gene-encoded small effector molecules that 
interact with different molecular targets either on the cell 
surface or within cells. Importantly, in some specific cases, 
AMPs can be active against pathogens that are resistant to 
conventional antibiotics (e.g., multidrug-resistant bacteria). 
In this context, MSCs from different sources or origins have 
shown ability to reduce the burden of pathogens in different 
preclinical models of pneumonia, regardless of the route, 
dose, or timing of administration (81,82).

Administration of human MSC-derived EVs decreased 
the influx of inflammatory cells, cytokines, protein, and 
bacterial load, resulting in higher survival rates of mice with 
bacterial pneumonia, in a mechanism partially dependent 
on keratinocyte growth factor secretion. The antimicrobial 
effect of BMSC-derived EVs was partly attributed to 
enhancement of monocyte phagocytosis of bacteria while 
decreasing inflammatory cytokine secretion, as well as 
to increased intracellular ATP levels in injured alveolar 
epithelial type 2 cells. The therapeutic effects of released 
EVs could be further enhanced by pre-stimulation of 
BMSCs with a TLR-3 agonist before isolation (53).

COPD

COPD, characterized by small-airway disease and parenchymal 
destruction, affects 5% of the global population and is the 
third leading cause of death worldwide, representing a 
substantial economic and social burden. COPD is inexorably 
progressive despite available pharmacologic treatments, 
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which are mostly geared toward symptom relief (60). A 
growing number of investigations on MSC-based cell 
therapies for COPD are being conducted in experimental 
and clinical scenarios (8-10,54).

Recently, exosomes obtained from adipose-derived 
MSCs and artificial nanovesicles generated from the 
same cells were used in an elastase-induced emphysema 
model. Nanovesicles were generated by using sequential 
penetration through polycarbonate membranes, displayed 
a size (100 nm) and spherical shape resembling natural 
exosomes, and expressed both exosomal and stem-
cell markers (54). Despite their beneficial effects, the 
disadvantage of exosomes for clinical applications is that 
they are only released naturally in very small amounts 
compared to nanovesicles (83). The proliferation rate of 
lung epithelial cells was increased in cells treated with 
MSC-derived artificial nanovesicles compared with cells 
treated with MSC-derived natural exosomes; a lower 
dose of MSC-derived artificial nanovesicles had similar 
regenerative capacity compared with a higher dose of MSCs 
and MSC-derived natural exosomes. Taken together, these 
data indicate that lower doses of ASC-derived artificial 
nanovesicles may have beneficial effects similar to those of 
higher doses of ASCs or ASC-derived natural exosomes 
in experimental emphysema, suggesting that artificial 
nanovesicles may have economic advantages that would 
warrant future clinical studies (54).

In parallel, the contribution of EVs derived from 
macrophages, epithelial cells, and endothelial cells to COPD 
pathophysiology highlights their potential as novel therapeutic 
targets. Elimination of these EVs, which contain nucleic 
acids or proteins as mediators of intracellular communication 
involved in disease pathogenesis, may be achieved through 
several different therapeutic approaches, including capture of 
circulating EVs, disruption of EV uptake by recipient cells, 
and inhibition of EV production or secretion (30,84).

Silicosis

Silicosis is the most common pneumoconiosis, with higher 
prevalence and incidence in developing countries. To date, 
there is no effective treatment to halt or reverse progression 
of the disease caused by silica-induced lung injury (2,11,85). 
Cell therapy has been tested in several studies and showed 
prominent effects, reducing lung fibrosis and promoting 
improvement in lung mechanics (2,85-88).

In this context, EVs derived from MSCs could reduce 
neutrophil and lymphocyte accumulation in BALF and 

reduce collagen deposition in lung parenchyma in silicotic 
mice (55,56). The same group showed that MSCs manage 
intracellular oxidative stress by targeting depolarized 
mitochondria to the plasma membrane via arrestin domain-
containing protein 1-mediated microvesicles (56). The 
resulting vesicles are then engulfed and reutilized by 
macrophages, enhancing their bioenergetics. Furthermore, 
they have shown that MSCs simultaneously shed exosomes 
enriched with micro-RNAs that inhibit macrophage 
activation by suppressing Toll-like receptor signaling, 
thereby desensitizing macrophages to the ingested 
mitochondria. Collectively, these studies mechanistically 
link mitophagy and MSC survival with macrophage 
function, thus providing a physiologically relevant context 
for the innate immunomodulatory activity of MSCs both in 
vitro and in an in vivo model of lung injury (56).

IPF

IPF is a chronic, progressive, and inevitably fatal scarring 
lung disease, with a median survival as short as 3 years from 
the time of diagnosis, despite pharmacological therapies 
already approved by the U.S. Food and Drug Administration 
and in Europe (89). As such, the administration of MSCs 
is being investigated as a new therapeutic strategy for 
pulmonary fibrosis (90) in preclinical and clinical studies. 
MSCs can migrate to injured sites and secrete multiple 
paracrine factors, followed by regulation of endothelial 
and epithelial permeability, decrease of inflammation, 
enhancement of tissue repair, and inhibition of bacterial 
growth (90).

The recent discovery of therapeutic applications of 
EVs released from hMSCs has generated interest in their 
mechanisms of targeting and action. An in vivo efficacy study 
demonstrated that intravenous delivery of hMSC-EVs 14 
days after induction of pulmonary fibrosis with intratracheal 
bleomycin significantly downregulated α-smooth muscle actin 
expression and decreased histopathological fibrosis, indicating 
therapeutic effects of these vesicles for established lung fibrosis 
through modification of the myofibroblastic phenotype (57).

PAH

PAH is a disease that mainly affects the pulmonary vascular 
bed. It is characterized by a proliferative disorder and 
resistance to apoptosis of the smooth muscle cells present 
in the pulmonary artery. This culminates in pulmonary 
artery remodeling and constriction, promoting an increase 
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in pulmonary vascular resistance; this, in turn, is associated 
with compensatory hypertrophy of the right ventricle, 
which can rapidly progress to heart failure. The mean 
survival of untreated patients is 2.8 years after diagnosis, 
versus 3.6 years in treated patients (91).

Intravenous delivery of EVs derived from mouse MSC-
CM suppressed influx of macrophages and the induction of 
proinflammatory and pro-proliferative mediators, including 
monocyte chemoattractant protein-1 and hypoxia-inducible 
mitogenic factor, in a murine model of hypoxic pulmonary 
hypertension. EVs also inhibited vascular remodeling and 
consequent pulmonary hypertension through suppression 
of the hypoxic activation of signal transducer and activator 
of transcription 3 (STAT3) and upregulation of the miR-
17 superfamily of microRNA clusters, whereas it increased 
lung levels of miR-204, a key microRNA, expression of 
which is decreased in human pulmonary hypertension (58).

Recently, a group sought to determine which EV 
subpopulation plays a regulatory role in the reversal of 
PAH in mice. They found that the exosome fraction of 
EVs isolated from murine MSCs (MSC-EXOs) prevents 
and reverses PH in a monocrotaline-induced model of 
PAH. Furthermore, MSC-EXOs contain increased levels 
of miRNAs that blunt angiogenesis, inhibit proliferation of 
neoplastic cells, and induce senescence of vascular smooth 
muscle cells and endothelial progenitor cells. EXOs isolated 
from human MSCs were just as effective as those from 
murine MSCs in reversing pulmonary hypertension in  
mice (59). Together, these findings suggest a prominent role 
of EXOs in mediating the pulmonary vascular remodeling 
seen in PAH, and point to a promising therapeutic approach 
for its treatment (58,59).

Conclusions

Most studies analyzing the therapeutic effect of EVs have 
been performed in small-animal models and required only a 
small amount of EVs; therefore, large-scale manufacturing 
systems are needed to translate EV technology to the clinical 
trial setting. Furthermore, the same issue involved in isolating 
targeted EVs described below is still a limitation to clinical 
studies. In recent years, clear evidence of the involvement of 
EVs, especially exosomes and ectosomes, in the pathogenesis 
of lung diseases has emerged. The number and type of 
circulating EVs changes according as the natural history of 
lung diseases; the contents of EVs, such as microRNAs, are 
also changed by the disease condition. Therefore, EVs are 

promising candidates as novel biomarkers for lung diseases. 
EVs also act as a shuttle for transport of small molecules to 
distant cells, and modulate the function of the recipient cells. 
Due to this unique capability, EVs are also expected to have 
potential as a drug delivery system and as novel therapeutic 
targets. Research into EVs can provide new insights into the 
pathogenesis of various lung diseases and elucidate novel 
therapeutic approaches for respiratory medicine.
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