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Background: Bicuspid aortic valve (BAV) disease leads to deviant helical flow patterns especially in the 
mid-ascending aorta (AAo), potentially causing wall alterations such as aortic dilation and dissection. Among 
others, wall shear stress (WSS) could contribute to the prediction of long-term outcome of patients with 
BAV. 4D flow in cardiovascular magnetic resonance (CMR) has been established as a valid method for flow 
visualization and WSS estimation. The aim of this study is to reevaluate flow patterns and WSS in patients 
with BAV 10 years after the initial evaluation.
Methods: Fifteen patients (median age 34.0 years) with BAV were re-evaluated 10 years after the initial 
study from 2008/2009 using 4D flow by CMR. Our particular patient cohort met the same inclusion criteria 
as in 2008/2009, all without enlargement of the aorta or valvular impairment at that time. Flow patterns, 
aortic diameters, WSS and distensibility were calculated in different aortic regions of interest (ROI) with 
dedicated software tools.
Results: Indexed aortic diameters in the descending aorta (DAo), but especially in the AAo did not change 
in the 10-year period. Median difference 0.05 cm/m2 (95% CI: 0.01 to 0.22; P=0.06) for AAo and median 
difference −0.08 cm/m2 (95% CI: −0.12 to 0.01; P=0.07) for DAo. WSS values were lower in 2018/2019 at 
all measured levels. Aortic distensibility decreased by median 25.6% in the AAo, while stiffness increased 
concordantly (median +23.6%).
Conclusions: After a ten years’ follow-up of patients with isolated BAV disease, indexed aortic diameters 
did not change in this patient cohort. WSS was lower compared to values generated 10 years earlier. Possibly 
a drop of WSS in BAV could serve as a marker for a benign long-term course and implementation of more 
conservative treatment strategies.
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Introduction

Bicuspid aortic valve (BAV) disease is the most prevalent 
congenital heart defect, affecting 0.77% to 2% of the 
general population (1,2). It describes the fusion of two 
aortic cusps during valvulogenesis leading to an aortic valve 
consisting of two instead of three leaflets (3). The fusion 
of the right and left coronary cusp is the most common 
morphotype (RL-type) followed by RN-type (fusion of the 
right and noncoronary cusp) and LN-type (fusion of the 
left and noncoronary cusp) (4). Frequent complications 
of this malformation are valvular dysfunction, aortic 
stenosis (AS) as well as aortic regurgitation (AR) (5) and 
changes in hemodynamics, leading to complex helical flow  
patterns (6). Clinically relevant wall alterations may 
occur, especially in the mid-ascending aorta (AAo), such 
as dilation, aneurysm formation and dissection (7,8). 
However, the still unknown origin of these pathologies led 
to two conflicting theories: the genetic theory is based on a 
connective tissue disorder named “Erdheim’s cystic medial 
necrosis” (9) which leads to inborn wall weakness, also 
explaining the association of BAV with further congenital 
vascular defects, such as coarctation of the aorta (CoA) or 
patent ductus arteriosus (1). In contrast, the hemodynamic 
theory describes a BAV, which in itself is causing flow 
alterations, which affect the vessel wall, and leads to the 
development of an aortopathy (10).

Besides aortic diameter, several parameters like wall 

shear stress (WSS), aortic distensibility, aortic stiffness 
and flow displacement were established in recent years for 
quantification of disease severity and prediction of outcome 
(11,12). For assessment of these parameters, a combination 
of non-invasive techniques such as echocardiography (13)  
and cardiovascular magnetic resonance (CMR) is required. 
Based on CMR, 4D flow has been established as a valid 
imaging modality offering the possibility for direct,  
in vivo evaluation of vascular anatomy and cardiac function 
(14,15). It is applied for flow visualization and WSS 
estimation (16,17). Due to the gap in longitudinal studies 
in BAV disease, the aim of this study was to evaluate the 
diagnostic value of hemodynamic parameters such as 
flow patterns, distensibility and WSS in BAV but without 
further cardiovascular disease collecting ten-year follow-up 
data in the same patient cohort as in 2008/2009 using 4D  
flow CMR. We present the following article in accordance 
with the TREND reporting checklist (available at https://
cdt.amegroups.com/article/view/10.21037/cdt-22-477/rc).

Methods

Study population

A specific patient cohort consisting of fifteen patients with 
congenital BAV previously evaluated in 2008/2009 were 
included for reevaluation, performed between October 
2018 and September 2019 at a third level cardiac center. 
The patients were all contacted for this follow-up study. 
Among this patient group we could also reevaluate a child 
which was only aged 10 years at that time. In 2008/2009 
originally 18 patients with BAV were included, 3 patients 
(17%) were lost during follow-up due to non-availability of 
contact data. Before CMR, all subjects underwent clinical 
examination including physical examination, 12-lead 
electrocardiography (ECG) and echocardiographic survey 
of valvular function. Exclusion criteria were equal as in 
2008/2009: congenital heart disease other than BAV, aortic 
dissection, previous myocardial infarction or cardiovascular 
surgery, connective tissue disorders, hypertension, maximal 
flow velocity through the aortic valve (Vmax) of >2.9 m/s 
and contraindications for CMR imaging. All patients met 
the inclusion criteria. Patients with moderate or severe 
aortic valve stenosis or regurgitation were excluded from 
the initial study. The study was approved by the ethics 
committee of the Technical University of Munich (No. 
29/18S) and all patients gave written informed consent. 
No participant received financial support. The trial was 
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conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

CMR

All CMR scans in 2008/2009 and 2018/2019 were 
p e r f o r m e d  o n  t h e  s a m e  1 . 5  Te s l a  M R I  s y s t e m 
(MAGNETOM Avanto®, software version VD13, Siemens 
Healthineers, Erlangen, Germany) with a 12-channel 
body-coil. Re-assessment of aortic valve morphotype and 
measurement of aortic diameters and planimetric area for 
distensibility calculation were performed using an ECG-
gated time-resolved (2D CINE) steady state free precession 
(SSFP) sequence over multiple cardiac timeframes during 
breath hold (slice thickness 6 mm, acquisition matrix 
192×192, 25 phases/cardiac cycle). Measurements of aortic 
diameter and planimetric area were performed in double-
oblique, cross-sectional orientation to the aortic root axis 
by choosing adequate slices representing the maximal aortic 
diameter at peak systole and end-diastole. Further, aortic 
blood flow patterns were evaluated using a time-resolved 
three-dimensional (3D) phase-contrast (PC) sequence with 
three-directional velocity encoding (4D flow CMR) with 
prospective gating. A sagittal oblique plane orientation 
for image acquisition provides 3D volumetric coverage of 
the entire aorta [from left ventricular outflow tract to the 
thoracic descending aorta (DAo)]. ECG-synchronization 
and respiratory navigator-gating were performed. 
Prospective gating was used due to sequence architecture, 
since same scanner and the same sequence parameters 
were set as in the initial study in 2008/2009. No contrast 
agent was used. Measurement parameters were: isotropic 
voxel size with a spatial resolution of 2.5×2.5×2.5 mm3, TE  
2.44 ms, TR 39.2 ms, FOV 240×320 mm, FOV phase 75%, 
velocity encoding Vx, Vy, Vz 200–320 cm/s, flip angle 8°, 
band width 440 Hz/pixel. Image acquisition is displayed in 
Figure 1.

Aortic valve morphotype

Aortic valve morphotype was classified as previously 
described by Schaefer et al.: BAV type 1 describing the 
congenital fusion of the right and left coronary cusp, BAV 
type 2 as fusion of the right and noncoronary cusp and BAV 

type 3 as fusion of the left and noncoronary cusp (4).

Calculation of distensibility and stiffness index

By using Microsoft Excel software tool (Microsoft 
Corporation, 2018, Redmond, WA, USA) calculation of 
distensibility according to a previously described formula 
was performed:
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where Amax = maximal systolic area (mm2), Amin = minimal 
diastolic area (mm2), Psys = systolic blood pressure (mmHg) 
and Pdia = diastolic blood pressure (mmHg) (18). Aortic 
stiffness index (SI) was calculated according to Nistri et al.:
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with Dmax describing the maximal systolic aortic diameter and 
Dmin describing the minimal diastolic aortic diameter (19).

Data preprocessing

The generated 4D flow data sets were imported in DICOM 
format to the current software MEVISFlow (MEVISFlow; 
Fraunhofer Institute for Digital Medicine, software version 
11.4, Bremen, Germany) for further editing. Data sets from 
2008/2009, previously analyzed with EnSight® software 
package (EnSight®; CEI, Apex, NC, USA) and software 
tool based on Matlab (The MathWorks, Natick, MA, 
USA), were also reevaluated by software MEVISFlow using 
the same parameter settings. Vascular enhancement and 
suppression of background signal was performed applying 
noise filtering, eddy-current correction and anti-aliasing 
as presented by Walker et al. (20). After pre-processing, 
the squared sum of the 3D-PC images provided a time-
averaged 3D phase-contrast MR angiography (PC-MRA) 
for watershed-based 3D segmentation of the complete 
thoracic aorta, also performed with MEVISFlow. By 
adjusting the threshold at eddy-current correction (optimum 
0.023±0.003), manual correction of 3D segmentations 
could be reduced to a minimum. The workflow of data 
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preprocessing is pictured in Figure 1.

Flow visualization and WSS estimation

By manually contouring the aortic vessel  wall  on 
reformatted cross-sectional magnitude image planes at a 
single temporal frame in systolic phase, we defined our 
regions of interest (ROI), displaying important anatomical 
landmarks (mid-ascending aorta at the level of bifurcation 
of the main pulmonary artery (MPA level) and at the level 
just before the branching of the brachiocephalic trunk 
(BCT level) (Figure 1). An automated algorithm further 
propagated the contour to all other temporal frames, but 
in a few cases manual correction was necessary to account 
for motion of the aorta and the most precise vessel lumen 

boundary definition as possible (21). 4D flow visualization 
in the mid-ascending aorta was performed using pathline 
tracing (22) (Figure 1). Flow was classified according to a 
grading scale previously described by Meierhofer et al., 
where Grade 0 was defined as linear flow and Grade 1–3 as 
helical flow (Grade 1: <180°, Grade 2: 180–360° and Grade 
3: >360°) (6). WSS was calculated by separation of blood 
flow forces acting on the vessel wall into three vectors: axial 
WSS (WSSaxial) − parallel to flow direction; circumferential 
WSS (WSScirc) − in-plane, and magnitudinal WSS 
(WSSmag) as resulting net vector represents the entire aortic  
WSS (23) (Figure 1). WSS values were merged over 
a complete cardiac cycle for each vessel wall segment  
(Figure 1). CMR was operated by experienced investigators 
(MC, HM, BE and SN). Flow visualization and WSS 

Figure 1 Workflow of 4D flow CMR data, post-processing and WSS estimation. (A) Magnitude image; (B) phase-contrast image; (C) 
phase-contrast image after applying noise filtering, eddy-current correction and anti-aliasing; (D) 3D segmentation of the complete thoracic 
aorta; (E) manual contouring of the aortic vessel wall in peak systole defines ROI; (F) visualization of flow patterns using pathline tracing, 
different ROIs; (G) depiction of axial, circumferential and magnitudinal WSS, curved vectors for better visualization are used, by definition 
true vectors are straight in orientation; (H) axial WSS values measured in the mid ascending aorta; inner circle: WSS values for specific 
time-point, outer circle: mean axial WSS including all time-points. Preprocessing, segmentation and WSS estimation was performed using 
MEVISFlow. AAo, (mid-) ascending aorta; CMR, cardiovascular magnetic resonance; WSS, wall shear stress; ROI, region of interest.
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estimation was performed by two investigators (HM and 
BE) both blinded to the findings in 2008/2009 and with 
more than 2 years of experience in post-processing.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 
9.02 statistical software. Data are presented as median and 
total range. Differences were analyzed using the Wilcoxon 
signed-rank test. Intra- and inter-observer variability 
concerning WSS were evaluated using Bland-Altman 
analysis of matched pairs analyzed by one investigator and 
two investigators, respectively. Correlation analyses were 
displayed by Spearman correlation coefficient r.

Results

Study population

The 10-year follow-up reevaluation (median follow-up  
9.8 years, range 9.5 to 10.7 years) was successfully 
completed in fifteen asymptomatic patients (8 males; 53%), 
median age 34 years (range, 19.8 to 54.3 years), no one had 
to be excluded. Three patients of the original cohort of 18 
patients (17%) were lost to follow-up due to non-availability 
of contact data. No adverse events or unintended effects 
occurred during the study. The echocardiographic survey 
revealed no pronounced valvular dysfunction. The velocity 
through the aortic valve was median 1.9 m/s (range 0.9 
to 2.7 m/s). The regurgitation fraction was median 2.5% 
(range 0 to 13%). Eleven patients (73%) were identified 
as BAV type 1, the remaining 4 patients as BAV type 2, 
confirming the morphotypes of the aortic valve as evaluated 
in 2008/2009. The statistical analysis demonstrated good 
evidence of an important difference comparing 2008/2009 
values with 2018/2019: weight (median difference 3 kg; 
range −3 to 25 kg; 95% CI: 1.9 to 9.7; P=0.005), body mass 
index (BMI) (median difference 1.63 kg/m2; range −1.91 
to 5.73 kg/m2; 95% CI: 0.4 to 2.8; P=0.02), body surface 
area (BSA) (median difference 0.04 m2; range −0.04 to 
0.49 m2; 95% CI: 0.02 to 0.2; P=0.004), diastolic blood 
pressure (median difference 2.5 mmHg; range −11 to  
15 mmHg; 95% CI: 0.3 to 5.0; P=0.04), velocity through 
the aortic valve (median difference 0.3 m/s; range −1.4 
to 0.8 m/s; 95% CI: −5.0 to 52.8; P=0.03) and absolute 
aortic diameter for AAo (median difference 0.3 cm; range 
−0.02 to 0.84 cm; 95 % CI: 0.25 to 0.54; P=0.009). The 
indexed aortic diameters in DAo and in the mid-ascending 

aorta did not change substantially, median difference  
0.05 cm/m2 (range −0.1 to 0.5 cm/m2; 95% CI: 0.01 to 0.22; 
P=0.06) for AAo, median difference −0.08 cm/m2 (range 
−0.4 to 0.1 cm/m2; 95% CI: −0.12 to 0.01; P=0.07) for DAo. 
Values of the 10-year-old child are included in all analyses. 
Further baseline characteristics of the study population are 
displayed in Table 1. The three patients lost to follow-up are 
excluded in the column showing the data of 2008/2009.

Aortic distensibility and stiffness index

On AAo level, distensibility decreased by 25.6% when 
simultaneously aortic stiffness index increased by 
23.6%. Values on DAo level behave in the same manner: 
distensibility decreased by 20.7% whereas aortic stiffness 
index increased by 22.4%. Median values and ranges of 
distensibility and stiffness index are presented in Table 1.

Flow visualization and WSS estimation

All patients with BAV showed right-handed, helical flow 
patterns in the mid-ascending aorta. One patient (6.7%) 
was classified as Grade 0, 3 patients (20.0%) as Grade 2 
and 11 patients (73.3%) as Grade 3 (Figure 2). All patients 
with BAV type 2 (4, 100%), but only 7 patients with BAV 
type 1 (63.6%) were categorized as Grade 3. Helical flow 
patterns increased by at least one grading level after the  
10-year follow-up period in five patients (33.3%). 
Comparison of flow patterns are illustrated in Figure 3, 
exemplary in two patients.

WSS values are displayed in Table 1. WSSaxial, WSScirc 
and WSSmag are lower in 2018/2019 at the MPA level as 
well as at the BCT level compared to 2008/2009 (Figure 4) 
even in the above-mentioned patients with an increment in 
flow grading as well as comparing values of our youngest 
patient, which was a child back in 2008 (WSSmag decreased 
from 0.46 to 0.38 N/m2 at MPA level and from 0.63 to  
0.41 N/m2 at BCT level). There were no relevant changes 
in all WSS directions on both aortic levels between BAV 
type 1 and BAV type 2. ROIs were placed at the identical 
levels as in the initial study, however we waived WSS 
measurement at the level of the aortic bulb due to weak 
resolution and therefore inadequate estimation of WSS 
since exact delineation of the aortic wall is crucial.

Intra- and inter-observer variability

Analysis showed good intra- and inter-observer variability: 
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Table 1 Study population characteristics

Characteristics
2008/2009 (n=15) 2018/2019 (n=15) Median 

difference
95% CI of median 

difference
P value

Median Range Median Range

Age (years) 24.5 10.1–43.6 34.0 19.8–54.3 9.5 9.8–10.3 0.004*

Height (cm) 173 138–192 175 160–191 2.0 −1.6 to 5.5 0.54

Weight (kg) 70.0 30.0–88.0 73.0 55.0–93.0 3.0 1.9–9.7 0.005*

BSA (m2) 1.9 1.1–2.1 1.9 1.6–2.1 0 0.02–0.2 0.004*

BMI (kg/m2) 22.8 15.8–28.1 24.4 20.8–30.4 1.6 0.4–2.8 0.02*

Psys (mmHg) 110.5 92.0–128.0 112.0 111.0–130.0 1.5 −1.4 to 4.0 0.33

Pdia (mmHg) 62.0 44.0–83.0 64.5 53.0–87.0 2.5 0.3–5.0 0.04*

MAP (mmHg) 77.3 60.7–95.7 80.6 68.7–100.7 3.3 −0.1 to 4.5 0.07

Vmax (m/s) 1.6 1.2–2.3 1.9 0.9–2.7 0.3 −5.0 to 52.8 0.03*

Regurgitation fraction (%) 1 0–6 2.5 0–13 1.5 −0.6 to 3.3 0.16

Absolute aortic diameter (cm)

AAo 3.2 1.86–4.38 3.5 2.55–4.95 0.3 0.25–0.54 0.009*

DAo 1.8 1.38–2.23 1.8 1.30–2.24 0 −0.06 to 0.08 0.82

Indexed aortic diameter (cm/m2)

AAo 1.73 1.18–2.29 1.78 1.27–2.57 0.05 0.01–0.22 0.06

DAo 0.98 0.80–1.46 0.90 0.72–1.18 −0.08 −0.12 to 0.01 0.07

Distensibility (10-3 mmHg−1)

AAo 6.57 2.39–9.94 4.89 1.66–8.58 −1.68 −0.07 to 3.80 0.08

DAo 5.61 2.62–11.58 4.45 2.89–6.94 −1.16 −0.48 to 3.95 0.17

Stiffness index

AAo 4.12 2.50–5.86 5.09 2.95–13.39 0.97 −4.83 to −0.13 0.02*

DAo 3.99 2.91–6.69 4.89 3.66–8.15 0.90 −3.02 to 0.33 0.17

WSSaxial (N/m2)

MPA level 0.45 0.29–0.74 0.28 0.22–0.51 −0.17 0.1–0.21 0.001*

BCT level 0.42 0.26–1.00 0.28 0.22–0.58 −0.14 0.08–0.21 0.003*

WSScirc (N/m2)

MPA level 0.50 0.23–0.71 0.24 0.19–0.43 −0.16 0.15–0.29 0.001*

BCT level 0.48 0.22–1.04 0.27 0.22–0.61 −0.21 0.12–0.25 0.003*

WSSmag (N/m2)

MPA level 0.75 0.40–1.15 0.43 0.34–0.75 −0.32 0.2–0.4 0.001*

BCT level 0.72 0.38–1.60 0.44 0.37–0.92 −0.27 0.16–0.36 0.002*

*, relevant changes after the follow-up period. BSA, body surface area; BMI, body mass index; Psys, systolic blood pressure; Pdia, 
diastolic blood pressure; MAP, mean arterial pressure; Vmax, maximal velocity through the aortic valve; AAo, (mid-) ascending aorta; DAo, 
descending aorta; BCT level, level before the branching of the brachiocephalic trunk; MPA level, level of bifurcation of the main pulmonary 
artery; WSS, wall shear stress; WSSaxial, axial WSS; WSScirc, circumferential WSS; WSSmag, magnitudinal WSS.
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mean values of WSS were 0.35±0.10 and 0.34±0.11 N/m2 
for the first and second measurement of one investigator 
(r=0.97) and 0.31±0.08 N/m2 (r=0.68) for the other 
investigator. Bland-Altman 95% limits of agreement were 
−0.03 to 0.05 N/m2 and −0.04 to 0.11 N/m2.

Discussion

In this prospectively designed study, we could show that 
indexed diameter of the ascending and descending aorta 
in patients with BAV did not increase substantially over a 
follow-up period of ten years. Based on strict and specific 
exclusion criteria, a well-described patient cohort was 
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formed back in 2008/2009. Fortunately, we were able 
to reevaluate the same, particular patient collective, still 
lacking any further cardiovascular disease than BAV. 
WSS was essentially lower in all directions and at all 
measured levels in the aorta. In accordance with age, aortic 
distensibility decreased and stiffness index increased over 
the given period.

Studies have shown that aortic diameters in patients 
with BAV are larger than in controls, even with a normally 
functioning valve (8). Surgical interventions in BAV 
disease can prevent these patients from complications and 
provide an excellent outcome in terms of survival (24), but 
aortic dilation after valve replacement is still present (25). 
Accordingly, an individual approach for risk stratification 
is required. In the pre-selected patient cohort of this 
study, absolute aortic diameter in AAo slightly increased. 
Whilst comparing aortic diameters, confounders were 
limited by applying a relation to physical conditions of 
the patients. After indexing the aortic diameters on BSA, 
the values did not change in a 10-year follow-up period 

suggesting a potential benign long-term development and 
implementation of more conservative treatment strategies 
for the patients in our cohort study. Exact assessment of 
aortic size is under ongoing discussion in the literature, but 
though a height-based ratio seems to be sufficient, both 
correction for height as well as BSA improves prediction 
of complications (26,27). Semi-automatic assessment of 
aortic diameter may standardize measurements of aortic  
diameter (28).

Nevertheless, studies regarding outcome of BAV disease 
have revealed a higher prevalence for cardiac and vascular 
events compared to the general population (29). Besides 
aortic diameter, risk stratification includes severity of 
valvular dysfunction (30) or cardiovascular comorbidities 
such as CoA (31). The impact of flow alterations is also 
well demonstrated: helical flow patterns are present in BAV, 
especially in the mid-ascending aorta, including patients 
with concomitant aneurysm and aortic stenosis (AS) (32,33), 
creating “a higher friction of blood relative to the vessel 
wall with the consequence of increased WSS” (34). Several 

Figure 4 WSS: 10-year follow-up. Boxplot graphs (Tukey): (A) axial WSS, (B) circumferential WSS and (C) magnitudinal WSS measured at 
MPA level and BCT level. WSSaxial (95% CI: MPA level: 0.1 to 0.21, BCT level: 0.08 to 0.21; P value: MPA level: 0.001, BCT level: 0.003), 
WSScirc (95% CI: MPA level: 0.15 to 0.29, BCT level: 0.12 to 0.25; P value: MPA level: 0.001, BCT level: 0.003) and WSSmag (95% CI: MPA 
level: 0.2 to 0.4, BCT level: 0.16 to 0.36; P value: MPA level: 0.001, BCT level: 0.002). *, relevant changes after the follow-up period. WSS, 
wall shear stress; MPA, main pulmonary artery; BCT, brachiocephalic trunk.
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previous studies have shown, comparing BAV patients to 
subjects with normal, tricuspid valves (TAV), that WSS is 
clearly increased in patients with BAV compared to TAV 
(6,11,35). Especially circumferential WSS and progression 
of helicity seem to have an impact on aortic growth 
(36,37). Heterogeneous distribution of WSS leads to 
different affections of the vessel wall, including elastic fiber 
thinning (38) as well as intima-media thickening and plaque 
induction in initiation of atherosclerosis (39). A few studies 
reported different results, that may be explained by varying 
characteristics of patient collective, measured ROI and 
investigated primary disease (40-42).

However, in due consideration of valvular function, 
a differentiation within the spectrum of BAV disease is 
necessary: follow-up data of non- or mild stenotic and/
or regurgitant, isolated BAVs and concomitant WSS 
already revealed an almost asymptomatic, progression-
free disease development (43), with stable WSS values in  
childhood (44), starting to decrease at middle age (45). 
This latter study supports the hypothesis that compared 
to TAV with dilation, BAV patients demonstrated WSS 
reduction as a compensatory mechanism to reduce elevated 
WSS forces by aortic remodeling. These studies support 
our findings: WSS substantially decreased in all spatial 
vectors and measured levels in the ascending aorta in our 
patient cohort. Even regarding values of the child aged only  
10 years back in 2008/2009, we found a reduction of WSS. 
It is most remarkable, that changes in aortic diameter are 
not responsible for this drop of WSS. Regarding valvular 
dysfunction, Farag et al. found significantly elevated values 
of WSS, correlating with the severity of aortic valve  
stenosis (46). Despite peak velocity through the aortic valve 
was higher in our study and in 5 patients (33.3%) helical 
flow patterns increased by at least one grading level after the 
10-year follow-up period, absolute values do not indicate 
a moderate or severe level of stenosis, making any major 
impact on WSS reduction unlikely. Although comparison 
of cohorts may be contestable due to various variations in 
patient characteristics, the paradox of results needs to be 
addressed. Because rotational flow was assessed using a 
subjective method and therefore may be subject to minor 
deviations in reevaluation, a more objective assessment 
of circulation may be focus in future work when better 
software tools measuring helical flow are available.

WSS reduction might be explained by slight alterations 
in hemodynamic flow patterns by the aging aorta: in the 
ascending as well as descending part, distensibility decreased 
and stiffness index increased both more than 20% after ten 

years. In general, patients with BAV yet seem to exhibit 
altered elastic properties compared to normal controls, 
regardless of age (47). In addition, a positive correlation 
between age and stiffness suggests a continuous increase of 
stiffness over lifetime in BAV disease (48). Adjustment of 
distensibility to diameter may cause variation in changes 
of elastic properties and effects of valvular dysfunction 
have to be clarified (49,50), but our patients did not show 
any signs of disease progression. Numerical impairment 
of aortic elasticity may have led to changes in spatial and 
temporal distribution of helical flow. Slight alterations in 
flow direction, grade of rotation, angle to the vessel wall or 
intensity of helicity could have caused the decrease of WSS. 
It could serve as a marker for a benign long-term course, 
leading to prolonged intervals in serial reevaluation and a 
more conservative approach in therapy management.

Further studies are required for investigation of the 
impact of helical flow on WSS and the association between 
its severity and the development of aortopathy. Novel 
parameters may contribute to predict the outcome or even 
improve risk stratification: von Spiczak et al. described a 
quantitative analysis of vortical blood flow for visualization 
of pathological flow alterations (51), while Tiwari et al. 
successfully introduced so-called MRSD (maximal rate of 
systolic distension) and MRDR (maximal rate of diastolic 
recoil) for evaluation of biomechanical properties of the 
aorta (52). Future longitudinal studies should consider these 
parameters.

Limitations

Our study is a single-center study with a limited number 
of patients. Only adults, in 2008/2009 including one child, 
already pre-selected in 2008, especially concerning the 
absence of cardiac and vascular diseases further than BAV, 
were included [for information about initial recruitment 
refer to the previous study (6)]. Division into even smaller 
subgroups for comparison of different BAV morphologies 
is contestable, lacking statistical significance. Reevaluation 
of the exact same patient cohort as in 2008/2009 provides 
powerful long-term data, but results may not be interpreted 
as valid for the general population. Further longitudinal 
studies based on larger sample sizes are required.

Due to the study design, we were not aiming to gather 
histological specimens for the correlation of flow patterns 
and WSS with tissue alterations. Reevaluation of the 
reference group with TAV from the 2008/2009 study was 
also not included due to insufficient participation of former 
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evaluated TAV volunteers. Future work could take these 
aspects into account.

Even though we were able to use the same CMR 
sequence as in 2008/2009, software version of the scanner 
changed over ten years. As software version VB15 was 
used for the initial study, reevaluation was performed with 
the current version VD13. By approximating software 
parameters as accurate as possible, confounders were set to 
a minimum. 

To avoid a measurement bias in post-processing, all 
data of 2008/2009 were reevaluated with the software 
MEVISFlow. However, feasibility of flow visualization and 
measurement of WSS has been proven (21,53) and is not 
affected by ongoing upgrade processes of the used software.

Identifying the vessel lumen border and positioning 
of ROIs has to be re-adjusted manually in each case and 
therefore may be subject to minor deviations in WSS 
estimation in future possible reevaluations. Systematical 
underestimation of WSS due to limited spatial resolution or 
partial volume effect in PC-CMR is an already well-known 
side effect (23). Newly developed approaches such as an 
automated segmentation-free method for computing WSS 
might increase accuracy and reproducibility of assessment 
of hemodynamic parameters (54).

Conclusions

After a ten years’ follow-up period of patients with isolated 
BAV disease, indexed aortic diameters remained unchanged 
in the identical patient cohort. WSS was lower in all 
directions and at all measured aortic levels compared to 
values generated 10 years earlier. In accordance with a 
decreased aortic distensibility and an increased stiffness 
index, this might be explained by slight alterations in helical 
flow patterns by the aging aorta and due to remodeling. 
Possibly a drop in WSS in BAV could serve as a marker for 
a benign long-term course and implementation of more 
conservative treatment strategies in selected patients.
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