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Introduction

Sarcomas are biologically and clinically heterogeneous 
malignant connective t issue tumors aris ing from 
mesenchymal or ectodermal tissues. They often harbor 
relatively specific genetic aberrations, the recognition of 
which can be used as a diagnostic tool as well as a potential 
prognostic/predictive marker (1,2). For instance, the 
fusion of PAX3-FOXO1 in ARMS, EWS-FLI1 in Ewing 
sarcoma, COL1A1-PDGFB fusion in dermatofibrosarcoma 
protuberans (DFSP) and SYT-SSX in synovial sarcoma 
can be used as diagnostic makers (3). Mutations in key 
genes and signaling pathways such as C-KIT, PDGFRA 
and BRAF have been targeted by specific drugs such as 
imatinib and vemurafenib (1,2). Co-amplified oncogenes 

cyclin-dependent kinase 4 (CDK4) and MDM2 can serve 
as confirmatory diagnostic markers and as potential 
pharmacological targets in well-differentiated and 
dedifferentiated liposarcomas (4).

Based on the multiple histological morphology and 
genetic characteristics, sarcomas have been divided into a 
broad spectrum of subtypes recognized in the 2013 WHO 
classification of tumors (3). Despite conventional multi-
modality treatment approaches (surgery, chemotherapy, and 
radiation therapy), sarcoma patients have disproportionally 
higher rates of morbidity and mortality than those with 
other cancers. Investigations into the biology of sarcoma 
resistance to therapy and sarcoma relapses have resulted 
in the development of the mesenchymal stem/progenitor 
cell (MSC) hypothesis (5). Investigating the possible 
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relationship between the MSCs and sarcoma will gain a 
better understanding of sarcoma biology. Moreover, these 
studies might provide better opportunities to discover novel 
treatment strategies.

 

Correlation of MSCs, cancer stem cell (CSCs) 
and tumor-initiating cells (TICs)

Increasing evidence suggests that MSCs might be the TICs 
capable of initiating sarcomagenesis (6-9), although there 
is still great controversy about the nature and relation of 
MSCs, CSCs and TICs. There are also studies supporting 
that sarcomas could represent good examples of the CSC 
model and these sarcoma CSCs display MSCs properties 
(10,11). CSCs that display tumor re-initiating properties 
have been recently identified in chondrosarcoma (9), 
osteosarcoma (8), Ewing’s sarcoma (12) and synovial 
sarcoma (13). These CSCs are characterized by expression 
of markers OCT3/4, NANOG and SOX2 (5,8,9,14). These 
CSCs are also able to self-renew and able to sustain the 
tumor in the serial transplantation experiments (5,8,9,14). 
More importantly, many of these CSCs express MSC 
markers and retain MSC differentiation properties in vitro (13). 
In addition, these MSC-like CSCs are associated with drug 
resistance and metastasis, which might be responsible for 
the relapse of sarcomas (8,15-17). Therefore, MSCs may 
not only be the TICs in sarcomas, but also a population 
of altered CSCs which are responsible for maintaining 
tumor growth and initiating tumorigenesis upon serial 
transplantation.

Important factors involved in the MSC 
transformation

Transformation of MSCs has been achieved by several 
methods including knockout of tumor suppressor genes, 
overexpression of oncogenes and drug administration to 
affect signaling pathways (6). 

During the transformation process there are remarkable 
deregulations of the tumor suppressor genes and signaling 
pathways. For instance, in mouse adipose derived MSCs 
(ADSC), the loss of tumor suppressor P21 and TP53 could 
induce in vitro transformation and so-called fibrosarcoma 
formation in vivo after transplantation (18). In another 
study, both Tp53–/– Rb–/– and Tp53–/– mouse ADSCs were 
generated and leiomyosarcoma-like tumors were developed 
in the in vivo tumorigenicity assays of these two types of 
mouse ADSCs (19). Furthermore, the combination of 

Cdkn2a loss and C-myc overexpression in mouse MSCs 
induced osteosarcomas accompanied by the loss of 
adipogenic differentiation capacity (20). 

In addition to directly targeting in vitro cultured 
MSCs, the genetically engineered mouse models have 
been used to explore the roles of such genes in the MSC 
transformation. In P53-deficient mice, many types of 
sarcomas occurred in the mesenchymal cells of limb buds, 
which osteosarcoma was the most common type (21). These 
induced transformation studies established the importance 
of the P53 and P53 pathway in preventing mouse MSC 
transformation (22,23). 

Additionally, upregulated oncogenic pathways also can 
induce or potentiate mouse MSC transformation. For 
instance, the Fos overexpression transgenic mice resulted 
in the development of bone tumors, with chondrosarcomas 
as the main type (24). In mice, overexpression of K-ras 
in addition to P53 loss induced sarcoma formation more 
efficiently than with P53 loss alone (25). These studies 
evaluate the roles of different oncogenic pathways in mouse 
MSC transformation.

Similarly, most studies of human MSC transformation 
are also based on genetic methods to knock out important 
tumor suppressor genes and overexpress certain oncogenes, 
such as the exogenous expression of hTERT (11,26-28). 
Consistent with MSC studies in mice, the disruption 
of P53 and RB pathways are also important for human 
MSC transformation. For instance, the introduction 
of SV40-LT, which perturbs both P53 and RB proteins, 
potently promoted human MSC transformation (26). 
Furthermore, the overexpression of some oncogenes 
such as H-RAS has also been shown to contribute to 
the transformation (26). In all, the deregulation of some 
important signal pathways including P53 pathway, RB 
pathway, PI3K-AKT pathway, WNT/β-catenin signaling 
pathway and MAPK pathway might be involved in the MSC 
transformation and sarcoma formation (29). 

It is worth noting that overexpression of sarcoma-
specific fusion proteins in mMSCs and mouse models 
could reproduce several sarcomas (13,14,19,30-36). 
Ewing’s sarcoma, MLS, ARMS and synovial sarcoma 
have been reproduced upon expression of EWS-FLI-1, 
FUS-CHOP, PAX-FKHR and SYT-SSX, respectively 
(13,14,19,30-36). For instance in mouse MSCs the 
exogenous expression of the fusion gene EWS-FLI1 alone 
could transform these MSCs, which are characterized by 
in vitro immortalization and in vivo sarcomatous tumor 
formation, even a secondary genetic alteration was 
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needed (33,34). Similarly, human MSCs with exogenous 
EWS-FLI1 expression were transformed and expressed 
neuroectodermal markers (35). On the contrary, the 
knockdown of EWS-FLI1 expression in Ewing sarcoma 
cell lines restored the in vitro trilineage differentiation 
ability of the cells (12). In a transgenic mouse model, by 
expressing EWS-FLI1 gene specifically in the mesoderm-
originated tissues in limbs and simultaneous Tp53 
knockout, sarcomas with similar characteristics as Ewing 
sarcoma occurred (36).

Functional and descriptive assays of MSCs

The stem cell assays including functional and descriptive 
assays are used to characterize MSCs. The functional 
assays include the colony-forming assay, tumorigenesis, dye 
efflux, chemoresistance and differentiation. The descriptive 
assays include the expression of stem cell genes, aldehyde 
dehydrogenase activity (ALDH), and side population (SP) 
(5,7,10,11,17,37,38). Approaches used to identify both 
normal stem cells and MSC populations include cell surface 
markers, ALDH, SPs etc. (7,37,38).

MSCs are believed to have an increased ability to form 
colonies from a single cell and the colony-forming assays 
are the most commonly used methods although there are 
several issues about this method (39). The general “gold 
standard” characteristic of MSCs is the ability to grow 
serially transplantable tumors in immunodeficient mice (40). 
ATP-binding cassette (ABC) transporter efflux of DNA-
binding dyes is also generally used as an indicator of stem 
cell properties (41). Somewhat related to drug efflux, 
chemotherapy resistance is also considered as a hallmark 
of MSCs (17). Differentiation into mesenchymal cell types 
such as osteoblasts, adipocytes, and chondrocytes is typically 
evaluated, based on the theory that a MSC has undergone 
malignant transformation (42). 

Expression of so-called “stem cell genes” such as 
CD20, CD24, CD34, CD44, CD90, CD117, CD133, 
OCT4, SOX2, and NANOG is used as markers of MSCs 
(43,44). High activity of ADLH may play a role in early 
differentiation of stem cells through oxidizing retinol to 
retinoic acid and can confer resistance to chemotherapeutic 
agents such as cyclophosphamide (45,46). Cells termed 
the “SP” due to its position in the flow cytometry plot were 
found to have many of the characteristics of stem cells (47).  
Several groups have used SP as a sign of “stemness” to 
support the idea that the marker they were studying 
identified stem cells (38,41).

The MSC origin of sarcomas

Osteosarcoma

Different studies have supported the MSC origin of 
osteosarcoma (20,22). Tsuchida and colleagues firstly 
reported that SP cells isolated from the osteosarcoma cell 
line by exposure of the HOS osteosarcoma cell line to 
cisplatin showed stem cell-like properties (48). Tirino et al. 
evaluated the utility of CD133 expression to identify and 
isolate a subpopulation of cells with stem cell properties 
in osteosarcoma cell lines. Examination of osteosarcoma 
cell lines identified a subpopulation of CD133+ cells which 
exhibited self-renewal properties, higher proliferative 
rates, spherical colony formation, and expression of the 
stem cell-associated gene OCT3/4 (49,50). Wang et al. 
demonstrated a subpopulation with high ALDH activity in 
the osteosarcoma cell line OS99-1 (51). These cells were 
able to grow xenografts in NOD/SCID mice, and showed 
characteristic CSC features including self-renewal, ability 
to produce differentiated progeny, and increased expression 
of the stem cell genes OCT3/4A, NANOG, and SOX-2 (51). 
Most importantly, Adhikari and colleagues discovered 
that mouse and human osteosarcoma cell lines positive for 
both CD117 and Stro-1 (two MSC markers) demonstrated 
typical stem cell characteristics (8). Validation of the stem 
cell-like properties would further strengthen the utility of 
CD117 and Stro-1 marker expression as specific markers 
for the identification and isolation of MSC population in 
osteosarcoma.

Ewing sarcoma

Suva and colleagues were the first to report on the isolation 
of CD133+ cells derived from primary Ewing sarcoma 
tumors. They showed that these CD133+ cells demonstrated 
abilities of initiating and forming tumors in NOD/SCID 
mice and recapitulating the parental tumor phenotype 
(5,52). The CD133+ Ewing’s sarcoma also expressed 
significantly higher levels of the stem cell genes OCT4, 
SOX2, and NANOG. Jiang and colleagues investigated 
the expression of CD133 in 48 primary Ewing’s tumors 
and cell lines and found that most of them had very low or 
absent expression of the CD133– encoding gene PROM1 
while 4 cases had overexpression of PROM1. Of these four 
cases with overexpression of PROM1, two were found 
to have quickly developed a chemoresistant tumor while 
the other two were long-term survivors after receiving  
chemotherapy (53). These results suggest that heterogeneity 
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of CD133 expression in Ewing’s sarcomas and a variable 
prognostic impact of the level of CD133 expression.

The utility of SP cells to identify MSCs in Ewing 
sarcoma has also been explored. Yang and colleagues 
isolated the SP fraction from the Ewing sarcoma cell line 
SK-ES-1 and showed that the SP cells exhibited increased 
stem cell features such as clonogenicity, invasive behavior, 
and cytotoxic drug resistance (54). Isolation of cells with 
high ALDH activity has also shown promise in identifying 
cell populations in Ewing sarcoma enriched for MSCs. 
Awad and colleagues examined Ewing sarcoma cell lines 
and patient-derived Ewing sarcoma xenograft tumors and 
found that the cells from the ALDHHigh sub-population 
demonstrated stem cell properties including highly 
tumorigenic and more resistant to the chemotherapy (55).

Rhabdomyosarcoma

Similar to Ewing sarcoma, the PAX3/FOXO1and PAX7/
FOXO1 have classically characterized a more clinically 
aggressive subset of RMS referred to as the alveolar variant. 
Komuro and colleagues showed that RMS possessed SP 
cells based on Hoechst 33342 dye exclusion (56). More 
recently, Walter and colleagues demonstrated that some 
RMS cell lines possessed stem cell properties including 
elevated expression of stem cell markers (OCT-4, NANOG, 
c-MYC, SOX2, and PAX3) and formed tumors at lower cell 
densities compared to adherent cells (57). The investigators 
further sorted the cells and isolated a CD133+ cell fraction 
which showed typical stem cell features. Furthermore, this 
study also suggested that CD133 expression in RMS may 
not only be useful in enriching for candidate sarcoma stem 
cells, but may also have clinical utility in predicting survival 
outcomes (53,57). 

Synovial sarcoma

In synovial sarcoma, exogenous expression of SYT-
SSX2 fusion gene in the skeletal-muscle-specific Myf5 
expressing lineage induced the formation of synovial 
sarcomas in vivo (58). Additionally, in primary synovial 
sarcoma cells the fusion gene silencing restored both the 
trilineage differentiation capacity and the MSC marker 
expression, which strongly suggests the cells of MSC 
lineage was the origin of synovial sarcoma (13). Terry and 
Nielsen have shown subpopulations of CD133 expressing 
cells in primary synovial sarcomas and synovial sarcoma 
cell lines (59).

Other sarcomas

In chondrosarcoma, a study found that less differentiated 
tumors were shown to have more similarity with MSCs of 
pre-chondrogenic stages, while more differentiated tumors 
share more similarity with fully differentiated chondrocytes (60). 
This suggests that chondrosarcoma progression probably 
parallels deregulated chondrocytes differentiation process 
of MSCs (60,61). Additional, chondrosarcoma cells derived 
from primary tumors and enriched for CD133, which 
showed potent stem cell potential (50).

Liposarcoma is also found in MSC origin. In a mouse 
model of liposarcoma, where FUS-CHOP was able to induce 
liposarcoma genesis in MSCs, whereas no liposarcoma 
was formed when FUS-CHOP gene was manipulated to 
be only expressed in differentiated adipocytes. This study 
also evaluated the exact cell status as a crucial factor in 
sarcomagenesis (62,63). Stratford and colleagues have 
identified candidate sarcoma stem cells in a liposarcoma 
cell line (SW872) after double enrichment for CD133 and 
ALDHHigh activity (ALDHHigh) and these cells were more 
clonogenic and tumorigenic (64). Clear cell sarcoma and 
other subtype sarcomas were also characterized with MSC 
origin (65,66). 

Therapeutic role of MSCs in sarcomas

Although still in infancy and very controversial, recent 
work indicates that MSCs could have therapeutical 
implications in sarcoma. The potential of MSCs for cell-
based therapies relies on several key properties such as 
capacity to differentiate into several cell lineages, lack of 
immunogenicity, immunomodulatory properties, robust 
ex vivo expansion potential, ability to secrete factors and 
homing ability to damaged tissues and tumor sites (67,68). 
Furthermore, MSCs are resistant to chemotherapy-induced 
apoptosis, and contribute to generating drug resistance and 
resistant to ionizing radiation in tumor cells (69-72). Due 
to these properties, MSCs have considerable therapeutic 
potential in a variety of clinical applications in several 
disease processes, including cardiovascular disease, as well 
as in human malignancies (67-69,73).

In a mouse model using Ewing’s sarcoma, the beneficial 
effect of MSCs was related to their ability to locate and 
migrate to the tumors and deliver interleukin-12 (74). 
Survival advantage was shown in Ewing’s sarcoma patients 
treated with autologous stem cell transplantation (75). 
Furthermore human MSCs were reported to exert anti- 
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tumorigenic effects in a model of Kaposi’s sarcoma (73). 
This effect is mediated by direct cell contact leading to 
the inhibition of Akt activation within KS cells (73). The 
result suggests that in contrast to other stem cells or 
normal stromal cells, MSCs possess intrinsic antineoplastic 
properties and that this stem cell population might be of 
particular utility for treating those human malignancies 
characterized by dysregulated Akt (73).

At the same time, the safety issues using MSCs in clinical 
settings should be paid with more attention (76). This is 
mainly because MSCs were reported to promote growth 
and pulmonary metastasis of osteosarcoma and also provide 
a niche for cancer metastasis in breast cancer (77,78). Also 
sarcoma formation in bone marrow recipients treated for 
unrelated diseases has been also reported (79) and highly 
unexpected osteosarcoma recurrence was related to an 
autologous fat graft (80). Moreover, cross-contamination 
of human MSCs with established cancer cell lines was very 
recently reported (81). All these issues indicate that there is 
a long way to go.

Debates about the origin of sarcoma tumor cell

The exact cell of origin for sarcomas has not been conclusively 
identified yet. By now two main models have been conceptualized 
to support the MSCs as the cell of origin for sarcomas. 
The first theory presumes that sarcoma is a differentiation 
disease,  caused by mutations hampering terminal 
differentiation of MSCs (82). The second theory argues that 
sarcoma is more likely to originate from a primitive MSC 
than a differentiated one, and the primitive MSC acquires 
relevant mutations, which directs sarcoma genesis (26).

As for the first theory, different sarcomas could be 
initiated depending on the mutations according to different 
lineage and different stage of differentiation (7). This 
hypothesis is suggested to explain the variable subtypes of 
osteosarcoma (83). In addition, most powerful evidence 
supporting this theory is based on studies which show 
overlap of the gene expression signatures of differentiation 
stages of MSCs from sarcomas and normal tissues. For 
instance, differentiated chondrosarcoma was shown to 
share similarities with fully differentiated chondrocytes 
while less differentiated chondrosarcoma showed overlap 
with prechondrogenic stages of MSCs (7,60,84). Similar 
studies were found in leiomyosarcoma, pleomorphic/
dedifferentiated liposarcoma (7,85). 

However, this hypothesis is debated because the overlap 
of the signature might be due to the similar stroma of the 

different tissues (26,86). Therefore, another hypothesis 
has been suggested, which considers that sarcoma is 
more likely to originate from a primitive MSC rather 
than a differentiated MSC (26). Evidences supporting 
this hypothesis come from the experimental spontaneous 
malignant transformation of human and murine MSCs 
(87,88). Others also have shown that targeting deletion or 
expression of certain genes in MSCs indeed induce sarcoma 
formation (76,89). This hypothesis has been confirmed in 
depth in Ewing’s sarcoma where the expression of EWS-
FLI-1 chimeric gene in human MSCs induces Ewing’s 
sarcoma formation (31). Similarly, transformation of MSCs 
and leiomyosarcoma formation were initiated by deleting 
p53 in certain human MSCs (22). Other studies have 
also indicated MSCs transformation resulting into other 
subtypes of sarcoma (9,22).

All these studies do not provide a direct evidence for 
the transformation of different sarcoma subtypes from 
MSCs. It is more acceptable that some sarcomas originate 
from mutated MSCs which are vulnerable for subsequent 
mutations. Depending on the impact of the initial and/
or subsequent additional mutations and/or different 
environmental factors, the MSCs may differentiate into 
different sarcoma subtypes (90). 

Summary

Osteosarcoma, ewing sarcoma, rhabdomyosarcoma, synovial 
sarcoma, chondrosarcoma, liposarcoma and other sarcomas 
are found shown MSC origin. It is more acceptable that 
sarcomas originate from mutated MSCs which are vulnerable 
for subsequent mutations. Transformation of MSCs can be 
achieved by several methods including knockout of tumor 
suppressor genes, overexpression of oncogenes and drug 
administration to affect signaling pathways. The potential of 
MSCs for cell-based therapies relies on several key properties 
such as capacity to differentiate into several cell lineages, lack 
of immunogenicity, immunomodulatory properties, robust  
ex vivo expansion potential, ability to secrete factors and 
homing ability to damaged tissues and tumor sites. Due 
to these properties, MSCs have considerable therapeutic 
potential in a variety of clinical applications in human 
malignancies. These recent accomplishments have broadened 
our knowledge of the role of MSCs in sarcomas.
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