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The balance between quiescence and proliferation, self-
renewal and differentiation of stem cells is critical for 
maintaining tissue homeostasis and avoiding premature 
stem/progenitor cell exhaustion (1,2). Spermatogenesis 
is a well-characterized stem cell-dependent process. 
Spermatogonial stem cells (SSCs), which have the ability 
to self-renew and differentiate to form sperm, are the 
foundation for subsequent rounds of spermatogenesis in 
testes (3). The genetic and epigenetic integrity of SSCs 
are critical for long-term male fertility and the health of 
offspring. 

Infertility has become an increasing problem for (about 
15%) human couples worldwide, and many male-related 
infertility cases result from impaired undifferentiated 
spermatogonia (4,5). In addition, people from North 
America, Europe, Australia and New Zealand have 
significant (about 50%) drop in sperm counts in ejaculated 
semen (6). Further insights into the cellular and molecular 
properties of human spermatogonia stem cells (hSSCs) 
and the mechanisms for the development of functional 
germ cells are necessary to understand the rising rates of 
infertility.

Recently, Guo et al. (7) from the Cairns laboratory 

took up this challenge and reported dynamic cell fate 
commitment during differentiation of hSSCs with 
comprehensive epigenome and transcriptome analysis. They 
demonstrated that (I) open chromatin in hSSCs correlates 
with binding motifs for pioneer factors and hormone 
receptors; (II) differentiation of hSSCs can be classified into 
four sequential cellular/developmental states and (III) a key 
transition involves the cell cycle, transcriptional factors, 
signaling pathways and the metabolism. These data will not 
only fill the knowledge gap regarding epigenomic aspects of 
hSSCs, but will also provide insights into the mechanistic 
differences between human and mouse spermatogenesis, in 
which intense mechanistic studies have already been done 
using genetically modified mouse models.

While it is conceptually straightforward that SSCs refer 
to the population bearing the abilities for self-renewal, 
differentiation and shifting into quiescence status, it is 
difficult to identify a specific population representing 
SSCs alone. The identity of SSCs in mammals has been 
debated for decades. It is technically challenging to validate 
“stemness”. The standard method for a functional test in 
mice is to combine lineage tracing and transplantation 
of SSC candidates to busulfan treated testis, which then 
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demonstrate their ability to repopulate the pretreated 
germ cell free seminiferous tubules and perform full 
spermatogenesis (8). In humans, xenotransplanting hSSC 
candidate to busulfan treated mouse testis is the only 
method. However, the murine SSC niche cannot maintain 
hSSCs efficiently. Most are lost by differentiation preceded 
by active proliferation (which is probably associated with 
differentiation). Although several specific markers enriched 
in certain populations of undifferentiated spermatogonia 
have been identified, the heterogeneity and plasticity of 
undifferentiated spermatogonia presumably underlie the 
stem cell pool in testes rather than comprising a homogenous 
cell population with a definitive marker of SSC (9). 

Markers for SSC-containing spermatogonia population 
include THY1, ID4, GFRA1, NANOS2, OCT4, PLZF, 
and DNMT3L for mice (8,10-14), and SSEA4, GFRA1, 
BCL6, FGFR3, ID4, SALL4, and ETV5 for humans. 
Only a portion of THY1+ cells or SALL4+ cells, for 
example, contain SSC activity (15). These markers are 
usually enriched in the A-single to A-align undifferentiated 
spermatogonia based on whole-mount immunostaining of 
seminiferous tubules, and are expressed in spermatogonia 
directly attached to the basal membrane of the seminiferous 
tubules based on immunohistochemical staining of 
testis sections (8). With the heterogeneous nature of the 
spermatogonia population, even the best markers identified 
so far could contain a certain percentage of SSCs, but not 
every single cell from the population exhibits full SSC 
function. In addition, the undifferentiated spermatogonia 
may retain plasticity. While it is generally accepted that 
A-single spermatogonia have the SSC property, mouse 
A-paired to A-aligned cells are able to break down to 
A-single status (16). Furthermore, Ngn3-positive transit 
amplifying cells have the ability to dedifferentiate into SSCs 
under an injury-repair based model (17).

One of the most effective ways forward for tackling 
the detailed property of SSCs would be to take advantage 
of the single cell techniques to dissect the heterogeneous 
issue of hSSCs containing the spermatogonia population, 
as demonstrated by this recent milestone paper from the 
Cairns laboratory (7). They isolated the SSEA4+ hSSCs 
and c-KIT+ spermatogonia from the testis of five patients 
experiencing idiopathic pain, not related to cancer or major 
inflammation. The choice of SSEA4+ cells to represent 
hSSCs was based on the following criteria: (I) only a small 
number of spermatogonia are positive; (II) SSEA4-positive 
cells exhibit higher telomerase activity; (III) they colonize 
the murine testes (15), suggesting at least a portion of cells 

from this population have SSC properties. 
In single cell transcriptome analysis of SSEA4+ and 

c-KIT+ cells, potential intermediate/transitional states 
were detected between SSEA4+ and c-KIT+ cells, and a 
“pseudotime model” of hSSCs differentiation, based on 
the deduced sequential gene expression gathered from 
individual cells, has been proposed (7). The development 
from SSEA4+

 
hSSCs to c-KIT+

 
spermatogonia can be 

divided into four states. For state 1, the quiescent state, the 
SSEA4+ cells express the genes from cluster A (enriched in 
RNAs encoding transcription factors) and cluster B (enriched 
in stem cell signaling factors and zinc finger transcription 
factors). In state 2, cells leaving the quiescent state, cluster 
A genes are down regulated and cluster D (enriched in 
genes promoting cell-cycle, replication, and DNA repair 
factors) are upregulated. In state 3, when cells transit into 
the differentiation and proliferative state, cluster B genes 
are down regulated and cluster C (enriched in transcription 
factors associated with spermatogonial differentiation, 
signaling receptors, and mitochondrial factors/regulators) 
are upregulated. In state 4, when cells proceed to the 
differentiation and proliferative state, they constantly 
express cluster C and D genes. Many novel hSSCs markers 
correlating to the quiescent hSSCs can be used in the future 
to isolate or label this specific subtype of hSSCs for the next 
round of epigenomic and single cell transcriptomic studies, 
as well as real-time imaging from explant cultures of human 
seminiferous tubules. These potential follow-up studies 
could shed significant light on the enigmatic population 
critical for long-term male fertility.

Furthermore, key pathways during spermatogonial 
transition were identified. For example, INTEGRIN/TSPAN 
and NOTCH/HES1 pathway are highly enriched in hSSCs. 
By contrast, NMD, meiosis, and DNA recombination-related 
gene are highly expressed in KIT+ cells. Chromatin factors 
including the PRC1 complex, which regulates expression 
of germline genes in mouse spermatogonia (18), are also 
upregulated in hSSCs. However, unlike mouse SSCs, POU5F1 
(OCT4) expression was not detected in hSSCs, and the Pou5f1 
promoter was highly methylated in hSSCs. Interestingly, 
while two core pluripotent genes (OCT4/POU5F1 and 
NANOG) are repressed in both DNA methylation and 
chromatin levels in hSSCs, other pluripotency factors KLF4, 
SALL4, TCF3, MBD3, STAT3, and KLF2, are consistently 
expressed in hSSCs. Hypomethylation and open chromatin 
in germline-expressed genes (DDX4 and DAZL) confirm 
the germ cell epigenetic/transcription status of SSEA4+ 
hSSCs. It seems that hSSCs suppress core pluripotent factors, 
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OCT4 and NANOG, to maintain unipotent germ cell identity 
while keeping other pluripotent factors active or poised, in 
preparation to acquire totipotency after fertilization. Another 
angle to this phenomenon would be that these hSSCs’ active 
pluripotent genes, KLF4, SALL4, TCF3, etc., have other 
necessary functions in hSSCs, similar but not identical to their 
role in pluripotent stem cells. For example, the deregulation 
of SALL4A and SALL4B in Dnmt3l KO mice has been 
associated with failed maintenance of sufficient quiescent SSCs 
that eventually leads to a germ line exhaustion phenotype (14). 

Together, Guo et al. (7) demonstrated novel signaling 
pathways and potential positive and negative feedback loops 
among a few stage dependently expressed gene clusters 
during hSSC transition from quiescent to proliferative and 
from self-renewal to differentiation, based on the single 
cell transcriptome analysis. One of the most effective ways 
to functionally validate these findings would be to perform 
hypothesis driven genetic modifications on cultured hSSCs 
differentiating in vitro. However, while mouse SSCs have 
been successfully cultured in vitro (19-21), this feat has not 
been achieved yet for hSSCs, due to the difference in the 
microenvironment needed for maintaining stemness of 
hSSCs. The hSSC-specific signaling pathways identified in 
the quiescent and proliferative hSSC population may provide 
critical insights to facilitate the hSSC culture in vitro. 

Guo et al. (7) further investigated chromatin status in 
SSCs, which plays a key role in modulating the transition of 
gene expression determining the process of spermatogenic 
differentiation. To elucidate these changes, Guo et al. 
profiled DNA methylation [via whole-genome bisulfite 
sequencing (WGBS)], chromatin accessibility [via ATAC 
sequencing (ATAC-seq)], and transcriptome (via RNA-seq)  
from the isolated bulk population of SSEA4+ hSSCs and 
c-KIT+ spermatogonia. This study is the first global 
profiling of these features of the cell population containing 
hSSCs. While hSSCs may not be solely determined by the 
marker SSEA4, this study is still an important milestone for 
future studies on human spermatogenesis. 

DNA methylation analysis in SSEA4+ hSSCs by WGBS 
demonstrates that DNA methylation does not markedly 
change between hSSCs and mature sperm (7), consistent 
with the study in mice (22). Although these results 
represent overall features of DNA methylation in human 
and mouse spermatogenesis, further investigation of DNA 
methylation in mice identified differentially methylated 
regions during spermatogonial differentiation that correlates 
with developmental programs of spermatogenesis (23,24). 
Therefore, it is possible that DNA methylation is precisely 

regulated in each stage of human spermatogenesis at specific 
loci. Starting from this study in hSSCs, detailed investigation 
on the stage specific regulation of DNA methylation in 
human spermatogenesis is warranted in future studies.

By ATAC-seq analysis in hSSCs, Guo et al. identified 
a specific motif with high chromatin accessibility in  
36,048 hSSCs. They also detected pioneer factor (CTCFL/
BORIS, DMRT1, NFYA/B) and hormone receptor (HRE, 
GR, AR) binding motifs at these regions. Although another 
study on ATAC-seq analysis in mouse spermatogenesis 
identified common sites in accessible chromatin (25), the stage 
of enrichment is different. For example, NFYA/B sites appear in 
accessible chromatin in meiotic spermatocytes in mice, but not 
in undifferentiating spermatogonia (25). Therefore, it would be 
intriguing to speculate that the gene expression programs are 
distinct between human and mouse spermatogenesis. 

Guo et al. further identified unique features of repeat 
elements and demonstrated that the Satellite elements were 
hypomethylated in hSSCs (7), unlike ES cells and other 
somatic lineages. Expression of ACRO1 satellites were 
significantly increased from fertilization onward, providing 
an interpretation that hypomethylation of ACRO1 satellites 
in hSSCs poises the ACRO1 satellites to be activated after 
fertilization. Also, some LTR elements (LTR12C, LTR12D 
and LTR12E) show moderate chromatin opening in hSSCs 
that is enriched with NFYA/B motif, but not in ES cells. 
These elements belong to a superfamily of endogenous 
retrovirus, the ERV1 superfamily. In mice, transcription of 
another superfamily of endogenous retrovirus ERVL was 
associated with germline expression during spermatogenesis 
and oogenesis (26,27). However, association of ERV1 in 
gametogenesis has not been reported. Therefore, the study 
presents a novel feature of repeat elements in the regulation 
of human gametogenesis distinct from that in mice. 

The discoveries and resources from Guo et al. shed 
significant light on the current understanding of states and 
properties of hSSCs and their derivatives. More importantly, 
it provides a solid foundation for future experiments. For 
example, combined with the novel “Abseq” single cell 
protein profiling methods by barcoding antibodies (28), 
one can validate the single cell RNA-seq results and further 
study the protein dynamics of various hSSC subtypes in 
ultrahigh-throughput fashion. The ultimate goal would 
be to compile imaging technology and the outcome of the 
single cell transcriptome/protein profiling result. 

The contribution from this recent publication and 
potential follow up studies from the Carines laboratory can 
be applied in a stepwise manner: (I) one can take advantage 
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of the novel markers identified in various spermatogonia 
states to isolate or label subpopulations for more detailed 
transcriptomic/proteomic profiling and visualization and 
to further characterize heterogeneity of hSSCs and their 
derivatives, as described in more detail above. Molecular 
profiling of the specific subtypes of somatic niche cells also 
provide important information; (II) one can establish a novel 
in vitro culture microenvironment with the signaling factors 
deduced from Guo et al. to facilitate functional manipulation 
and drug screening. The in vitro culture system has taught 
us a great deal about mouse SSC properties. However, 
as the current culture system constantly selects for faster 
proliferating cells, it usually under-represents the quiescent 
population of SSCs, which could be the most critical cell 
population for long-term male fertility. For example, the 
DNMT3L+ quiescent SSCs population that compose around 
a quarter of freshly isolated THY1+ cells in mice (8,14) cannot 
be found in cultured SSCs. On the other hand, applying 3D 
culture/printing technology that merges biomaterial with 
germ cells or even somatic cells to reconstruct the hSSC 
niche may provide new hope, since certain extracellular 
matrix components and biomaterials tend to guide stem cells 
back into a quiescent status (29,30). With the sperm count 
for a significant portion of the human population decreasing, 
there is a need to mitigate infertility issues. A successful hSSC 
culture system would not only be applicable for revealing 
more basic knowledge, but would also provide a platform for 
drug screening to secure human fertility. In contrast, driving 
hSSCs into reversible quiescent status, although a long shot, 
can also be a potential alternative direction for birth control. 
The knowledge for guiding SSCs in and out of quiescent 
status may further be applied to manage farm animals or 
endangered species with seasonal breeding traits.
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