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Review Article

Virology of SARS-CoV-2 and management of nCOVID-19 utilizing 
immunomodulation properties of human mesenchymal stem 
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Objective: The objective of this review article is to outline the pathology, virology and mechanism of 
severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2) and to study the regenerative role of 
mesenchymal stem cells (MSCs) to tackle the lung damage caused by SARS-CoV-2. 
Background: The MSCs possess trophic potentialities which enable them to find out the sites of injury or 
inflammation and because of their pleiotropic and pericytic nature, these cells are capable of differentiating 
into different cell types. The MSCs can be derived from a variety of tissue sources be it adult or embryonic 
origin. The one major characteristic of MSCs is that they are immunologically naïve in terms of expression 
of MHC Class II. This very low or no expression of MHC class II makes them useful in clinical settings 
where they can be used in allogenic transplant cases. This allogenic transplant possibilities of these MSCs 
makes them one of the most researched stem cells and investigated for cell-based therapies. Though these 
MSCs are in clinical settings for long the one even more important characteristic which makes them even 
more in demand is their immunomodulatory properties which have been used in various cases to mitigate the 
effect of overstimulation of the immune system. In recent times after the pandemic of the novel corona virus 
disease 2019 (nCOVID-19) generated by SARS-CoV-2, the effect of various MSCs isolated from various 
tissue sources are being utilized to curb the overstimulation of immune response, so that the immune system 
can be brought under some regulation to ultimately reduce the effect of inflammation.
Methods: In this review article, we have reviewed the existing literature, data and ongoing clinical trials by 
using keywords like novel coronavirus, COVID-19, SARS-CoV-2, MERS-CoV, acute respiratory distress 
syndrome, mesenchymal stem cells, immunomodulation properties of stem cells, regenerative properties of 
stem cells, cell therapy, clinical trials of stem cells, clinical trials of COVID-19 and stem cells till 20th August 
2020 using database named PubMed, NCBI, Google Scholar, Scopus, Research Gate and Clinicaltrials.gov. 
Conclusions: Thus, concluding the therapeutic potential of MSCs in managing and treating COVID-19. 
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Introduction

Stem cells are cells in nut cell can be defined as obligatory, 
asynchronous replicators. These cells are mesengenic cells, 
meaning they give rise to the tissue such as muscle, cartilage, 
bone, tendon, dermis, marrow stroma, connective tissues 
and fat (1,2). Human mesenchymal stem cells (hMSCs) are 
characterized by a set of markers (CD29, CD44, CD73, 
CD90, CD105) and lack the expression of CD14, CD34, 
CD45 and human leukocyte antigen (HLA) as proposed in 
2006 by the International Society for Cellular Therapy (3).  
These cells reside in the pockets in almost all organs of an 
adult individual and protect the body from the general wear 
and tear process. Different pockets/niches in human body 
where MSCs reside are the heart (4), peripheral blood (5),  
cord blood (6), muscle (7), adipose tissue (8), lung (9), 
trabecular bone (10), intestine (11), kidney (12), liver (13), 
pancreas (14), synovium (15), skin (16), hair follicle (17,18),  
and even in the brain (19). These niches are specialized cell 
pockets that provide a necessary microenvironment for their 
survival and support.

Depending upon the origin of the tissue these stem 
cells are classified as adult stem cells (ASCs) or embryonic 
stem cells (ESCs). Differentiated adult stem cells which 
are induced to behave as pluripotent are called as induced 
pluripotent stem cells (iPSC) (20). Mesenchymal stem 
cells (MSCs) which are generally used in clinical settings 
are of adult origin. Though MSCs can be expanded from 
the embryonic stem cells the potential of undifferentiated 
embryonic stem cells to form teratoma (cancer of all the 
three germ layers) in nude mice generally limits their 
therapeutic potential (21). hMSCs in immune modulation 
have been reported in autoimmune diseases. Like 
inflammatory airway disorders (22), graft versus host disease 
(GVHD) (23) and in a disease model of autoimmune 
diseases such as systemic lupus erythematosus (SLE) (24) 
multiple sclerosis (25). In the recent outbreak if novel 
corona virus disease 2019 (nCOVID-19) pandemic hMSCs 
are being envisioned as a tool to modulate the immune 
response of the affected population and reports/reviews 
have started coming out wherein hMSCs are being used in 
the management of the nCOVID-19 (26-30). 

A graphical abstract is available in the supplementary 

material (Figure S1). We present the following article in 
accordance with the narrative review reporting checklist 
(available at https://dx.doi.org/10.21037/sci-2020-040).

Virology of severe acute respiratory syndrome-
corona virus-2 (SARS-CoV-2)

The novel coronavirus disease 2019 (nCOVID-19) 
pandemic hits the present century so hard that the 
technology and economy freeze from its side effects (31). 
The coronavirus responsible for a nCOVID-19 pandemic is 
SARS-CoV-2 and is a new strain of coronavirus that hasn’t 
been recognized in humans up until December 2019 (27). 
The Coronavirus has already caused the disease among 
humans however with different strains such as severe 
acute respiratory syndrome (SARS-CoV) and middle east 
respiratory syndrome (MERS-CoV) (27). Coronavirus 
enveloped with a positive-sense, single-stranded RNA 
genome (with nucleocapsid) ranged from 26-32 kb (32), 
which is the largest discovered RNA virus (27) in a genome 
with length structure and identity sequence is 79.6% 
identical to SARS-CoV (33). From the four (α, β, γ, δ) 
coronavirus genera, human coronavirus (HCoVs) is spotted 
in α coronavirus genera (NL63 and HCoV-229E) and β 
coronavirus genera (SARS-CoV, HCoV-HKU1, MERS-
CoV and HCoV-OC43) (34). The β coronavirus genera 
indicate 88% identical with the sequence of two-bat derived 
severe acute respiratory syndrome (SARS)-like coronavirus, 
bat-SL-CoVZXC21 and bat-SL-CoVZC45 and nearly 
50% identical to the sequence of MERS-CoV (34). Thus, 
the novel β-CoV was termed as “SARS-CoV-2” by the 
International Virus Classification Commission (35). 

SARS-CoV-2 genome contains ten open reading frames 
(ORFs). The first open reading frame (ORF1a/b) are about 
2/3rd of viral RNA, and are transferred into larger two 
polyproteins. In SARS-CoV and MERS-CoV, pp1a and 
pp1ab (two polyproteins) are processed into sixteen non-
structured proteins (nsp1 – nsp16), which will further form 
the viral replicase transcriptase complex (35). Such non-
structured proteins readjust Rough Endoplasmic Reticulum 
(RER) originating membranes towards double-membrane 
vesicles where transcription and viral replication occurs (36).  
The another open reading frames of SARS-CoV-2 on the 
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1/3rd of the genome encodes for four structural proteins 
named nucleocapsid (N), spike (S), envelope and membrane 
(M) protein as well as numerous accessory proteins with 
undefined role and don’t have any role in viral replication (35). 

Pathogenesis of SARS-CoV-2 

SARS-CoV-2 affected patients come up with clinical 
manifestations including shortness of breath, dry cough, 
fever, fatigue, myalgia, evidence of pneumonia based on 
radiographic evidence, and decreased leukocyte counts (37), 
which are very much similar to SARS-CoV and MERS-
CoV infections (38). Though the precious pathogenesis 
of SARS-CoV-2 is still poorly understood, but the overall 
mechanism of SARS-CoV and MERS-CoV open ups the 
information source on the pathogenesis of SARS-CoV-2 
infection (27,31). 

Interaction of virus protein with the human 
surface receptors

The S protein on coronavirus surface has been reported as a 
ticket to admission the virus into host cells (39) by recognizing 
the Angiotensin I converting enzyme 2 (ACE2) receptor 
by its spike protein (33,40,41). The enveloped spike glycol 
protein binds to its cellular receptor in the following manner 
as Angiotensin I converting enzyme 2 for SARS-CoV-2 (42)  
and SARS-CoV (43), CD209L (C-type lectin) called 
L-SIGN for SARS-CoV (44), DPP4 for MERS-CoV (45).  
Regrettably, the ACE2 receptor is distributed widely 
on the surface of human cells, specifically the alveolar 
type 2 of the lungs (46,47). The ACE2 receptor are also 
presents abundantly on heart, liver, kidney and digestive 
organs, altogether the smooth muscle cells and endothelial 
cells in organs express ACE2, thus the virus can enter 
speedily within the body through blood circulation (31).  
Thus, all the organs and tissue expressing Angiotensin I 
converting enzyme 2 could be involved in the battlefield 
of nCOVID-19 and explains why the patients suffering 
from respiratory distress syndrome also suffer from 
multiple organ dysfunction (MOD) including acute kidney 
shock, acute myocardial injury, shock and arrhythmia 
(28,37). Parallelly, a study done by Hoffmann et al. (48) 
demonstrated that cellular serine protease TMRRSS2 is 
needed to permit coronavirus entry into the host cells and it 
is plausible that human cells like capillary endothelium and 
alveolar type 2 (46) contains well distributed ACE2 receptor 
all over the surface and those alveolar type 2 cells largely 

express TMPRSS2 (48-50).
Back the coronavirus entry mechanism which is initiated 

by direct membrane fusion between the plasma membrane 
and the virus (50,51). Belouzard et al. (52) demonstrated a 
critical proteolytic cleavage incident occurred at S2’ position 
of S protein in SARS-CoV medicated the membrane fusion 
and viral infectivity. In addition to membrane fusion, 
the clathrin-independent and dependent endocytosis 
fascinate SARS-CoV entry too (53,54). Following the 
virus entrance within the cells, the viral RNA genome 
let out within the cytoplasm and decode into structural 
protein and tow polyprotein, afterwards the genome of 
virus initiates duplication and replication (34). The afresh 
designed enveloped glycoprotein are intersected within the 
membrane of Golgi or ER (endoplasmic reticulum), and 
the nucleocapsid is molded by the blend of genomic RNA 
and nucleocapsid protein. Afterwards, the particles of virus 
shoot-up at the Endoplasmic reticulum-Golgi intermediate 
compartment (ERGIC) (35). At last, the virus particles 
contained by vesicles start fusing with the plasma membrane 
to discharge the virus (39). 

Presentation of coronavirus antigen 

After the virus enters into the cell, an antigen is offered 
to the antigen presentation cells (APC), this one has a 
fundamental role in the anti-viral immunity of the body. 
Antigen peptides being accessible by human leukocyte 
antigen (HLA) or major histocompatibility complex (MHC) 
recognized by virus-specific cytotoxic T lymphocytes 
(CTLs) in humans (35). Therefore, knowledge of antigen 
presentation in SARS-CoV-2 is must for the better 
understanding the nCOVID-19 pathogenesis. Although, 
SARS-CoV antigen presentation mainly depends on 
MHC I (55) molecule but MHC II also contributes to 
its presentation. Earlier reports suggested the SARS-
CoV susceptibility correlates with HLA polymorphism 
such as HLA-B*4601, HLA-B*0703, HLA-DR B1*1202, 
HLA-B*4601, HLA-B*0703 (56) and HLA-CW*0801 (57),  
however the HLA-DR0301, HLA-A*0201 and HLA-
CW1502 alleles, on the other hand, provides protection 
from SARS infection (58). During MERS-CoV infection 
susceptibility to infection is associated with Major 
Histocompatibility Complex II (MHC II) like HLA-
DRB1*11:01 and HLA-DQB1*02:0 (59). Likewise, 
gene polymorphisms of MBL (mannose-binding lectin) 
associated with antigen presentation are correlated to higher 
SARS-CoV infection risk (60). Such pieces of information 
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would deliver high beneficial evidences for the mechanism 
and treatment of nCOVID-19. 

Evasion of immune surveillance

SARS-CoV and MERS-CoV sustain in host cells by 
using multiple approaches by avoiding immune response. 
An evolutionary conserved microbial structure called 
pathogen-associated molecular patterns (PAMPs) can be 
recognized by pattern recognition receptors (PRRs) (35).  
However, SARS-CoV and MERS-CoV can persuade 
double-membrane vesicles production then replicates 
in these vesicles that lack PRRs, thus avoiding the host 
detection of their dsRNA (61). IFN-β (IFN-I) and IFN-α 
provide shielding effects on SARS-CoV and MERS-
CoV but in an infected mouse, IFN-I pathway is inhibited 
(62,63). MERS-CoV, accessory protein 4a may chunk the 
induction of interferon at the level of MDA5 activation 
through interaction with double-stranded RNA (64). In 
addition to membrane proteins of MERS-CoV and ORF5, 
ORF4a, ORF4b inhibit nuclear transport of interferon 
regulatory factor 3 (IRF3) and stimulation of interferon β 
(IFN β) promoter (65). Coronavirus also affects the antigen 
presentation like gene expression related antigen presentation 
is down-regulated after MERS-CoV infection (66).  
Thus, smashing the immune evasion of SARS-CoV-2 is 
very crucial for the effective treatment against the virus. 

Cytokine storm 

Interestingly, B and T lymphocytes (Immune cells), bone 
marrow, thymus, spleen and macrophages are negative 
for ACE2 (28,46). These detections suggest that the 
patients suffering from Coronavirus may be treated with 
immunological therapy, however when the patient’s own 
over activated immune system kills the virus, it generates 
inflammatory factors in larger number subsequently lead 
to cytokine storm (28,37). The deadly uncontrollable 
inflammatory response results in releasing of a terrible 
amount of pro-inflammatory cytokines (IFN-α, IFN-γ, 
TNF-α, TGF-β, IL-33, IL-18, IL-12, IL-6, IL-1β, etc.) 
and Chemokines (CXCL10, CXCL9, CXCL8, CCL5, 
CCL3, CCL2, etc.) in the lungs through immune effector 
cells in SARS-CoV infection (28,37,67-69). Similarly, 
infection MERS-CoV showed higher levels of IL-6, IFN-α, 
IL-6, CCL5, CXCL8, CXCL10 in diseased patients (70). 
Therefore, sidestepping the cytokine storm maybe crucial 
for treating nCOVID-19 diseased patients as the cytokine 

storm stimulate attack by the body’s own immune system 
that further cause acute respiratory distress syndrome, 
cardiac arrest, dysfunction of the air exchange and MOD, 
which finally leads to death in nCOVID-19 infection just 
like in SARS-CoV and MERS-CoV infection (28,37,40).

Response of humoral and cellular immunity

Cellular and humoral immunity in the body stimulate by the 
antigen presentation subsequently, which is driven through 
a virus specific T cells and B cells. Likewise, to other acute 
viral infection, the AB (antibody) profiles against SARS-
CoV produces the typical IgM and IgG pattern (35). The 
SARS specific IgG antibody may last for a longer time as 
compared to IgG antibody which usually disappears by 
the end of 12 weeks, thus it may be concluded that IgG 
antibody plays a protective role against the virus (71). Many 
publications on such areas are more concerned about the 
cellular immunity comparing to humoral response against 
coronavirus study (35). The study by (72) demonstrated that 
number of CD8+ and CD4+ T cells in the SARS-CoV-2 
diseased patient peripheral blood is reduced significantly, 
while its status activated, as evinced by a higher proportion 
of CD38 (CD8, 39.4%) HLA-DR (CD4, 3.47%) (73). Also, 
the acute phase response in SARS-CoV patients is indicated 
with decreased CD4+ and CD8+ T cells. Even, in case of no 
antigen, CD4+ and CD8+ memory T cells can stay for up to 
almost 4 years in a part of SARS-CoV recovered individuals 
and can perform proliferation of T cells, production of 
IFN-γ and DTH response (71). Six years after SARS-CoV 
infection, specific T-cells memory responses to the SARS-
CoV S peptide library could still be identified in 14 of 23 
recovered SARS-CoV patients (35,74). The specified CD8+ 
T cells turned up showing akin event on MERS-CoV 
clearance in mice (75). This piece of information may prove 
valuable for working on the therapy aspects of nCOVID-19. 

Management of nCOVID-19

Approximately 90 vaccines are being developed to 
fight against nCOVID-19 by research corporates and 
universities around the globe (76,77). Scientists are trialing 
and validating several technologies, some of which have 
not been used in licensed treatment/vaccination before. 
A study (76) grouped a few vaccines like Virus vaccines, 
Nucleic-acid vaccines, Protein-based vaccines, and Viral-
vector vaccines, that have already started injecting into 
volunteers for safety trials and some for-animal studies (76).  
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Mesenchymal SCs transplantation can improve the 
outcomes in patients suffering from nCOVID-19 related 
symptoms. Parallelly, the Italian College of Anesthesia, 
Analgesia, Resuscitation, and Intensive care have issued 
certain guidelines to treat nCOVID-19 diseased cases (47), 
by indicating the declaration of the key potentiality of stem 
cells to relief the nCOVID-19 patients quickly (47). 

Immunological therapy may be considered as one of the 
potential treatment but the immunomodulatory capacity 
can’t stand strong alone in case of only or two immune 
factors will be considered because the virus has the ability 
to stimulate cytokine storm in the lungs itself, which further 
lead to acute respiratory distress syndrome (ARDS), multi-
organ failure, cardiac arrest, and other infection which 
results into deadly outcomes (28,37). Therefore, avoiding/
evading cytokine storm is better while treating nCOVID-19 
infected population which also mean immunological 
therapies may not be sufficient to fight against the deadly 
virus (28,31). However, ‘Master Cells’ or stem cells like 
MSCs have the intrinsic powerful immunomodulatory 
ability and carry the advantage for attenuating cytokine 
Storm and thereby beneficial as a therapy to treat 
nCOVID-19 infected patients (27,28,31).

Cell-therapies are leading the biomedical research 
ranging from tissue engineering to regenerative medicine 
and incorporated in curing a number of diseases including 
cardiovascular (78-80), pulmonary (81-84), renal (85-87) 
etc. On the other hand, despite numerous literatures stating 
the immunomodulatory or regenerative effect of stem cell-
based therapies, federal trade commission (FTC) issued 
legal lawsuit against stem cell-based therapy in clinical 
practices (88). Throughout the controversial background 
of stem cell-based therapy, Food and Drug Administration 
(FDA) have considered multiple clinical trials of stem cell 
therapy and issued new guidance and clearance before 
practicing the therapy on the roadway of the clinic (89-95).  
The deadly virus infection and spread has assembled 
researchers and clinicians from different life sciences 
branches to find a treatment or the solution towards the 
ongoing worst pandemic of this century. International 
Society for Stem Cell Research (ISSCR) has recently 
announced that presently there is no approved stem cell-
based therapy for treating and preventing of coronavirus 
infection (27). However, just as the other multiple treatment 
strategies are into the pipeline, MSCs have been introduced 
as a potential therapeutic approach to deal and manage the 
treatment associated with deadly nCOVID-19 (96).

After the nCOVID-19 disaster, many researchers around 

the globe combine the stem cell infusion for treating 
COVID mobility and mortality, one such study was 
published in China on a stem cell based clinical trial that 
improved the critical case of 65 years old Chinese women 
suffering from nCOVID-19 after the infusion of MSCs (97). 
After this publication published in the scientific market, 
many clinical stem cell trials have been started since date, 
another report from Beijing responded positive outcomes 
on treating seven nCOVID-19 patients with stem cell 
therapy (28). WHO has also created the central database 
around the globe running stem cell clinical trials to treat 
the deadly virus nCOVID-19. Finally, in February 2020, 
Director of Biological Technology, Ministry of Science 
and Technology in Beijing, Mr. Zhang Xinmin, during a 
press conference, announced the safety and effectiveness of 
stem cell-based therapy based on preliminary experimental 
results running across the country (98). 

Role of hMSCs in coronavirus pandemic 

hMSCs have been used frequency from basic regenerative, 
translation research to human clinical trials (28,99,100). 
MSCs safety and effectiveness have already been clearly 
recognized in numerous clinical trial studies like in Graft-
versus-host disease (GVHD) (101) or Systematic lupus 
erythematosus (SLE) (102). After the nCOVID-19 
infection, the body tends to accelerate the immune 
overreaction which further produces a large number of 
inflammatory factors, thus initiating cytokine storm with an 
overproduction of immune cells and cytokines (103). Here, 
comes the role of Corona warrior, i.e., the MSC therapy for 
treating nCOVID-19 patients. Mesenchymal SCs shows a 
key and lead role primarily into two different ways, their 
differentiation abilities and immunomodulatory effects 
(27,28,31). At a cellular level, Mesenchymal SCs itself 
contains some natural immunity towards the coronavirus 
due to their powerful immunomodulatory capability. 
Mesenchymal SCs have valuable effects in preventing or 
attenuating the cytokine storm simply by secreting anti-
inflammatory factors (31) by paracrine secretion (28). 
Mesenchymal SCs with the ability of paracrine secretion 
may secrete many types of cytokines or make direct 
interaction with certain immune cells like T cells, B cells, 
macrophages, natural killer cells and dendrite cells (31)  
The Mesenchymal SCs immunomodulatory effect is 
further triggered by the stimulation of TLR receptor 
in Mesenchymal SCs, which is stimulated by pathogen-
associated molecules such as novel coronavirus double-
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stranded RNA or LPS (104,105). Mesenchymal SC therapy 
inhibits the overreaction by the immune system and thereby 
encourage endogenous repair, i.e., reparative trait of SCs by 
improving the microenvironment (27,31). After intravenous 
injection of MSCs, some part of Mesenchymal SCs entraps 
within the lungs, which further improves the pulmonary 
microenvironment by protecting alveolar epithelial cells, 
prevent pulmonary fibrosis and improve overall lung 
dysfunction and nCOVID-19 associated pneumonia 
(28,82,83). MSCs have also stand-up superior in improving 
functions related to cardiovascular, hepatic, renal, acute 
respiratory syndrome and multiple other disorders (85,106).

Therefore, it can be stated that MSCs based therapy 
may possibly play a key and warrior role for clinical trial in 
combination with conventional treatment to explore the 
therapeutic potential to treat nCOVID-19 infected patients (28). 

Challenges and future prospects

MSCs have in many of the clinical and preclinical trials 
have shown promising results in conditions of inflammatory 
airway disorders and other immune disorders. This has led 
the researchers to plan and conduct clinical trials to combat 
the nCOVID-19 pandemic, as the major symptoms of an 
attack are related to inflammatory airway disorders. Though 
we have many questions in mind, the need of the hour is 
to find out a solution for this pandemic and hence no stone 
should be left unturned, which may lead us in mitigating 
the symptoms of the disease. MSCs derived from different 
tissue sources show many similarities and they also exhibit 
obvious differences in their properties and this is a very 
important point which should be kept in consideration. 

In one the of the study performed by Yang et al. in 2013 (107),  
Biological and phenotypic characteristics of different MSCs 
sources were compared, sources included were adipose-
MSCs, bone marrow-MSCs, umbilical cord-MSCs and 
chorionic villi-MSCs. The results have demonstrated 
CD106+ (VCAM-1) was highly expressed in chorionic 
villi-MSCs, fairly on bone marrow-MSCs, and very light 
expression was observed on umbilical cord-MSCs, however, 
the expression was absent on adipose-MSCs. The CD106+ 
cells have shown to be more efficient in the modulation of T 
helper subsets (107). Umbilical based MSCs and Wharton 
Jelly based MSCs are also being used in managing critically 
ill nCOVID-19 Patients have been suggested by some of the 
research groups in the UK and China (31,108-110).

These are some hope inducing studies wherein it has 
been shown that the management of the nCOVID-19 

cases is possible with cell-based therapy. However, there 
are several questions which need to be answered. Many 
more randomized and multicentric clinical trials will throw 
more light into this domain. With such clinical trials and 
exchange of data, we may narrow down the type of stem 
cells, dose, route of injection and follow-up interventions 
requirement (111,112).

Apart from these, there are many more questions which 
need to be answered. As many of the studies are using the 
cultured MSCs, we need to understand and compare the 
culture condition of the different laboratories. Which are 
the signaling pathway modulated by these cells? Where 
exactly in the signaling pathway cytokines secreted by MSCs 
act? How theses MSCs infusion will affect an nCOVID-19 
patient having comorbidity? How the safety regulations 
of the previous trials will pave the way for a more safe and 
effective treatment? (113).

We will be able to make these trials, even more, useful 
and meaningful, if we try to find out the answer to these 
questions and many more which we may not have thought. 
More and more cooperation in research and developments 
is required to combat this pandemic and the better and free 
exchange of results, findings need to be shared among the 
affected countries, to mount a good attack on the virus.
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Figure S1 Diseased lung (COVID-19 infected lung): (I) when the SARS-CoV-2 enters the alveolus, it starts to infect the alveolar type II cells and replicates, (II) the alveolar type II infected cells tend to release 
pro-inflammatory cytokines, which further signals the body’s immune system to respond, which leads to mild symptoms like cough, body ache and fever in COVID-19 infected patients, (III) IL-1, IL-6 and 
TNF-α released by macrophages causes vasodilation which permits more immune cells to travel to the alveolus. It further causes an increase in capillary permeability, which results in the plasma leakage into the 
alveolus and interstitial space, (IV) parallelly, neutrophils release proteinases and reactive oxygen species (ROS), which destroy infected cells, (V) these infected or dead cells pool with the plasma to form a protein-
rich fluid that remains collected within the alveolus, causing pneumonia and shortness of breath. Accumulation of fluid and dilution of surfactant lining the alveolus causes collapse of alveolar, which reduces 
the gas exchange and can lead to acute respiratory distress syndrome, (VI) overdrive of the immune system, causes inflammation spread throughout the circulatory system leading to cytokine storm (systemic 
inflammatory response syndrome), this storm can drastically drop the blood pressure (septic shock) leading to multi-organ failure or death as organs can no longer be perfused. Created with BioRender.com. 
Mesenchymal stem cells (MSCs) transplantation in the diseased lung: MSCs and their secreted extracellular vesicles (Exosomes) potentially modulate the immune cells (T cells and dendritic cells) and epithelial 
cells, which are involved in the airway inflammation. The mesenchymal SCs function their modulatory effects via promoting anti-inflammatory cytokine, chemokines, cell-cell contact, mitochondrial transfer 
and genomic regulation, which could attenuate inflammation and regenerate lung damage caused by nCOVID-19. It has been studies that SARS-CoV-2 can infect angiotensin I converting enzyme 2 (ACE-2) 
receptor-positive cells, however MSCs lack ACE-2 receptors and TMPRSS2. Thus, when SARS-CoV-2 enter and infect the alveolar type II cells, MSCs inhibits epithelial-endothelial cell permeability. Further 
PGE2, TSG-6 secreted by MSCs influence the macrophage switch from M1 (an inflammatory) into M2 (an anti-inflammatory) state. This MS macrophage expresses high levels of Interleukin-10 and CD206, 
additionally reduces Interleukin-12 and TNF-α levels, and demonstrates elevated phagocytic activity. Further MSCs support and trigger the development of Treg populations via immunomodulatory factors 
(TGF-β, and HLA-G5) and expresses higher Interleukin-10 level, thus collectively modulate and balance Treg. During an inflammatory environment created by activated cells, MSCs recruit effector T cells and 
local helper (Th). The inducible NO synthase (iNOS) and intracellular enzymes indoleamine-2,3-dioxygenase (IDO) produced by MSCs are some of the mediators of T cell suppression, that further promotes 
their polarity shift from a Th1 state (pro-inflammatory) to Th2 state (anti-inflammatory). Lipid mediator prostaglandin E2 (PGE2), interleukin-10 (IL-10), and transforming growth factor β (TGF-β) secretion 
by MSCs inhibit the production of tumor necrosis factor α (TNF-α), interferon γ (IFN-γ), and Th17 cell differentiation. MSCs secreted IL-6, diminishes respiratory burst from neutrophils, the suppression 
of peroxidase and protease (releasing destructive enzymes) save neutrophils from apoptosis. Thus, through the anti-inflammatory mechanism, MSCs results into an attenuation of cytokine storm, alveolar fluid 
clearance and maintain alveolar-capillary barrier function. Created with BioRender.com.
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