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Introduction

Therapies involving stem cell transplantation have shown 
promising potential in repairing and regeneration of injured 
organs and tissues in various degenerative diseases and is 
a captivating area of modern-day biology. Adult stem cells 
exist in all adult tissues and are defined as undifferentiated 
cells within a population of differentiated cells. Sources 
of stem cells include, blood, bone marrow, adipose tissue, 
umbilical cord, amniotic fluid etc. The prime function of 

these stem cells is to maintain the tissue and also repair the 
cells in which they are found (1). They are responsible for 
replacement of dead apoptotic cells with new ones, thereby 
maintaining tissue homeostasis.

Bone marrow is the chief source of adult stem cells which 
is the most intensively investigated cell type for cellular 
therapies. Bone marrow is an abundant source of different 
types of stem cell population, most important among them 
being the mesenchymal stem cells (MSCs). For any cell to 
be termed as MSC, they should have the ability to replicate 
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and exhibit tri-lineage plasticity to cells like adipocytes, 
chondroblats, and osteoblasts (2). Human bone marrow-
derived mesenchymal stromal cells (BM-MSCs) are 
spindle-shaped cells which aretab positive for mesenchymal 
receptors such as SH2, SH3, CD29, CD44, CD90, CD71, 
CD106, CD120a, CD124, CD73, and CD105. MSC 
transplantation has many advantages such as: (I) MSCs are 
not a derivative of somatic cells and are superior regarding 
ethical concerns related to the treatment of diseases; (II) 
MSCs can be obtained easily from a variety of tissues, such 
as bone marrow, umbilical cord blood, peripheral blood, 
adipose tissue and can be expanded in culture; (III) MSCs 
can differentiate into an extensive variety of cell types (3).

Given their emerging importance, this review aims 
to provide an overview of safety, homing potential and 
ongoing work aimed at understanding the potential of these 
cells in regenerative medicine.

Origin of stem cells

A stem cell can be obtained from an embryo or adult. 
Embryonic stem cells are the cells of the inner cell mass 
of the blastocyst. These cells can eventually differentiate 
into multiple tissue lineages (4,5). Because of its human 
origin, use of embryonic stem cells in research is a topic 
with moral, legal, and ethical issues. Teratoma formation, 
transplant rejection, and ethical concerns are a few hurdles 
that embryonic stem cell researchers are facing today. 
On the other hand, use of adult stem cells for research 
and treatment is less of an issue since it does not require 
the destruction of embryos. An adult stem cell is found 
in numerous adult tissues including bone marrow, blood, 
neurons, skeletal muscle, skin, etc. and support cellular 
regeneration of the tissue to which they belong (6-8). 

General classification of stem cells

Stem cells are classified based on their potency as follows:

Totipotent stem cell
Totipotent stem cells can differentiate into any cells in 
the body including extraembryonic cells. An example is 
a zygote. It is totipotent because its cells have unlimited 
replication abilities. Totipotent cells can form somatic stem 
cells, progenitor cells and primitive germline cells (9).

Pluripotent stem cell
These stem cells can differentiate into several different types 

of other cell types. In pluripotent stem cells, specialization 
is minimal. They are characterized by self-renewal and a 
differentiation potential for all cell types (10). Stem cells 
obtained from embryonic tissues or stem cells from aborted 
fetuses are examples for pluripotent cells. 

Multipotent stem cell
Multipotent cells can differentiate into restricted 
type of specialized cell types, i.e., these stem cells can 
characteristically differentiate into cell of a particular group 
or kind. Adult Hematopoietic Stem cells, mesenchymal 
stem cells, adipose tissue is also a source of multipotent 
stem cells (11). 

Oligopotent stem cell
This group of stem cells can differentiate into specific cell 
types, like the lymphoid or myeloid cells.

Unipotent stem cell
Unipotent stem cells have infinite differentiation abilities 
but can only form a single type of cell or tissue. Skin cells 
are examples for unipotent stem cells. Most of the epithelial 
tissues are capable of self-renewal throughout life due to the 
presence of such unipotent cells (12).

Mesenchymal stem cells (MSCs)

MSCs (or stromal cells) are the term used to describe the 
collection of poorly defined multipotent, heterogeneous 
population of bone marrow cells. Mesenchymal stem cells 
are self-renewable, multipotent progenitor cells which have 
the ability to differentiate, under adequate stimuli, into 
several mesenchymal lineages (13). 

Classification of MSCs 

MSCs are found in almost all tissues. Based on the source of 
cells, MSCs are classified as follows. 

Bone marrow-derived MSCs (BM-MSCs)
Bone marrow mesenchymal cells were first well-defined 
by Friedenstein et al. (14). They are often selected as the 
gold standard and the most extensively studied stem cell 
type. Aspiration of bone marrow from healthy donors 
is an invasive procedure. Frequently used method for 
the generation of MSCs from BM is density gradient 
centrifugation (15) and then the cells are cultured. BM-
MSCs are morphologically larger than other cell types 
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(16). MSCs from bone marrow are generally cultured in 
Dulbecco’s modified Eagle’s media (DMEM)/DMEM-F12 
supplemented with 10% fetal bovine serum (FBS). BM-
MSCs are positive for markers like CD73, CD90, CD105, 
STRO-1 and negative for CD14, CD34, CD45, HLA-DR 
(17,18). BM-MSCs are easily isolated, can be expanded and 
harvested. They are abundantly available in bone marrow 
and can differentiate into chondrogenic and osteogenic 
lineages at a higher rate when compared to other types of 
MSCs (19).

Adipose tissue-derived MSCs (AT-MSCs)
These cells are often isolated from homogenized adipose 
tissue material obtained during procedures such as 
lipoplasty, liposuction, or lipectomy (20). AT-MSCs have 
said to possess higher proliferation capacity than BM-
MSCs (21). MSCs which are isolated from the adipose 
tissue are then cultured in DMEM/DMEM-Low glucose, 
supplemented with 10% FBS (22).

Cord blood-derived MSCs
Blood collected from the umbilical cord of a baby is a rich 
source of stem cells, first described by Erices et al. (23) and 
is isolated using Ficoll gradient centrifugation method (24). 
Chances of these stem cells being rejected by the host tissue 
is rare. This, might be because the cord blood cells do 
not have cell-surface molecules which are recognized and 
attacked by the host’s immune system. 

Wharton’s Jelly MSCs
These cells can be labelled as an amenable, abundant, and 
economical source of MSCs which has shown promising use 
in tissue regenerative. Wharton’s jelly is a gelatinous tissue 
present within the umbilical cord. Fresh umbilical cords 
from full-term births are obtained and processed using 
proper standardization process (25). MSCs from Wharton’s 
jelly are cultured in DMEM supplemented with 10% FBS. 
Advantages of these cells include: ease of availability, in vitro 
expandability, differentiation abilities, immune-evasion, and 
immune-regulation capacities (26).

Placenta-derived MSCs
Placenta-derived MSCs are obtained and cultured from the 
cotyledons on the maternal side of placenta. The distinctive 
properties of these stem cells include: cells are widely 
available without any ethical concerns. Cells can be cultured 
without compromising cell cycle/apoptosis pattern and 
endogenous gene expression pattern (27). PD-MSCs are 

obtained by enzymatic digestion method and are generally 
cultured in DMEM-LG supplemented with 10% FBS.

Amniotic fluid-derived MSCs
These cells were first reported by Prusa et al. (28). Amniotic 
membrane and amniotic fluid contain sub-population 
of MSCs. These cells can also be isolated by enzymatic 
digestion method and are generally cultured in α-Minimal 
Essential Medium (α-MEM)/DMEM-F12 with 10% FBS. 

MSCs isolated and cultured from fetal tissues have the 
advantage of wide availability, low oncogenicity, no ethical 
concerns, high expandability and low risk of contamination 
(29,30). 

Synovial fluid MSCs
Synovial fluid has considerable regeneration capacity 
which is expressed during its reappearances following 
surgical synovectomy (31). Synovial MSC are isolated by 
the method of Ficoll density gradient and are cultured in 
α-MEM supplemented with 10% FBS. There appears to 
be a potential role of these MSCs in ligament regeneration 
when compared to BM-MSCs (32).

Dental pulp MSCs
The search for easily accessible MSCs other than bone 
marrow has originated the investigations in dental tissues 
cells. At first, MSC like cells were isolated from human 
dental pulp and termed as postnatal dental pulp stem cells 
(DPSCs) (33). MSCs derived from dental pulp are generally 
cultured in α-MEM supplemented with 10% FBS or FCS.

Peripheral blood-derived MSCs
These are one of the easily accessible sources of stem cells 
and form the alternative to BM-MSCs. Cells isolated from 
peripheral blood shows all basic MSCs characteristics and 
exhibit similar morphology as BMMSC. Its differences 
were only in the clonogenic efficiency and the immune 
phenotype (34). PB-MSCs are isolated by Ficoll-Paque 
density-gradient separation method using the peripheral 
blood and are cultured in α-MEM supplemented with 10% 
newborn calf serum (NBCS). 

MSCs derived from other sources such as the 
bronchoalveolar lavage (BAL) fluid, atrium tissue from 
heart, spleen tissue and perirenal fat tissue
Mesenchymal stem cells are also derived from human lung 
allografts. Cells obtained from bronchoalveolar Lavage fluid 
are maintained in a culture medium of glucose DMEM 
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supplemented with 10% FBS. Hoogduijn et al., reported 
the isolation and characterization of MSCs from the human 
heart, spleen, and perirenal adipose tissue (35). MSCs 
obtained from such tissues are similar to those derived 
from bone marrow and express cell-surface markers CD90, 
CD166, CD105 and HLA class I. 

Safety assessment of BM-MSCs

The safety of BM-MSCs treatments must be established 
in animal models before its clinical application in humans. 
Although MSCs transplantation is safe, numerous 
studies have also reported the risks associated with the 
mesenchymal stem cells treatments. Reports have presented 
that MSCs can induce sarcoma or enable the growth 
of the tumor (36). Hence, it has been postulated that 
comprehensive preclinical safety and toxicity studies of 
MSCs are required before their use in clinical trials.

Ra et al. found that administration of adipose-derived 
mesenchymal stem cells in rats is safe (37). They reported 
that subcutaneous administration of high dose of adipose-
derived MSCs till 2×108 cells/kg b. wt in mice showed no 
evidence of tumor formation. In another study, systemic 
administration of BM-MSCs was found safe with no change 
in the overall health or immune status of the rat (38). It is 
apparent that a single administration of allogeneic BM-
MSCs did not induce proinflammatory responses in the 
experimental animals. Aithal et al., have showed in their 
study that BM-MSCs administration did not alter the food 
and water intake behavior of the rats and did not have any 
undesirable effect on its body weight (39). Gao et al., also 
observed that intravenous administered MSC accumulated 
initially in the lungs and gradually redistributed to liver, 
spleen, kidney, and bone marrow before disappearing from 
the circulation in rodents (40). The findings of Prather  
et al., demonstrated that intramuscular administered MSCs 
persisted only at the injection site and did not localize to 
other organs (41). Rengasamy et al., and other researchers 
believe that intravenous administration of BM-MSCs is 
more efficient and safer compared to other routes (42). 
MSCs have the capacity of expanding and culturing long-
term in vitro, with very minimal changes in their function, 
morphology and phenotype (43). 

Biodistribution and homing of BM-MSCs

The therapeutic benefit of BM-MSCs can be comprehended 
through its homing efficiency to the specific target site. The 

tracking of BM-MSCs after intravenous administration 
has been explored by some studies in animals and humans. 
The labeling methodologies which are frequently used to 
label the culture-expanded BM-MSCs include: radioactive 
labeling, labeling with fluorescent dyes and contrast agents, 
using donor cell-specific DNA markers like microsatellites 
or transduction with reporter genes (44-47). These labeling 
methods were designed to detect only the short-term 
homing capacity of MSCs. The summary of the results of 
these studies indicate that: MSCs distribute to a variety of 
tissues and were noticeable at low or very low frequencies in 
those tissues after transplantation with highest occurrences 
in lungs, followed by liver and spleen. Cell adhesion 
molecules and their ligands, chemokines, extracellular 
matrix components and specialized bone marrow niches 
all participate in the proper regulation of this process. 
Studies have shown that MSCs were localized to the infarct 
region and improved ventricular function (48) and that 
corticosteroids are involved in MSCs migration (49).

In summary, there is some evidence regarding the 
biodistribution of BM-MSCs to organs, but the underlying 
mechanisms are mostly unclear. Few reports also mention 
that MSCs is not very efficacious as only a small number 
of cells reach the target tissue/organ and remain there 
after systemic administration. This can be attributed to 
many factors like: (I) low expression of homing molecules 
and failure of molecules to express during the expansion 
process (50,51); (II) the heterogeneity of MSCs in cultures 
and heterogeneous expression of MSCs derived from 
different tissues (52). Mode of administration of cells or 
the target tissue could be modified in order to attract the 
MSCs (53). 

Potential use of BM-MSCs in regenerative medicine for 
treatment of various diseases

MSC is well tolerated and does not suffer from host versus 
graft response after transplant (54). Here we discuss the 
results of previous studies which demonstrate the ability of 
BM-MSCs to differentiate into various tissues/organs.

Liver disease

In-vitro differentiation of MSCs to liver hepatocytes has 
been proven (55). In vivo experiments have also confirmed 
the differentiation of MSCs into hepatocytes (56,57). In the 
study of Sato et al., human BM-MSCs were differentiated 
into hepatocyte-like cells when xenografted directly into 
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rat livers (58). Improvement in liver fibrosis after MSCs 
transplantation was also reported and has been attributed to 
the capacity of MSCs to reduce the high levels of oxidative 
stress and release of many paracrine factors by them (59). 
Phase I and Phase II human clinical trials for treating liver 
cirrhosis suggest that differentiated and undifferentiated 
MSC transplantation was effective and improved liver 
functions (60-62). MSCs have found to produce many 
growth factors and cytokines, which exerts a paracrine effect 
in the necrotic tissue. MSCs also exert a suppressive effect 
on natural killer cells thereby enhancing their therapeutic 
effects (3).

Cardiac disease

Recently, researches have been done using MSCs as 
a therapeutic strategy for ischemic heart diseases and 
the data obtained from these in vitro studies have been 
translated into clinical trials (63). MSCs transplanted 
into the rat myocardium acted through the combined 
effect of endogenous cardio myogenesis and angiogenesis 
(64,65). MSCs enhanced the survival of existing myocytes 
by paracrine mechanisms in mice (66). Studies done by 
Shake et al., and Toma et al., have successfully reported 
that injected MSCs engrafted into scarred myocardium 
and expressed cardiomyocyte markers like desmin, α-actin, 
myosin and tropomyosin heavy chain (67,68). Based on 
rigorous preclinical studies, clinical trials have also been 
initiated for MI and ischemic cardiomyopathy. Intravenous 
and intracoronary injections of MSCs in subacute and acute 
MI demonstrated a reduction in ventricular arrhythmias, 
improvement in perfusion defects and improved pulmonary 
function (69,70). 

Kidney diseases

Transplanted BM-MSCs accelerated the  process 
of glomerular healing in experimental rat model of 
glomerulonephritis (71). Studies have shown that injected 
MSCs reduced interstitial fibrosis, improved progression 
of chronic kidney disease (72,73). MSCs protect against 
acute renal injury by promoting the recovery and 
functional alterations of tubular epithelial cells (74). MSCs 
are advantageous as they provide a local pro survival 
environment for the damaged kidney, which is useful 
in preserving the podocyte viability, reduce glomerular 
inflammation and sclerosis (75), thereby, MSCs enhance 
renal repair (76,77). 

Bone and cartilage

The differentiation potential of BM-MSCs into bone 
cells make them successful in managing and treating 
bone fractures (78). It was found that mismatched 
allogeneic MSCs regenerated bone without producing 
an immunologic response. This raised the possibility of 
starting allogeneic MSCs banks for bone regeneration (79). 
Another study suggested that at least 1000 or more MSCs 
per cm3 are required for bone repair (80). There has been 
some hindrance for the use of MSCs in bone repair due 
to inadequate supply of autologous bone grafts and the 
unsuitability of allografts.

Nervous system

BM-MSCs have been effective in treating neurodegenerative 
disorders through enhanced neurogenesis, peripheral 
nerve regeneration and abnormal protein aggregate 
clearance (81,82). MSCs possess neurotrophic factors and 
cytokines which activate neurogenesis, neuroprotection 
and immunomodulation in neurons, astrocytes, and 
oligodendrocytes. MSC can also inactivate cell death and 
diminish free radicals (83). Transplanted MSCs differentiated 
into neural stem cells and improved the functional recovery of 
two patients with chronic spinal injury (84), while significant 
improvement in nerve conduction velocities was observed in 
patients suffering from metachromatic leukodystrophy and 
Hurler syndrome (85). 

Autoimmune diseases

BM-MSCs exhibit the property of modulating the functions of 
several immune effector cells, which makes them appropriate 
treatment option for few autoimmune diseases (86). 
Therapeutic benefits of MSC have been proposed for Crohn’s 
disease (87), systemic lupus erythematosus (88,89) rheumatoid 
arthritis (90) and multiple sclerosis (91). However, more large-
scale clinical studies are necessary to obtain actual results. 

The promising results of pre-clinical and clinical studies 
suggest that donor allogeneic BM-MSCs infusion might be 
safe, feasible treatment and may be related to the reversal of 
disease pathophysiology in several pathologies. 

Mechanisms concerned with the therapeutic effects of BM-
MSCs

According to some researchers, the therapeutic abilities 
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of BM-MSCs are largely attributed to the following 
mechanisms: (I) differentiating into various cell lineages 
(trans-differentiation of BM-MSCs), (II) MSCs have 
immunomodulatory properties  by secreting anti-
inflammatory cytokine, (III) induction of endogenous 
regeneration by BM-MSCs.

Trans-differentiation of BM-MSCs into tissues

Transdifferentiation is a process wherein a cell type which 
is committed to a specific developmental lineage switches 
to another cell type of a different lineage. This process is 
known genetic reprogramming. Studies have shown that 
MSCs go through a phenotypic change, express the genes 
which are usually expressed in tissues, fulfill some essential 
metabolic functions and thereby, MSC can transdifferentiate 
into the cells of various tissues in vitro and in vivo (92-95). 
The specific gene signaling pathways and gene expression 
is ingeniously regulated by numerous transcription factors 
secreted by MSC and is also influenced by the tissue 
microenvironment (96). 

Immunomodulation by BM-MSCs

MSCs therapeutic potential during the treatment of any 
disease might actually result from immunomodulation. BM-
MSCs supress the expression of many proinflammatory 
molecules [interleukin (IL)-1β, IL-12, TNF-α, and 
interferon-γ] and also secrete anti-inflammatory factors, 
shifting the immune response pattern towards a protective 
type, modifying the microenvironment where activated T 
cells are unable to proliferate and die by apoptosis (97,98). 
Immunosuppressive properties of MSC can also be owed to 
the Nitric oxide synthase and heme oxygenase-1 molecules 
which are secreted by them (99,100).

Induction of endogenous regeneration by BM-MSCs

MSCs secrete a wide range of trophic factors, as well as 
vascular endothelial growth factor, fibroblast growth factor, 
platelet-derived growth factor, HGF, TGF-β, IGF-1, and 
epidermal growth factor (101). These growth factors act 
either by altering the intracellular signal pathways or by 
inducing other cells to secrete additional bioactive factors 
from the injured tissue microenvironment. Therefore, it has 
been anticipated that MSCs have a catalytic role in tissue 
regeneration. MSCs can modify the microenvironment 
by secreting factors that would prevent parenchymal cells 

from dying, reduce apoptosis, induce angiogenic and 
antioxidative effects (102).

Although the delicate mechanism governing the process 
of tissue regeneration is very complicated and far from 
clear, it can be assumed that the beneficial effects of BM-
MSCs varies with the nature and degree of tissue injury 
and depends on many factors like time-frame of MSCs 
application, donor age, tissue origin, cell densities, cell 
passage numbers, different experimental models and so on.

Conclusions

MSC-based treatments have made great progress over the 
last few decades. However, the clinical trials with mixed 
and contradictory results are preventing the advancement 
of MSCs into daily clinical application. There are several 
problems in cell transplantation which must be considered. 
First, the frequency with which the engrafted MSCs 
differentiate after transplantation remains unsatisfactory. 
Second, regardless of the critical benefits of MSC-based 
therapy, safety issues remain a concern, particularly the 
long-term effect of transplantation on immune function 
and the risk of tumorigenicity. Third, MSCs may display 
a profibrogenic potential in the process of treating any 
disease. These are the undesirable effects which should be 
reasonably addressed when using MSCs for the therapeutic 
purposes. A standardized approach has not yet been 
established to evaluate the safety and toxicity of MSCs in 
vivo. Quality control and clinical grade production of MSC 
are necessary before in vivo application of MSCs. Optimum 
dose and precise administration time for MSC should be 
formulated depending on the harshness of each disease. 
Therefore, further studies are necessary to understand the 
benefits of BM-MSCs as therapeutics in clinical settings. 
Large scale preclinical and clinical trials are required to 
verify the safety and therapeutic potential of BM-MSCs in 
regenerative medicine. 
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