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Introduction

Human dental stem cells (DSCs) have been considered as 
promising autologous source for cell-based therapies and 

tissue engineering applications due to their self-renewal 

capabilities and multi-lineage differentiation potentials (1).  

Dental pulp stem cells (DPSCs) from impacted third molars 
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were first discovered by Gronthos et al. in 2000 (2); and 
later, stem cells from human exfoliated deciduous teeth 
(SHED) were first isolated by Miura et al. 2003 (3). SHEDs 
offer a unique population because of more accessibility and 
ease of collection as a clinically and biologically discarded 
postnatal tissue with limited ethical concerns (4,5). 

As a type of multipotent mesenchymal stem/stromal 
cells (MSCs), SHED possessed features of more immature 
multipotent cells, including greater proliferation rate, 
shorter population doubling time (PDT) and enhanced 
osteoinductive capacity when compared to DPSCs (6-10). 

In addition, these cells were able to induce bone tissue 
formation and dentin generation following their in vivo 
transplantation into mouse tissues (11,12). Further, a recent 
study showed that implantation of autologous human 
deciduous pulp stem cells in patients undergoing trauma 
regenerated the lost three-dimensional pulp tissue, restored 
pulp function and stimulated root development. These 
findings indicated that SHED could be an ideal source of 
stem cells for tissue engineering (13). 

Both DPSCs and SHEDs have been demonstrated with 
largely similar features of MSCs under in vitro culture 
conditions. But, differences in biological characteristics 
exist owing to variations in anatomical localizations and 
dynamic processes at tissue microenvironment (14). The 
major characteristic difference between the pulp of primary 
and permanent teeth is the occurrence of physiologic root 
resorption and mixed dentition stages of the deciduous 
teeth (15). It was suggested that the pulp acquired from 
deciduous teeth without root resorption did not support 
the derivation of viable cell lines in comparison to those 
from teeth with resorbed roots (15). Although the detailed 
biological properties of SHED are being rigorously 
investigated (5,16,17), the effect of different levels of root 
resorption on the characteristics of cell lines obtained from 
these teeth remains inconclusive. Thus, the tooth source 
that is most suitable for the isolation of SHEDs needs to be 
determined.

To understand the potency of stem cells derived from 
deciduous posterior teeth (SHEDs) with varying levels 
of root resorption, the present study compared their 
morphology, viability, proliferation rate and PDT, colony-
forming ability, expression of cell surface markers and in vitro  
differentiation potential into osteocytes and adipocytes. 
Advancement in cellular and biological characterization 
of SHEDs based on root resorption status will enable the 
clinicians with suitable cell-source for tissue regeneration.

We present the following article in accordance with 

the MDAR reporting checklist (available at http://dx.doi.
org/10.21037/sci-2020-039).

Methods

Sample collection

Clinically healthy exfoliated deciduous posterior teeth were 
obtained from children aged 7–14 years as a part of the 
treatment plan visiting Department of Pedodontics and 
Preventive Dentistry at AB Shetty Memorial Institute of 
Dental Sciences (ABSMIDS). Ethical clearance was obtained 
from the Institutional Ethical Committee, ABSMIDS, 
and Institutional Committee for Stem Cell Research (IC-
SCR), Nitte (Deemed to be University), Mangaluru (Cert 
No.: ABSM/EC55/2016 dated 18/10/2016). The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). Informed consent was taken from all the 
individual participants. The teeth were examined clinically 
to assess the zones of root resorption and classified based 
on the maximal root wall present. Teeth with decay, pulpal 
necrosis and h/o trauma were excluded. The pulp was then 
obtained from the deciduous posterior teeth depending 
on the level of root resorption, and isolated SHEDs were 
grouped as follows: Teeth with 0 to 1/3rd root resorption 
as SHEDs (G1) (n=3) and 1/3rd to 2/3rd root resorption as 
SHEDs (G2) (n=3). Teeth were also collected from >2/3rd 
root resorption status (n=3), but failed to establish primary 
culture of SHED as the availability of pulp tissue was too 
less.

Isolation and culture of SHED

The harvested pulp tissue was rinsed with Dulbecco’s 
phosphate-buf fered  sa l ine  (DPBS)  (Gibco ,  Li fe 
Technologies, Thermo Fisher Scientific, USA) containing 
antibiotics and antimycotic solutions, including penicillin, 
streptomycin (Pen-Strep, 1% solution, Gibco) and 
amphotericin-B (Gibco) and minced into fragments of 
0.5–1 mm3. Fragmented pulp tissues were then digested 
in a mixture of 0.1% collagenase I (Gibco) in α-minimum 
essential medium (α-MEM, Gibco) for 30 min at 37 ℃ in 
a CO2 incubator. After the partial enzymatic digestion, the 
cell aggregates were removed by passing through 70 µM cell 
strainers (BD Falcon, USA) and centrifuged at 1,200 rpm  
for 5 min. The cell suspension was seeded and the explants 
were placed on plastic tissue culture dishes containing 
α-MEM supplemented with 10% fetal bovine serum 
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(FBS, Gibco), 2.5 µg/mL of amphotericin B, 100 U/mL 
of penicillin and 100 µg/mL of streptomycin (Gibco) and 
incubated at 37 ℃ in a humidified atmosphere of 5% CO2 in 
air. After 48 h, unattached cells were removed by changing 
the medium. After 15 days, when the cells reached almost 
confluency, SHEDs were detached using 0.25% trypsin-
ethylenediaminetatraacetic acid (EDTA) (Gibco) and sub-
cultured. All assays were carried out by using SHEDs at 
passages 2–5. 

Morphology and viability analyses

SHEDs were assessed for morphology using a phase-
contrast microscope (Olympus, Japan). Before analysis, 
they were gently washed with DPBS to remove cells in 
suspension and subjected for photomicrography. The 
viability of SHEDs was assessed in triplicates for each cell 
line using 0.4% trypan blue (Gibco). The stained cells 
were counted in a haemocytometer with an inverted phase-
contrast microscope (Olympus).

Cell proliferation assay and PDT

SHEDs were seeded into 12-well culture plates (Nunc, 
Thermo Fisher Scientific, USA) at a density of 1×103/well 
with α-MEM containing 10% FBS, 100 U/mL of penicillin 
and 100 µg/mL of streptomycin and incubated at 37 ℃ in 
5% CO2. Cell proliferation was determined in triplicates 
by counting the cells using a hemocytometer on days 3, 
6, 9 and 12 under a phase-contrast microscope (Olympus, 
Japan). PDT was calculated using the formula; PDT = t (log 
2)/(log Nt − log No), where t indicates culture time, No 
and Nt represent the cell number before and after seeding, 
respectively.

Colony-forming unit (CFU) assay

The CFUs assay was performed to determine the presence 
of putative stem cells in the isolated SHEDs. Cells were 
plated at 1×103/well onto 35 mm culture dishes with growth 
medium for 12 days. Then, the cells were fixed with 3.7% 
paraformaldehyde (Sigma-Aldrich, USA) and stained with 
crystal violet (Sigma-Aldrich) for imaging with an inverted 
phase-contrast microscope (Olympus). 

Flow cytometry analysis of cell surface markers

SHEDs at 80% confluence were harvested and fixed with 

3.7% paraformaldehyde (Sigma-Aldrich, USA) for 30 min.  
The cells were subsequently incubated with different 
antibodies, including CD73 (Biolegend, USA, 1:100), 
CD90 (E-bioscience, USA, 1:100), CD105 (Biolegend, 
1:100) CD34 (Biolegend, 1:100) and CD45 (E-bioscience, 
1:100) for 2 h at 37 ℃. Fluorescein isothiocyanate (FITC)-
conjugated anti-mouse IgG (E-bioscience, 1:100) was 
used as a secondary antibody and stained for 1 h at room 
temperature. Matching isotypes were used as negative 
controls. After being washed with DPBS, the cells were 
analyzed with flow cytometer (FACSCalibur, Becton 
Dickinson, USA). A total of 10,000 events were acquired 
and analyzed with Cell Quest software (Becton Dickinson).

Osteogenic differentiation

SHEDs were plated at a density of 1×104 cells/cm2 and 
cultured in maintenance medium consisting of α-MEM 
with 10% FBS. When the cells reached 70% confluence, 
the culture media was replaced with osteogenic medium 
consisting of α-MEM supplemented with 10% FBS, 0.1 µM  
dexamethasone (Sigma-Aldr ich) ,  10  mM sodium 
β-glycerophosphate (Sigma-Aldrich) and 100 µM ascorbic 
acid (Sigma-Aldrich). The cultures were maintained for 
3 weeks and media was changed twice a week. Control 
cultures were sustained with basal medium. For staining, 
the cultured cells were fixed with 3.7% paraformaldehyde 
(Sigma-Aldrich) at room temperature and stained with  
40 mM Alizarin Red S (pH 4.2) for 30 min. The plates were 
rinsed three times with DPBS to remove excess stain and 
then observed using an inverted phase-contrast microscope 
(Olympus).

Adipogenic differentiation

SHEDs were plated at a density of 1×104 cells/cm2 and 
cultured in maintenance medium consisting of α-MEM 
with 10% FBS. When the cells reached 70% confluence, 
the culture media was replaced with adipogenic medium 
consisting of α-MEM supplemented with 10% FBS, 10 µM 
insulin (Sigma-Aldrich), 200 µM indomethacin (Sigma-
Aldrich), 500 µM isobutyl-methylxanthine (Sigma-Aldrich) 
and 1 µM dexamethasone (Sigma-Aldrich). The cultures 
were maintained for 3 weeks and media was changed twice 
a week. Cells in control were cultured with basal medium. 
Adipocyte differentiation was confirmed with Oil red O 
(Sigma-Aldrich). The procedure involved the washing of 
cells thrice in DPBS and fixing them for 30 min in 3.7% 
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paraformaldehyde (Sigma-Aldrich). The plates were rinsed 
three times with DPBS to remove non-adherent cells and 
stained with Oil red O solution for 10 min. Cells were 
washed and excess dye was subsequently removed with 70% 
ethanol. They were then observed using an inverted phase-
contrast microscope (Olympus) for fat deposition.

Statistical analysis

All experiments were performed at least in triplicates. The 
data were expressed as the mean ± SD values. Analysis of 
variance (ANOVA) was performed using GraphPad Prism 
software (GraphPad, CA, USA) with Tukey’s post-hoc tests. 
The level of statistical significance was set at P<0.05.

Results

Isolation and culture of SHEDs

Isolation of SHEDs was successful in three samples each 

collected from posterior teeth with 0 to 1/3rd root resorption 
and 1/3rd to 2/3rd root resorption. Tissue explants were 
firmly adhered onto the plastic culture dishes and initial 
out-growth of SHEDs was observed by 4th day of primary 
culture. By 15th day of primary culture, a monolayer of cells 
with 90% confluency was observed in both SHEDs (G1) 
and SHEDs (G2) (Figure 1A,B,C,D).

Morphology and viability of SHEDs

Isolated SHEDs displayed typical  f ibroblast‑ l ike 
morphology (Figure 1A,B,C,D). A small number of 
cells were spindle-shaped, polygonal or elongated, but 
disappeared during the later stages of cell culture. After 
passaging, the cells were attached onto the culture dishes 
within 12 h and reached 90% confluence within 2 weeks. 
Sub-cultured cells gradually became flattened and they 
too acquired a fibroblast-like morphology exhibiting a 
more homogenous population of cells up to fifth passage 
without any variations in morphological features between 

Figure 1 Morphology of SHEDs using trypan blue under a phase-contrast microscope. (A) Outgrowth of cells from the pulp tissue explant 
in SHEDs (G1) and adherence to plastic dish in primary culture. Magnification×40. (B) On 15th day of primary culture, more number of cells 
attached and attained a characteristic fibroblastic morphology. Magnification ×40. (C) Release of cells from tissue remnant in SHEDs (G2). 
Magnification ×40. (D) Fibroblast-like morphology was observed in cells by day 15 of primary culture. Magnification ×40. SHED, stem cells 
from human exfoliated deciduous teeth. 
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SHEDs (G1) and SHEDs (G2). The viability of SHEDs 
was assessed using trypan blue dye exclusion assay. Except at 
passage 1, viability of SHEDs (G1) was recorded above 90% 
at different time point of analysis (Figure 2A). In SHEDs 
(G2), viability was slightly lower at passage 1. But, at later 
passages, viability was found increased and had values more 
than 90% in all SHEDs (Figure 2B). A significant difference 
(P<0.05) in viability was observed at passage 1 between 
SHEDs (G1) and SHEDs (G2) (Figure 2C). However, no 
significant differences were noted at other passages.

Growth kinetics and PDT of SHEDs

Rate of proliferation in all cell lines of SHEDs (G1)  
(Figure 3A) and SHEDs (G2) (Figure 3B) was high during 
the culture period of 12 days. Despite this similarity, 
minimal differences were observed between the cell lines 
in both groups of SHED. Proliferation was initially similar, 
but after 3 days, it appeared to be slightly higher in SHEDs 
(G1) than for SHEDs (G2) (Figure 3C). A significant 
difference (P<0.05) in cell numbers was observed at 
different time points of culture, particularly on days 6, 9 and 
12. Consistent to this observation, SHEDs (G1) showed a 
significantly (P<0.05) lower PDT (54.41 h) than in SHEDs 
(G2) (67.81 h) (Figure 3D).

CFU assay of SHEDs

All the three cell lines from SHEDs (G1) and SHEDs 
(G2) demonstrated their distinctive feature of colony-
forming ability (Figure 4) after 12 days of culture. The size 
of the colonies formed in SHEDs (G1) (Figure 4A,B,C) 
appeared to be slightly larger in comparison to SHEDs (G2)  
(Figure 4D,E,F). But, no noticeable differences were 
observed in terms of the number of CFUs.

Cell surface marker analysis of SHEDs

Stem cell surface markers were assessed in SHEDs using 
flow cytometry and the representative images are presented 
in Figure 5. The results showed that SHEDs (G1) and 
SHEDs (G2) maintained the characteristic phenotype of 
MSCs by positive expression of markers, such as CD73, 
CD90 and CD105. However, the SHEDs were negative for 
CD34 and CD45, which are considered as the markers of 
hematopoietic stem cells. SHEDs (G1) showed the mean 
expression of CD73 (71.64%), CD90 (59.85%), and CD105 
(33.57%), and were negative for CD34 (0.62%) and CD45 
(0.38%) markers. Similarly, SHEDs (G2) also displayed 
the mean positive expression for CD73 (83.74%), CD90 
(95.56%), and CD105 (60.84%), and were negative for 
CD34 (0.78%) and CD45 (0.21%) markers.

Osteogenic differentiation

Osteogenic differentiation ability of SHEDs from both 
groups were assessed by culturing the cells in osteogenic 
induction medium for 3 weeks. The images of osteogenic 
differentiation in SHEDs are presented in Figure 6A,B. 

Figure 2 Viability of SHEDs. (A) Viability of SHEDs (G1) and 
(B) SHEDs (G2). (C) Comparison of viability between SHEDs 
(G1) and SHEDs (G2). Percentage values are represented as 
mean ± standard deviation (SD). Superscripts a, b, c and * indicate 
significant differences at P<0.05. SHED, stem cells from human 
exfoliated deciduous teeth. 
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Cells without osteogenic induction medium (control) showed 
fibroblast-like morphology even after 3 weeks of culture in 
SHEDs (G1) (Figure 6A-a) and SHEDs (G2) (Figure 6B-a). 
On the contrary, Alizarin red S staining clearly demonstrated 
the deposition of calcified matrix in SHEDs (G1) (Figure 6A-
b, c & d) and SHEDs (G2) (Figure 6B-b, c & d). The staining 
pattern of mineralised nodules appeared to be similar in both 
SHEDs (G1) and SHEDs (G2).

Adipogenic differentiation

Adipogenic differentiation ability of SHEDs from 
both groups were evaluated by inducing the cells in 
adipogenic medium for 3 weeks. The results of adipogenic 
differentiation in SHEDs are presented in Figure 7A,B. 
No adipogenesis was observed in the control SHEDs (G1) 
(Figure 7A-a) and SHEDs (G2) (Figure 7B-a). However, 
the Oil red O staining showed the accumulation of lipid 
droplets in SHEDs (G1) (Figure 7A-b, c & d) and SHEDs 
(G2) (Figure 7B-b, c & d). The staining pattern in both 

groups was comparable. SHEDs in induction medium 
showed the progressive loss of the fibroblastoid-like shape 
and the production of large number of cytoplasmic lipid 
vacuoles.

Discussion

The present study compared the cellular, phenotypic and 
biological properties of SHEDs isolated from posterior 
teeth with varying levels of root resorption. Isolated 
SHEDs (G1) and SHEDs (G2) were assessed on the basis 
of their morphology, viability, proliferation rate and PDT, 
colony-forming ability, expression of cell surface markers 
and in vitro differentiation potential into osteocytes and 
adipocytes.

The primary cultures of stem cells from remnant pulp 
of exfoliated deciduous posterior teeth with varying levels 
of root resorption, such as 0 to 1/3rd and 1/3rd to 2/3rd 
statuses were successfully established in this study. Teeth 
were also obtained with >2/3rd root resorption status for the 
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isolation of SHEDs. However, we could observe that the 
number of adhered cells during primary culture was very 
low as the harvested pulp tissue from teeth with >2/3rd root 
resorption was too less. It was perceived that the shorter 

root length in teeth with >2/3rd root resorption yielded a 
very small quantity of pulp for isolation. Extremely low cell 
numbers upon isolation was a shortcoming for analysis, 
and hence the group was discontinued. In agreement with 

Figure 4 CFU assay of SHEDs by crystal violet staining. (A,B,C). Three cell lines from SHEDs (G1) exhibited their characteristic feature 
of colony-forming potency as indicated by crystal violet. Magnification ×40. (D,E,F) Three cell lines from SHEDs (G2) showed their ability 
to form colonies as exhibited by crystal violet staining. Magnification ×40. CFU, colony-forming unit; SHED, stem cells from human 
exfoliated deciduous teeth. 
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our observations, it was earlier opined that deciduous 
teeth offer a considerably lesser amount of dental pulp in 
comparison to third molars employed for the isolation of 
DPSCs (6). In addition, other related factors, such as the 
patient’s age, length of the remaining root, and mechanical 
stress influence the successful isolation and establishment of 
SHEDs (17).

SHEDs from both groups in established cultures 
displayed a similar, characteristic spindle-shaped, fibroblast-
like morphology. These morphological features of SHEDs 
are termed as immature (18), and were comparable to 
multipotent stem cells derived from various dental tissues 
(5,7-10). However, the method of isolation seem to influence 
the cellular morphology as previously reported (19).  
It was observed that, enzymatic digestion of pulp tissue 
allowed the isolation of heterogenous cells consisting 
fibroblast-like cells along with the endothelial cells and 
pericytes (6,19,20). In contrast, the explant or outgrowth 
method yielded a more uniform population of fibroblast-
like cells (2,8,19). In the present study, SHEDs were 
isolated from partially enzyme digested tissue which 
began to proliferate quite early and formed a monolayer 

of homogenous fibroblast-like cells for culture expansion  
in vitro. It is important to note that lesser enzymatic 
digestion is required to liberate cells, and they proliferate 
much better in culture. Hence, it is suggested that 
combination of partial enzymatic digestion and explant 
method could be employed to obtain suitable SHEDs. 

Cell viability is an important factor when evaluating the 
doses for cell-based regenerative therapies. In this study, 
except at passage 1, the viability values observed for SHEDs 
in both groups were >90% up to passage 5. In accordance 
with these values, an average viability of 77.9% in the 
first passage (15) and 90.6% after long-term cultivation 
of SHEDs were recorded (21). These results collectively 
indicated that the isolation and expansion procedures 
followed had resulted in acceptable yield of viable SHEDs.

The proliferation ability of SHEDs is a critical factor 
for their therapeutic applications as the required number 
is enormously high. Our results showed that SHEDs (G1) 
proliferated better under identical culture conditions by 
exhibiting a greater replication with lower PDT values 
when compared with SHEDs (G2). Previous studies 
reported a significantly higher proliferation rate for 
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Figure 6 Osteogenic differentiation potential of SHEDs. (A) Osteogenic differentiation of SHEDs (G1) as evidenced by Alizarin red 
staining. a. Fibroblast-like morphology in control after Alizarin red staining. Magnification ×40. b, c & d. SHEDs (G1) differentiated 
towards the osteogenic lineage when cultured in osteoinductive medium for 3 weeks, as demonstrated by the deposition of calcified matrix 
(arrows). Magnification ×100. (B) Osteogenic induction of SHEDs (G2) as indicated by Alizarin red staining. a. Control after Alizarin red 
staining. Magnification ×40. b, c & d. Osteogenic differentiation of SHEDs (G2) after 3 weeks showed the mineralization of calcium nodules 
by Alizarin red staining (arrows). Magnification ×100. SHED, stem cells from human exfoliated deciduous teeth.
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Figure 7 Adipogenic differentiation potential of SHEDs. (A) Adipogenic differentiation of SHEDs (G1) using Oil red O staining. a. Oil red 
O staining in control. Magnification ×100. b, c & d. SHEDs (G1) differentiated towards the adipogenic lineage when cultured in inductive 
medium for 3 weeks, as demonstrated by the deposition of fat globules (arrows). Magnification ×200. (B) Adipogenic induction of SHEDs 
(G2) as assessed by Oil red O staining. a. Cells in control after Oil red O staining. Magnification ×100. b, c & d. Adipogenic differentiation 
of SHEDs (G2) after 3 weeks showed the accumulation of lipid droplets by Oil red O staining (arrows). Magnification ×200. SHED, stem 
cells from human exfoliated deciduous teeth.

SHED to that of DPSCs and BMSCs (6,10,14). Further, 
several investigations recorded a shorter PDT for SHEDs 
compared to DPSCs (6,8,14). Our observations were in 
agreement with these findings, and SHEDs revealed their 
virtue of greater proliferative potential that is essential for 
high quantity production. 

The colony-forming ability was assessed to demonstrate 
the clonogenic potency of SHEDs. The results exhibited 
that both group of SHEDs possess a largely similar and the 
strongest colony-forming ability after 12 days of culture. 
This property of SHEDs provides significant advantages in 
regenerative medicine. Previous studies have also observed 
similar colony formation ability for SHEDs, proving 
that these are a population of clonogenic cells with high 
proliferative capacity.

With regard to cell surface markers expression profile, 
SHEDs were positive for CD73, CD90 and CD105, while 
negatively expressing CD34 and CD45. The positivity of 
CD73, CD90 and CD105 markers expression was slightly 
higher in SHEDs (G2) than in SHEDs (G1). An active 
role of CD73 (ecto’-nucleotidase) in stromal interactions, 
migration ability and MSC-mediated adaptive immunity 

variations has been well-recognised (22). Further, CD90 
(Thy1) antigen has shown to play role in cell-to-cell 
interactions, and also involved in adhering monocytes 
and leukocytes to endothelial cells and fibroblasts (14,22). 
CD105 expression has been correlated with increased stem 
cell capacity in MSCs (14,22). The differential expression 
of above stem cell-associated markers allowed identifying 
a distinct population of SHEDs with enhanced self-
renewal and differentiation capacity prior to cell-based 
therapy. The higher expressions of these markers support 
the undifferentiated status and potency feature in SHEDs 
(7-9,14,21,23). Furthermore, in agreement with previous 
studies and the proposed definition of MSCs, both groups 
of SHEDs were negative for CD34 and CD45, confirming 
that the cells obtained were from mesenchymal origin  
(7-9,14,21).

The expected plasticity for multi-lineage differentiation 
of SHED is vital for in vivo applications. As confirmed by 
Alizarin red S and Oil red O staining, the results indicated 
that both groups of SHEDs were equally capable of 
differentiating into osteocytes and adipocytes, respectively. 
The isolation of SHEDs by means of partially enzyme 
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digestion method did not alter their mesenchymal lineage 
differentiation. Previously, Bakopoulou et al. [2011] opined 
that the isolation by enzymatic method yielded the SHEDs 
with a higher mineralization capacity (20). Irrespective of 
the method of isolation, enhanced osteogenic potential of 
SHEDs could make them considering as a suitable source 
for bone regeneration and tissue engineering, as supported 
by the findings of earlier in vivo studies in mice (11,12). 
In addition, several in vitro experiments have showed the 
increased ability of SHEDs for osteogenic differentiation 
(3,6-10). Further, the adipogenic differentiation potential 
of SHEDs was also reported (3,6-9,23). Contrastingly, a 
few investigations have evidenced the weaker potential or 
failure to undergo in vitro adipogenic differentiation by 
SHEDs (5,14,16,24). This distinct property of SHEDs was 
ascribed to their pre-commitment towards the osteogenic 
lineage differentiation. Based on these observations, it was 
speculated that SHEDs may not be the appropriate source 
for adipose tissue replacement or regeneration.

Conclusions

In conclusion, the findings of our study revealed no major 
differences in cellular morphology, viability, proliferation 
rate, colony-forming ability, cell surface markers expression, 
and mesenchymal lineage differentiation of SHEDs isolated 
from posterior teeth with 0 to 1/3rd and 1/3rd to 2/3rd root 
resorption. However, SHED from teeth with 0 to 1/3rd root 
resorption (G1) displayed relatively higher proliferation 
capacity and expression of selected markers. Nevertheless, 
both group of SHEDs had comparable cellular and 
biological characteristics that enable their possible 
applications in regenerative therapies. In vivo experiments 
are still required to further assess their clinical potential.
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