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Introduction

Stem cells are a class of undifferentiated pluripotent cells 
with substantial ability to self-renew and differentiate into 
variety of specialized cell types. Characteristically, stem 
cells are best known for their contribution in developmental 
processes and maintaining the regenerative programs for 
the body. However, defined populations of biologically 
discrete cells—so called cancer stem cells (CSCs) (1), 

could be responsible for initiating malignancy (that will be 
discussed in later sections). Understanding stem cell biology 
fully, is essential for gaining mechanistic insights into 
human diseases and their effects in regenerative process. 
The current applications of stem cells in translational 
medicine rely largely on their potency for repairing tissue 
damages and ameliorating organ functions. In this context, 
the best characterized are the mesenchymal stem cells 
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(MSCs). According to the International Society for Cellular 
Therapy (ISCT), the MSCs are defined as plastic adherent 
cells with the capacity to differentiate into osteoblasts, 
chondrocytes, myocytes and adipocytes (2). The commonly 
considered sources of MSCs are bone marrow, adipose 
tissue, the umbilical cord, nervous tissue, dental pulp, 
amniotic fluid, the placenta, and menstrual blood (3,4). 
MSCs derived from these sources represent remarkable 
differences in morphology, proliferation, self-renewal 
ability and differentiation potential (2). Importantly, their 
capacity to differentiate towards osteoblasts, chondrocytes, 
myocytes and adipocytes, their ability to be activated during 
injury and colonization to injury site offer a promising 
source in tissue regeneration. The benefits of stem cell-
based therapies are evident from their success in improving 
the symptoms of many diseases; including, diabetes, 
osteoarthritis, spinal cord injury, myocardial injury, graft 
versus host disease, and bone repair shown in many clinical 
and preclinical models (5).

In addition to their characteristic functional attribution in 
regenerative process, the stem cells have also been implicated 
in cancer initiation and therefore, are designated as CSCs (1).  
CSCs possess substantial potential for clonal tumor 
initiation, long-term repopulation, and phenotypic plasticity 
preservation (6,7). A number of cell surface markers, such 
as CD34, CD133, CD24, CD44, CD166, and epithelial 
cell adhesion molecule (EpCAM), are used to identify and 
enrich CSCs from several types of cancers (1). Although, 
the origin of CSCs and the prediction of their biological 
activity remained a debated issue (1,8); and have been 
explained through CSC model (also known as a hierarchical 
model). This model posits that a defined population of 
biologically discrete cells is distinctively responsible for 
initiating malignancy (9), and that the tumor population 
is hierarchically arranged (10). Subsequently, the tumor-
initiating activity can be enriched by sorting cells on the basis 
of intrinsic characteristics and may be prospectively isolated 
based on a specific cell surface marker (11).

Conversely, the stochastic model of cancer posits that 
all of the cells within a cancer have equal potential to 
act as cancer-initiating cells (CICs) with a potential to 
propagate the cancer [reviewed in (1)]. According to this 
model, tumor-initiating activity cannot be improved by 
sorting cells based on intrinsic characteristics and cannot be 
prospectively determined based on the local environment 
in which cells reside. This model assumes that the activities 
of CICs are governed by re-entry into the cell cycle, which 
is in fact a low-probability stochastic event, making it 

impractical to realistically identify the tumor-initiating 
subset.

Importantly, the secreted paracrine factors could play 
critical role in mediating crosstalk between the elements 
of the local stroma (microenvironment) and stem cells, 
whereby the cells may assertively orchestrate themselves 
in a given tumor niche and may exchange genetic material. 
The exchanges of biological material are vital to cancer 
development and could, therefore exhibit several features 
of CSCs (8). In this regard, the exchange of CSC-derived 
secretome with distinct CSC signatures presumably 
originated from different stem cell hierarchies could 
represent several features of their originating cells. Therefore, 
it is arguable that paracrine trophic factors originated from 
CSCs may reflect and recapitulate CSC features.

Recent body of evidence suggest that normal stem cells 
as well as the CSCs secrete small vesicles called extracellular 
vesicles (EVs), which serve as novel means of stem cell-
derived paracrine trophic factors (12). EVs are nano- and 
micro-sized vesicles that are ubiquitously produced from 
many perhaps all cell types under normal and pathological 
conditions. In fact, EVs are classified into heterogeneous 
populations of secreted vesicles (13-16). Among these, 
best characterized are the exosomes which are originated 
and produced via endocytic/exocytic pathway; and the 
microvesicles which bud off directly from the plasma 
membrane [for detailed mechanisms of biogenesis see (17)]. 
During their biogenesis, EVs are endogenously packaged 
with a repertoire of bioactive molecules such as proteins, 
transcriptional factors, lipids, carbohydrates, and nucleic 
acids including DNA, coding- and non-coding RNAs 
(ncRNAs) [reviewed elsewhere (18)]. Since these secreted 
vesicles transport bioactive molecules and disseminate 
biological signals, they act as mediators of intercellular 
communication between neighboring cells (16,19,20), or 
bridging cellular channels between cells located apart (21).  
EVs could also transport their cargo particularly the 
circulating miRNAs to the cells of distant organs and 
may confer long distance inter-organ communication and 
metabolic regulation (22,23).

Most commonly reported stem cells that secrete EVs 
include, embryonic stem cells (ESCs) and adult stem cells 
of different origins such as bone marrow mesenchymal stem 
cells (BMMSCs), adipose stem cells (ADSCs), human liver 
stem cells (HLSCs), induced pluripotent stem cells (iPSCs), 
and other tissue specific stem cells [reviewed in (12)]. It 
has been reviewed that EVs secreted from these stem cell 
sources potentially mimic the features of their secreting 
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stem cell and are widely recognized as evolving factors in 
stem cell biology (12). The most frequently reported are 
the MSCs-derived EVs with potential therapeutic effects in 
tissue regeneration and organ healing (24-29).

Although, much has been documented about their 
participation in repair processes (29); less is known about 
how stem cell-derived EVs (from both normal stem cells 
and CSCs) contribute in cancer progression and mediate 
resistance to therapies. This review will, therefore, provide 
a detailed summary of recent developments of stem cell 
secreted EVs in tumor progression as well as tumor 
inhibition with mechanistic insights into stem cells, EVs, 
ncRNAs and intratumoral networking.

RNA in stem cell derived EVs: implications in 
stem maintenance and differentiation

Increasing body of evidence support that EVs mimic several 
features of their parent cells and have a profound effect on 
stem cell fate decisions (12). This includes the presence of 
bioactive molecules in EVs and their delivery between cells. 
However, the most profound paracrine regulatory effects 
of stem cell-derived EVs are elicited by transporting RNA 
species (30-34). First evidence was reported by Ratajczak 
and colleagues in 2006, which revealed that stem cell-
derived EVs contain mRNA transcripts for pluripotent 
transcriptional factors such as Nanog, Oct-4, HoxB4, and 
Rex-1, which can be horizontally transferred between cells, 
and favor the hematopoietic progenitor cells’ expansion (35).  
Quesenberry and colleagues proposed that EV-mediated 
communication and exchange of genetic material is 
the continuum model of stem cell biology, where the 
differentiation decision of stem cells is conditioned by 
the cell cycle transit and the environmental stimuli (36). 
Stem cells help keeping population equilibrium between 
undifferentiated and the differentiated mature cells. This 
implies that the deficiency of differentiated mature cells in 
a particular tissue could be sensed by progenitors, which 
produce more progenies to be differentiated into mature 
cells. Such equilibrium could be facilitated by EV-mediated 
bidirectional exchange of genetic material, which favors 
stem cell populations to maintain a stable co-existence (12).

Stem cell-derived ncRNA

Stem cell-derived EVs not only transport coding RNA (i.e., 
mRNA), but also ncRNA species, which recapitulate the 
stem cell properties of their originating stem cells and serve 

as stem cells’ extended paracrine messengers in maintaining 
stem cell features (37). It has been shown that MSC-
derived EVs are enriched in distinct ncRNA species such as 
miRNAs, tRNA and Piwi-interacting RNA (piRNAs), which 
contribute in maintaining stem cell potency (38), induction 
of cell survival and regulation of cell differentiation of cord 
blood hematopoietic stem cells (39). The comparison of 
transcriptomic (RNA-Seq) and proteomic profiles of ESC-
derived EVs and EVs from human BMMSC revealed 
distinctly different RNA profiles between EVs of two stem 
cell populations (40). The secretion of selective pattern of 
miRNAs from stem cells and their transfer to target cells via 
EVs raises enormous potential for stem cells to recapitulate 
lineage specific characteristics (41,42).

Since ncRNAs are central to gene regulation and cellular 
fates, it can be speculated that most of the EV-mediated 
regulatory roles elicited in cells/organs are mediated 
through ncRNAs (18,37). Indeed, ncRNAs are expressed 
in tissue-specific manner, precisely regulated and actively 
involved in variety of developmental processes (43-50), 
and the lineage specific commitments of stem cells and 
the maintenance of their characteristic features such as 
pluripotency, self-renewal, differentiation, and efficiency of 
cellular reprogramming are largely regulated by ncRNAs 
(51-60). Thus, the ncRNAs may govern the equilibrium 
between pluripotency and differentiation in stem cells, as 
well as lineage specific fate decisions (61,62).

A d d i t i o n a l  r o l e s  f o r  E V- m i R N A s  i n  c e l l u l a r 
d i f f e r en t i a t i on  have  been  obse rved  where  EV-
miR-486 delivery confers a rapid response to hypoxia 
in erythroleukemia cells by targeting Sirt1 gene, and 
modulates hypoxia-induced erythroid differentiation (63). 
Likewise, ESC-derived EVs could transport selective 
subset of miRNA and transcriptional factor related mRNAs 
which may induce pluripotency in their target cells and 
turn on early retinogenic program of differentiation (64). 
EVs could also contribute in hematopoietic progenitor cell 
mobilization through EV-mediated transfer of miRNAs 
which downregulate vascular cell adhesion molecule 
(VCAM1) expression (65). Altogether, these studies 
support the idea that stem cells have evolved mechanisms 
for maintaining stem cell specific features at least, in part 
through EV-mediated dissemination of ncRNAs.

NcRNA transport between stem cells and cancer 
cells: implications in tumor progression

Several studies have demonstrated the role of stem cell-
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derived EVs in tumor progression [reviewed in (1,66-68)]; 
however, the role of stem cell-derived EVs carrying ncRNAs 
in cancer progression are only recently begging to be 
explored. Several layer of evidence has clarified that tumor 
initiation and progression through EV-mediated transport 
of abnormally expressed miRNAs could regulate oncogenic 
pathways (69-73). As such, EV-mediated dissemination of 
miRNAs may consequently contribute to the construction 
of premetastatic niche, metabolic reprograming, and the 
modulation of tumor microenvironment (68,70,74-78).

It has been argued that EVs originated from normal stem 
cells possess regenerative properties, whereas those secreted 
from CSCs exhibit cancer-associated activities (1,66,67,79). 
However, recent reports claim that EVs from normal 
stem cells could also have a profound effect on cancer 
progression and this is largely due to genetic content that is 
being disseminated and the conditions primed by stem cell-
derived EV-ncRNAs in recipient cells. As such, miRNAs 
and long non-coding RNAs (lncRNAs) disseminated from 
stem cells to cancer cells or from cancer cells to stem cells 
could induce bystander oncogenic affects in recipient cells 
and induce metastatic behaviors.

Mechanisms

EV-miRNA dissemination and bystander effects

It has been shown that MSCs express tumor supportive 
miRNA such as miR-21, and miR-34a that are secreted via 
EVs and delivered to cancer cells. The co-incubation of 
EVs with breast cancer cells in vitro allowed the enhanced 
angiogenesis and favored the cancer metastasis in recipient 
cells, whereas in vivo co-injections of EVs along breast 
cancer xenograft permitted the enhanced tumor size in a 
xenograft model (80). These effects were shown by EV-
mediated delivery of miRNAs. Glioma stem cells-derived 
EVs have also been shown to promote the angiogenic ability 
of endothelial cells through activation of miR-21/VEGF 
signaling pathway (81). Similarly, MSC-derived EVs could 
deliver miR-221 into human gastric cancer cells and 
modulate gene expression thereby allowing the proliferation 
and migration of recipient cancer cells (82). Interestingly, 
although EV-encapsulated miRNAs from prostate cancer 
bulk and CSCs reflect distinctly differential patterns; yet act 
cooperatively in cancer metastasis (83).

More lately, it has been reported that the miR-7977 in 
EVs is responsible for the hematopoietic dysfunctioning 
of MSCs by reducing the levels of poly(rc) binding protein 

1 in myeloid neoplasms (84). This failure of normal 
hematopoiesis  is subsequently linked with the progression 
of myeloid neoplasm. This is important to note that EVs 
are not only transferred from stem cells to cancerous cells 
but could also be delivered from cancer cells to stem cells—
a reciprocal transfer. For instance, multiple myeloma (MM) 
cells were shown to deliver miR-146a into MSCs via EVs, 
which resulted into elevated level of cytokine secretion, 
which in turn created a conducive environment to facilitate 
cell viability and migration of MM cells (85). It has been 
shown that adult T-cell leukemia/lymphoma (ATL) cell-
derived EVs could deliver Tax, vascular endothelial growth 
factor (VEGF), and leukemia-related miRNAs such as  
miR-21 and miR-155 to MSCs, which alter their properties 
to create a more conducive milieu for leukemia (86). These 
both reports indicate the contribution of EVs in positive 
feedback loop between cancer cells and MSCs in order to 
favor tumor growth.

Recently, Kumar et al., has revealed that acute myeloid 
leukemia (AML) cells transform/remodel the bone marrow 
niche into a leukemia-permissive microenvironment 
through EV secretion and the downregulation of 
hematopoiet ic  s tem cel l  support ing factors  ( i .e . , 
preparation of normal-hematopoiesis-suppressive  
microenvironment) (87). Engrafted AML-derived EVs 
or pre-conditioning with AML-derived EVs efficiently 
increased the MSC progenitors, blocked osteolineage 
development and bone formation in vivo and ‘primed’ the 
animals for accelerated AML growth. In addition, AML-
derived EVs induced downregulation of hematopoietic stem 
cell supporting factors such as CXCL12, KITL, and IGF1 
in BMMSC and reduced their ability to support normal 
hematopoiesis (87). Altogether, this study uncovers novel 
features of AML pathogenesis and unveils how AML cells 
create a self-strengthening leukemic niche that promotes 
leukemic cell proliferation and survival, while suppressing 
normal hematopoiesis through EV secretion.

Networking between stem-like cells’ subpopulations: 
heterogeneous intra-tumoral ecosystem

Recent body of evidence suggests that EVs and miRNAs 
convey biological material that could rearrange the 
molecular landscape within the heterogeneous intra-
tumoral ecosystem in a cell type-specific manner as shown 
by characterization of miRNA secretion in phenotypically 
diverse subpopulations of glioblastoma stem-like cells 
(GSCs). It was shown that the intratumoral exchange of 
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miRNA could augment the heterogeneity of patient-derived 
GSCs. This was reflected in highly heterogeneous profile 
of miRNA expression in GBM subtypes (88). Moreover, it 
was reported that the expression of the subtype-enriched 
miRNAs such as miR-128 within transcriptionally 
and phenotypically diverse subpopulations of patient-
derived GSCs is a potent mechanism of bidirectional 
transitions between GBM subpopulations (89). This 
could consequently result in intermediate hybrid stages, 
highlighting highly intricate intra-tumoral networking. In 
addition to persistence of intra-tumoral heterogeneity, the 
loss of subtype characteristics in the tumor initiating cell 
compartment may contribute potent role in therapeutic 
resistance. This was shown in a recent study by Rak and 
colleagues where individual tumors derived from the same 
isogenic GSC line were able to express divergent and 
complex profiles of temozolomide resistance markers (90). 
Authors concluded that intrinsic changes in the tumor 
initiating cell compartment may include loss of subtype 
characteristics and reciprocal alterations in sensitivity to 
chemo- and radiation therapy. This divergent evolution of 
chemo-resistance is reflected in EVs (90).

Recently, Figueroa et al., has reported that glioma 
associated-human MSCs (GA-hMSCs)-derived EVs 
facilitate tumor supporting activities of GSCs by transferring 
glioblastoma specific miR-1587 between cells (91).  
Additionally, the comparison of miRNA content of 
EVs  isolated from breast patients revealed stem cell-like 
properties and metastatic signature from patients with 
worse prognosis (92). This data supports the view that 
cancer cells with stem-like properties and their EVs could 
potentially aggravate tumor progression and metastasis.

Resistance to chemotherapies and tumor progression

Emerging studies indicated that CSCs represent a 
subpopulation of cells within the tumor that is responsible 
for chemotherapeutic resistance. In this context, one 
of the emerging roles of stem cell-derived EVs is their 
contribution to mediate cancer cell resistance against 
therapies (18), and promote tumor growth. The most 
propelling examples are those observed from MSCs. It has 
been recently demonstrated that breast cancer cells educate 
MSCs to release EVs with distinct miRNA content, such 
as miR-222/223, which promotes quiescence in a subset 
of cancer cells and confers drug resistance (93). In an 
immunodeficient mouse model of dormant breast cancer, 
the systemic administration of MSC-derived EVs loaded 

with antagomiR-222/223 efficiently sensitized breast cancer 
cells to carboplatin-based therapy and increased host 
survival. This indicates the role of EV-miRNA to mediate 
regulatory interactions between MSCs and breast cancer 
cells in the evolution of tumor dormancy and resurgence in 
the local metastatic microenvironment (93). Interestingly, 
this approach may favor the development of nontoxic 
therapeutic strategy to target dormant breast cancer cells 
for enhancing drug sensitivity and tumor monitoring.

C a n c e r  c e l l  d e r i v e d  E V- m i R N A s  h a v e  b e e n 
implicated in the maintenance of stem cell property and 
chemotherapeutic resistance in cancer cells. For instance 
upregulation of miR-196b-5p in colorectal cancer (CRC) 
tissues enhances the spheroids formation ability, the fraction 
of stem-like subpopulations and the expression of stem cell 
factors (94). Moreover, miR-196b-5p is highly enriched 
in the serum EVs of patients whereby elevated expression 
of miR-196b-5p promotes stemness and chemoresistance 
of CRC cells against 5-fluorouracil via targeting SOCS1 
and SOCS3 of STAT3 signaling pathway, and subsequent 
activation of STAT3 signaling pathway.

MSCs-derived EVs contain over expressed miRNA-23b, 
which promotes dormancy in metastatic breast cancer cells 
by suppressing MARCKS target gene (95). EVs transfer 
miRNAs to breast cancer cells which could potentially 
regulate chemoresistance in recipient cancer cells as 
well as in CSCs (96). In another example, the miRNAs 
from cancer-associated adipocytes and cancer associated 
fibroblasts  could be transported to ovarian cancer cells 
via EVs, which confer paclitaxel resistance by suppressing 
apoptotic peptidase activating factor 1 (APAF1) in recipient 
cancer cells (97). In addition to their contribution as 
mediators of chemoresistance, EVs may also facilitate 
chemosensitivity in cancer cells. EVs derived from AD-
MSCs are implicated in promoting chemosensitivity in 
HCC and favor antitumor efficacy of chemotherapeutic 
agents in recipient cancer cells (98). The AD-MSCs 
transfected with miR-122, tether miRNA into EVs, that is 
taken by HCC upon co-incubation of EVs with HCC cells 
and promotes increased sensitivity to chemotherapeutic 
agents (98). Collectively these studies could offer a potential 
rational for combining EV-mediated anti-miRNA strategies 
with conventional chemotherapy against cancer.

LncRNAs in stem cell-derived EVs and tumor progression

Although, the role of EV-associated lncRNAs from various 
cell types has been demonstrated in the progression of 
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cancer and resistance to therapies (18); however, there is 
limited knowledge about the contribution of stem cell-
derived EV-lncRNAs in cancer progression. Recent 
studies demonstrate that lncRNAs in EVs are transferred 
in both directions i.e. from stem cells to cancer cells as 
well as from cancer cells to stem cells and act differently 
in cancer progression. For instance, CD90+ liver cancer 
cells modulate endothelial cell phenotype and promote 
angiogenesis through EV-contained H19 lncRNA (99). 
However, EVs from parental hepatoma cells lacking CD90 
do not exhibit such features, indicating that such features 
of EV-linked H19 are exclusive to CD90+ cancer stem-cell-
like cells. Conversely, cancer cells may transfer lncRNA 
molecules to stem cells and modulate their behaviors. For 
example, MSCs treated with lung cancer-derived EVs 
revealed that EVs from cancer cells could initiate global 
changes in lncRNA expression in MSCs (100).

Anti-tumor effects of stem cell-derived EV-miRNAs and 
tumor inhibition

Interestingly, in addition to their participation in cancer 
progression, the stem cell-derived EV-miRNAs are well 
appreciated for their contribution in tumor inhibition. 
For instance, EVs from a conditioned medium of AD-
MSCs could induce apoptosis signaling in cancer cells by 
upregulating different pro-apoptotic signaling molecules, 
such as BAX, CASP9, and CASP3, and downregulating 
the anti-apoptotic protein BCL2 (101). EVs treatment 
exhibited the reduced viability of ovarian cancer cells. 
Additionally, sequencing of EV-RNAs revealed a rich 
population of miRNAs, which exhibit anti-cancer activities 
by targeting different molecules associated with cancer 
survival (102). These findings are in agreement with 
previously reported tumor inhibitory activities of AD-
MSC derived EVs (101). In fact, miR-145 from AD-
MSC derived EVs could extend the inhibitory effects of 
MSCs on prostate cancer by blocking the activities of 
anti-apoptotic Bclxl protein, followed by increased cell 
apoptosis of prostate cancer cells (101).

EVs-mediated delivery of selective miRNAs from 
HLSCs may reprogram HepG2 hepatoma and primary 
hepatocellular carcinoma cells by inhibiting their growth 
and survival in vitro (103). In vivo intra-tumor administration 
and uptake of HLSC-EVs in severe combined immune 
deficiency (SCID) mice may induce regression of ectopic 
tumors developed through the delivery of miRNAs to 
tumor cells. The antitumor effect of HLSC-EVs and 

miRNA delivery was also observed in tumors other than 
hepatoma such as lymphoblastoma and glioblastoma, which 
showed that the delivery of selected miRNAs by stem cell-
EVs efficiently inhibits tumor growth and may stimulate 
apoptosis (103).

Fareh et al. has shown that primary glioma cells transport 
miR-302-367 to neighboring GBM cells via EVs, which 
could modulate the expression of stemness markers, as well 
as the proliferation and the tumorigenicity of recipient 
GBM cells (104). Importantly, EV-mediated transfer of 
miR-302-367 elicited the inhibition of its targets such 
as CXCR4/SDF1, SHH, cyclin D, cyclin A and E2F1 in 
recipient GBM cells indicating their effect on cell cycle 
inhibition. Furthermore, the orthotopic xenograft of miR-
302-367-expressing cells together with GSCs efficiently 
altered the tumor development in mice brain (104). This 
indicates that EVs could be exploited as vectors of cell cycle 
inhibition in cancer cells. MSCs transfected with miR-146b 
produce EVs loaded with exogenous miR-146b; whereas, 
intra-tumor injection of miR-146 containing EVs could 
significantly reduce glioma xenograft growth in a rat model 
of primary brain tumor (105). MSC-derived EVs transfer 
miR-100 to breast cancer cells which down-regulates 
VEGF expression (106). Moreover, downregulation of 
VEGF expression by MSC-derived EV-miR-100 could 
affect the vascular behavior of endothelial cells in vitro. 
This indicates that EV-mediated transfer of miR-100 
to cancer cells paracrine effects of MSC-derived EVs in 
modulating vascular responses (angiogenesis) within the 
microenvironment of cancer cells, thus offering a vector of 
targeting cancer angiogenesis.

EVs derived from menstrual stem cells (MenSCs) are 
capable to inhibit prostate tumor through inhibiting reactive 
oxygen species (ROS) (107). In fact, the endometrial cells 
are fine regulators of the angiogenic process during the 
menstrual cycle that includes an angiostatic condition. EVs 
from MenSCs could induce a reduction in VEGF secretion 
and NF-κB activity in prostate cancer cells. The ROS 
production was reduced in EV-treated cells, suggesting 
that the inhibition of the intracellular ROS influences both 
VEGF and NF-κB pathways (including the inhibition of 
VEGF and HIF-1α expression). This indicates that the 
MenSCs-EVs suppress the secretion of pro-angiogenic 
factors by prostate cancer cells in a ROS-dependent 
manner. Importantly, the anti-angiogenic effect of EVs 
is specific to the menstrual cell source, as the BMMSC-
derived EVs showed an opposite effect on the VEGF and 
bFGF expression in tumor cells. Since the MenSCs-derived 
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EVs act as blockers of the tumor-induced angiogenesis, 
therefore they could be suitable candidates for anti-cancer 
therapies. In a previous study, MSC-derived EVs were 
shown to significantly down-regulate the VEGF expression 
in tumor cells, which lead to inhibition of angiogenesis 
in vitro and in vivo (108). It was shown that MSC-derived 
EVs are enriched in anti-angiogenic miRNA-16 that is 
internalized by breast cancer cells and suppress VEGF 
expression thereby favoring the inhibition of angiogenesis 
in recipient tumor cells.

Concluding remarks

EVs secreted from MSCs, cancer-like stem cells, and cancer 
cells actively disseminate biologically active cargos, which 
could facilitate tumor progression directly or through 
relaying bystander effects. The tumor promoting activities 
are shared between normal stem cells of various tissue 
origins, cancer stem like-cells (i.e., CSCs), and cancer 
cells in an intricate intratumoral network to create self-
strengthening tumor niche, where EV-ncRNAs serve as 
mediators to transmit bystander effects of secreting cells 
into recipient cells for priming a conducive environment. 
It could be speculated that EV-based cancer-initiating 
activities of CSCs (i.e., identification of cancer initiating 
cells-CICs), and functional enrichment could add a layer of 
valuable knowledge to explain cancer-initiating models (1). 
In this context, CSC-subpopulation specific EV-ncRNAs 
could contribute new knowledge for resolving the existing 
controversies in cancer-initiating activities and enrichment, 
which are hotly debated issues in CSC model and the 
stochastic cancer model.

Given that the MSC-derived or cancer cell-derived 
EV-ncRNAs facilitate positive feedback loop between 
cancer cells and MSCs to create a tumor permissive 
microenvironment; this knowledge could be a potential 
target to create a suppressive microenvironment for 
targeting tumor growth. Indeed, EVs are efficient 
biological vehicles of cargo delivery between cells. This 
indicates that EVs, particularly MSC-derived EVs could be 
engineered for the delivery of anti-cancer drugs and genes 
(antagonistic miRNAs or siRNA) for CSC targeting therapy 
or MSC-based targeting therapies for monitoring cancer  
pathways (66). However, the procedures of obtaining EVs 
from desired sources for therapeutic purposes need robust 
and sensitive capture techniques and the endorsement 
of therapeutic potencies of EVs in clinical settings needs 
rigorous validation in model animals.
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