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Introduction

Tissue factor (TF) is a cell surface glycoprotein normally 
not expressed by cells exposed to flowing blood such as 
endothelial cells, to prevent any improper coagulation 
cascade activation (1). However, it has been demonstrated 
that in such pathological conditions such as in acute 
coronary syndromes (ACS) (2) in several inflammatory 
diseases (3-5), in cancer (6), and in sepsis (7), TF is 
exposed to flowing blood. Thus, TF interaction with other 
coagulation factors, mainly factor VII, activates the extrinsic 
coagulation pathway finally leading to the acute formation 

of intravascular thrombus (8). 
In the last two decades, our knowledge of TF biology 

is significantly changed (9). Specifically, in the context 
of coagulation, the discovery of a circulating TF pool, in 
which TF may be found as soluble form (10,11), bound to 
MPs (12,13) or blood cells-derived (14-18) has modified 
the old biological dogma of TF localized in the vessel-wall 
under the endothelial layer (19). Moreover, many studies 
have clearly indicated that TF, beyond the primary role as 
initiator of the coagulation cascade, is actively involved in 
other biological phenomena not related with coagulation. 
Indeed, it has been demonstrated that TF modulates 
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signaling transduction, apoptosis (20), gene and protein 
expression (21), cell proliferation (22), angiogenesis (23,24), 
and tumor metastasis (23,24).This review, starting from 
the old point of view about TF as initiator of extrinsic 
coagulation pathway, briefly illustrates the more recent 
concepts about TF and thrombosis and finally gives an 
overview about its role beyond thrombosis and haemostasis 
focusing on the different intracellular mechanisms triggered 
by its activation and potentially involved in atherosclerosis.

The old dogma: TF as the key activator of the 
coagulation cascade

TF is a glycosylated transmembrane protein, also 
called coagulation factor III or tissue thromboplastin or  
CD142 (1). It belongs to the class 2 cytokine receptor 
superfamily (25). The mature protein includes 263-amino 
acids in a single polypeptide chain (26). The long 
extracellular N-terminal domain consists of 219 amino 
acids organized as two fibronectin type III domains, essential 
for factor VIIa (FVIIa) binding. The membrane anchoring 
peptide includes 23-amino acids while the intracellular 
C-terminus domain consists of 21-amino acids (27). Despite 
being a short peptide, the TF cytoplasmic tail has two 
phosphorylation sites that could be also palmitoylated (28) 
and/or ubiquitinated (29). In many human pathological 
conditions, mainly tumor metastasis, TF/FVIIa signaling 
involves phosphorylation of the cytoplasmatic domain at 
Ser253 by protein kinase C (PKC) (28,30) and at Ser258 
by mitogen-activated protein kinase (MAPK) p38 (31), 
inducing conformational changes that may affect ligand  
binding (32,33).

Following vessel damage, the subendothelial TF is 
exposed to the circulating FVII/FVIIa, which is then bound 
with high affinity. In this complex, the activity of FVII is 
enhanced of several fold due to the rearrangements of the 
active site region (34). To exert its full activity, the complex 
TF/FVIIa requires calcium and the phospholipid (PL) 
bilayer to activate both FX and FIX (1). In the absence 
of PL, the rate of activation is slow (34,35). As final step, 
thrombin (FIIa) is generated at the site of vessel injury 
thus, leading to platelet activation and aggregation, fibrin 
production and ultimately intravascular thrombus formation 
as shown in Figure 1 (1). Recent advances suggest an 
alternative model of coagulation initiation in which the 
nascent FXa formed by the complex TF-FVIIa directly 
activates factor VIII and factor IX, prior to inhibition by 
TF pathway inhibitor (TFPI) and independent of thrombin 

feedback. FVa generation requires FXa undocking from 
TF-FVIIa, thus exposing free FXa to inhibitory control by 
TF (36). Once constituted, the tertiary complex TF/FVIIa/
Ca2+ generates FIXa and FXa. Biochemically, FXa seems to 
be at a critical point of the coagulation process because it 
receives the upstream (extrinsic and intrinsic) signals and 
dictates the downstream coagulation. For these reasons, 
in the last decade several pharmacological strategies have 
been developed to modulate its function in the coagulation 
cascade (37). 

Blood-borne TF: the new dogma with a real 
procoagulant effect?

In 1999, Giesen et al. reported, for the first time, the 
presence of TF also in the circulating blood (the so-
called blood-borne TF) (38). This initial observation was 
confirmed by many other reports; thus it is now largely 
accepted that TF circulates in the flowing blood at least in 
three different pools: as white cells and platelets-associated 
(16,39); as cell-derived MPs (13); and as a soluble protein 
(namely alternative splicing TF or asTF) (11). Most of 
the circulating cells, once “activated” might be a potential 
source of blood-borne (39). Monocytes are one of the major 
sources of TF (39,40), involved in thrombus formation in 
patients with myocardial infarction (41,42) as well as in 
other thrombotic disorders (15). Although TF synthesis and 
expression by platelets has been matter of debate (43,44),  
in vitro generation of platelet-l ike particles from 
differentiated human megakaryocytes showed that platelets 
can carry both TF protein and mRNA (45) and platelet 
activation can induce maturation of this TF mRNA, 
protein translation and surface translocation (46). TF is also 
expressed by neutrophils triggering thrombin generation 
and thrombus formation (47). Activation of neutrophils 
is required for TF exposure on the cell membrane (14). 
Platelets (16), neutrophils (48) and, as reported more 
recently, even T-lymphocytes (17) may be an important 
source of TF in patients presenting with ACS. Human 
eosinophils can carry TF in intracellular granules (49). 
Upon stimulation with platelet-activating factor (PAF) or 
granulocyte macrophage colony-stimulating factor, TF is 
translocated to cell surface, where it can trigger coagulation 
and supports trans endothelial migration (50). Indeed, 
eosinophils has been detected in thrombi from patients with 
in-stent thrombosis (51).

It has been postulated that blood-borne TF might be 
involved in thrombus growth and propagation. Specifically, 
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this circulating TF, after binding to FVII, should amplify 
coagulation by “bearing” TF/FVIIa activity close to the site 
where platelet activation occurs. These observations deserve 
very important pathophysiological implications since they 
suggest that coagulation cascade might not be necessarily 
triggered by vessel injury or by atherosclerotic plaque 
rupture, and that other intravascular events still partially 
unknown might be involved (52). Fortunately, it has been 
demonstrated that, to avoid any improper activation of 
the coagulation pathway, the majority of blood-borne TF 
is “encrypted” and “decryption” is essential to exert its 
activity (53). As reported above, blood borne TF circulates 
in three different pools. The pool with the most important 
pathophysiological meaning is represented by MPs. In fact, 
it has been reported that elevated levels of circulating MPs 
are measurable in plasma of ACS patients as compared 
to healthy subjects or patients with stable angina (54,55). 
Interestingly, MPs derived from atherosclerotic plaque 
seem to have origin not only by cells normally involved in 
plaque formation such as macrophages and smooth muscle 

cells, but also from other blood cells such as erythrocytes, 
that do not have any role in atherosclerosis (54). Another 
type of flowing TF is the so called alternatively spliced TF  
(asTF) (11), that does not seem to have procoagulant 
activity (56). 

Beyond coagulation: TF and intracellular 
signaling

For many years, the coagulation control has been 
considered the main pathophysiological role of TF. In the 
last two decades, several reports have clearly indicated 
that this glycoprotein exerts other functions besides being 
involved in coagulation since the TF-FVIIa complex seems 
able to activate many intracellular pathways as shown in 
Figure 1. 

TF signaling: cytoplasmatic mediators

Accumulated evidence suggests that TF/FVIIa signaling 
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Figure 1 Schematic view of TF functions extracellular and intracellular signaling. As initiator of extrinsic coagulation pathway, TF binds 
other coagulation factors leading to clot formation. As “cellular receptor” it activates several intracellular signaling potentially involved in 
atherosclerotic disease development and progression. Binding FVIIa, TF activates PAR family members, modulating several cell phenomena 
such as differentiation, survival, proliferation, migration as well as angiogenesis. TF, tissue factor; PAR, protease activated receptor. 
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may act through different intracellular mediators. The 
first report suggesting the possible role of TF as “true 
membrane receptor” has been published in 1995 showing 
that interaction by TF and FVIIa triggered intracellular 
calcium mobilization in cytokine stimulated human 
umbilical vein endothelial cells (HUVECs), monkey kidney 
fibroblasts (COS-1), human bladder carcinoma cell line 
J82, and canine kidney cells (MDCK) (57). Later studies 
have also indicated that by binding FVIIa, TF may affect 
gene expression in fibroblasts (58). This effect seems to be 
related to transient activation of p44/42 MAPK (59) and 
of other members of this family, such as C-Jun N-terminal 
kinase and p38 (60). Upstream activation of p44/42 MAPK 
is linked to Src family members c-Src, Lyn, and Yes, 
and subsequently phosphatidylinositol 3-kinase (PI3K), 
followed by stimulation of c-Akt/protein kinase B as well as 
the small GTPases Rac and Cdc42. Rac pathway mediates 
p38 MAPK activation and cytoskeletal reorganization (61).  
Interestingly, the TF/FVIIa signaling elicited by Src is 
dependent of the cell type. For example, in both wild 
type baby hamster kidney (BHK) cells and in human 
keratinocytes (HaCaT) cells FVIIa-induced MAP kinase 
activation correlates with p21Ras activation. In BHK cells, 
early p21Ras activation was mediated by the activation of 
PKC, whereas late p21Ras activation employed alternative 
mechanisms. In HaCaT cells, stimulation of the Src kinase 
family mediated FVIIa-dependent p21 Ras activation. Finally, 
in both cell types, Raf activity was mandatory for MAP kinase 
activation (62). Moreover, in BHK cells TF/FVIIa interaction 
also resulted in STAT5 phosphorylation and nuclear 
translocation and transactivation of a STAT5 reporter 
construct (63). It has been shown that this activation 
was dependent by FVIIa proteolytic activity but not by 
coagulation factors Xa and thrombin, or TF cytoplasmic 
domain. STAT5 phosphorylation mediated by TF/FVIIa 
was dependent on functional G12/G13 class G proteins 
and Jak2 activity, but not Jak1 or Tyk2. The final effect of 
this signaling is the Jak2/STAT5-dependent production 
of the antiapoptotic STAT5 target Bcl(XL) as well as 
Jak2-dependent activation of the antiapoptotic protein  
PKB (63). In fibroblasts, binding TF/FVIIa leads to 
activation of phospholipase C (PLC) and enhances 
chemotaxis (64). In human breast cancer cells, the complex 
TF/FVIIa promotes phosphorylation of p44/42 MAPK 
and Akt/protein kinase B and triggers activation of the 
mammalian target of rapamycin (mTOR) pathway and 
the phosphorylation of AKT, mTOR, andp70S6K1 (65). 
However, it has to be kept into account that most of these 

results comes from studies on immortalized cell-lines, thus 
caution is required in analyzing these data. 

TF signaling: PARs activation

The complexes TF/FVIIa, TF/FVIIa/FXa, thrombin and 
activated protein C (aPC) have protease activity that cleaves 
the extracellular domains of the protease activated receptors 
(PARs) finally inducing G protein and b-arrestin coupled 
signaling (66). The PAR family includes four members: 
PAR-1, PAR-2, PAR-3 and PAR-4. Activation of PAR-
1, PAR-3 and PAR-4 occurs mainly via thrombin (67), 
PAR-1 can be also activated by FXa (68), aPC and matrix 
metalloproteinase-1 (MMP-1) and MMP-13 (69). Since 
PAR-2 may be activated by several proteases belonging to 
the coagulation pathways, such as FVIIa and FXa, as well as 
the complex TF/FVIIa/FXa (70), it has been suggested that 
PAR-2 pathway plays a pivotal in modulating TF signaling, 
which induces phosphorylation of the cytoplasmic domain 
at serine residues level both in vivo and in vitro (28,30,71). 
Once phosphorylated, TF tail may serve as a binding site 
for the actin-binding protein filamin A, which is recruited 
to the C-terminal tail when TF/FVIIa binding occurs at 
extracellular level (72,73). However, TF-mediated cell 
signaling can thereby occurs through mechanisms related 
or not related to its intracellular part. For example, PAR-
2 cleavage and certain proximal signaling responses of TF-
FVIIa do not require the TF cytoplasmic domain (74), 
while it seems essential for signaling complexes and protein 
trafficking (i.e., the regulatory subunit of PI3K) (75), the 
actin binding protein filamin (72) and the prolyl-isomerase 
Pin1 (33). It has been recently reported that Pin1 both 
enhances TF gene expression via activation of NF-κB and 
AP-1 signaling and directly interacts with TF through a 
well-conserved phosphorylated Ser258-Pro259 motif in its 
cytoplasmic domain (33). Moreover, Pin1 increases both the 
protein half-life and pro-coagulant activity of TF in vascular 
cells. Additional effects of Pin1 on TF activity may come 
from PAR 2-induced release of TF on microvesicles (76). 

Interaction of TF cytoplasmic domain with the 
regulatory subunit of PI3K is important for TF/FVIIa-
PAR2 signaling connected to cell adhesion receptors, 
particularly integrins of the b3 and b1 families (77). It 
has been shown that blocking TF-integrin interaction 
results on one hand, in minimal effects on coagulation, but 
on the other hand, in inhibition of TF/FVIIa signaling 
and suppression of tumor growth (78). However, TF 
cytoplasmatic and intracellular domains seem not essential 
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for some biological functions. These conclusions come 
from the studies performed on the variant of TF generated 
by an alternative splicing of its mRNA that creates a 
soluble isoform (asTF) lacking of the transmembrane 
and cytoplasmic domain (11). Despite of its procoagulant 
activity is still matter of debate (11,56), asTF retains the 
ability to ligate integrins (24) which might be considered as 
the main asTF signaling, independently of PAR2 pathway. 
TF integrin signaling and its implications in angiogenesis 
and migration has been recently further clarified. TF/
FVIIa interacts with integrin through a specific binding 
site in the FVIIa protease domain required for PAR-2  
cleavage (77). In cancer cells, TF/FVIIa-PAR2 signaling 
induces the Akt phosphorylation and inactivation of 
glycogen synthase kinase-3b (GSK-3b) that result in 
b-catenin stabilization and transcriptional activation of 
promigratory and prometastatic genes (79). In non-cancer 
cells, such as keratinocytes, TF/FVIIa proangiogenic 
signaling is integrins independent and it is associated to 
transactivation of epidermal growth factor receptor (EGFR) 
and proline-rich tyrosine kinase 2 (PYK2) (80). The TF/
FVIIa complex also induces transactivation of the insulin 
growth factor receptor (IGF-1R) that leads to TRAIL 
(TNF-related apoptosis inducing ligand) inhibition, thus 
preventing apoptosis in cancer cells (81). Moreover, TF/
FVIIa complex also induces cleavage of the tyrosine 
kinase receptors EphB2 and EphA2, which increases cell 
migration (82). Recently, TF/FVIIa complex has been 
linked to activation of the transmembrane serine protease 
matriptase that are critical enzymes in the development and 
homeostasis of epithelial barrier tissues (83). Transactivation 
of matriptase may connect coagulation cascade to epithelial 
defense and repair programs and contribute to pathogenic 
effects of extrinsic pathway activation in cancer and 
inflammation (83). However, further studies are warranted 
to clarify the role of matriptase in PAR2-independent TF/
FVIIa-triggered cell surface proteolysis.

Based on the data above, it is possible to postulate: 
first, that activation of MAPK, PI3K-AKT, JAK-STAT 
and mTOR pathways links TF signaling to a multitude of 
functions within the cell, ranging from mitosis to migration 
and cell survival; second, that TF-FVIIa complex signaling 
through PAR2 is implicated in cancer cell migration, 
invasion, proliferation and evasion from apoptotic cell death.

TF cytoplasmatic domain and PAR2 signaling

The roles of TF/FVIIa-PAR2 signaling in physiology 

and pathology depends on the cell type and have been 
clarified by using experimental mice with a deletion of the 
TF cytoplasmic domain. In this section, we will explore 
the putative pathological involvement of TF/FVIIa-PAR2 
signaling based on the cells type. 

First, animals with TF cytoplasmatic deletion showed 
increased hypoxia-driven angiogenesis that was reversed 
by PAR2 deficiency or by inhibitors of TF-FVIIa (84,85). 
Based on these data and on those described in other  
reports (71), TF cytoplasmatic domain and PAR2-signaling 
seems to cooperate for a regulatory role in angiogenesis 
and tumor growth in breast cancer (86) as well as in 
hepatocellular carcinoma (87). It has been also shown 
that in intestine TF cytoplasmic domain participates in 
TF trafficking and surface localization and in cooperation 
with PAR1 signaling in adaptive angiogenesis following 
colonization of the small intestine with microbiota (88). 
Moreover, in adipocytes, TF cytoplasmic domain is involved 
in the suppression of Akt phosphorylation by insulin linked 
to the impairment expression of negative regulators of 
weight gain as supported by the studies on obese mice 
in which blocking TF/FVIIa interaction improves the 
overall metabolism (89). TF is upregulated in the obese 
visceral adipose tissue and expressed by adipose tissue  
macrophages (90). It has been reported that loss of TF/
FVIIa-PAR2 signaling in hematopoietic cells prevents the 
development of adipose tissue inflammation and insulin 
resistance, thus suggesting a possible contribution to 
the development of type 2 diabetes and the metabolic 
syndrome (89). In the liver, TF/FVIIa-PAR2 signaling is 
linked to hepatic lipogenesis and gluconeogenesis, thus 
contributing to steatosis and hepatic insulin resistance (91). 
Animal models of hepatic inflammation show that the use 
of dabigatran, a recent approved thrombin inhibitor for 
the treatment of atrial fibrillation, reduce fibrin deposition 
and the related inflammation (91), supporting the notion 
that coagulation-induced fibrin deposition participates 
in inflammatory TF/FVIIa-PAR2 signaling in metabolic 
diseases.

The ternary complex TF/FVIIa/FXa requires endothelial 
protein C receptor (EPCR) for signaling in endothelial, 
smooth muscle and cancer cells (92). The resultant 
quaternary TF/FVIIa/FXa/EPCR complex participates 
to the innate immune response by inducing expression 
of the TLR3/4 signaling adaptor protein pellino-1, the 
transcription factor interferon (IFN) regulatory factor 8 
(IRF8) and a set of IFN-regulated genes (93). This novel 
cooperative role of TF signaling in innate immune response 
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is regulated by the anticoagulant PC pathway (94).
The role of  TF in inf lammation is ,  at  least  in 

part, mediated by endothelial cell,  predominantly 
through intracellular signaling rather than coagulation  
activation (95). In experimental animal models, TF 
signaling is linked to upregulation of IL-6 without changing 
markers of intravascular coagulation (96). A recent report 
indicates that TF is regulated in endothelial cell by the 
anti-oxidative protein PON2, a cell-associated protein with 
anti-atherogenic properties (97). In experimental model of 
PON2 deficiency, a post-transcriptional upregulation of 
endothelial cell TF activity and a proinflammatory state, 
via expression of IL-6 and CCL22, is observed (97,98), thus 
linking the loss of PON2 antioxidant functions to vascular 
inflammation and dysfunction. 

TF and signaling beyond coagulation in cardiovascular 
disease

The evidences that TF, besides activating coagulation 
cascade, has a role as a true receptor on surface of several 
cells have opened a new scenario in the pathophysiology of 
cardiovascular disease. Acute cardiovascular events occur 
when atherosclerosis, a chronic disease that progresses 
silently and often without any clinical manifestation, 
evolves toward acute thrombotic complications (99). The 
thrombogenic role of TF in these events has been well 
characterized over the past years (3,8,100). On the contrary, 
although it has been shown that TF is expressed in several 
human tissues (101), including healthy vascular vessel 
wall (102) and atherosclerotic lesions (100) it is still under 
investigation whether this glycoprotein might play a role in 
atherosclerotic plaque development and progression. It is 
known that proliferation and migration of smooth muscle 
cells is an important step in atherosclerotic plaque grow and 
stability (103). Previous report has indicated that binding 
TF by human recombinant FVIIa induces cell proliferation 
via activation of p44/42 and its translocation to the  
nucleus (22). Moreover, binding of FVII to its natural 
receptor, TF, activates the Wnt/β-catenin pathway, 
with Rho GTPases as key mediators, finally leading to 
migration of other cells normally represented in the vessel 
wall such as endothelial cells (85). It is known that plaque 
neovascularization may have a crucial role in plaque 
instability (104), and this phenomenon angiogenesis is a 
crucial mechanism for oxygen supply of the growing plaque 
contents (104). Several chemical mediators such as VEGF, 
HIF-1α and EGR-1 are involved in this step (104). The role 

of TF as trigger for several intracellular pathways involving 
these chemical mediators has been well documented (85). 

Atherosclerosis is considered an inflammatory disease 
(105-107). In this context, the TF/FVII complex, thru PAR-
2 pathway activation, activates several proinflammatory 
signaling (108,109), that, in turn, cause secretion of 
inflammatory cytokines, such as IL-6 and other chemokines, 
finally amplifying the atherogenic process (110). Thus TF 
seems to have a crucial role in initiation and amplification 
of the atherosclerotic process too (111).

Taken together, these data suggest that development, as 
well as progression of atherosclerotic disease might be, in 
part, due to the TF activity as a true receptor able to trigger 
several molecular pathways that, in turn, lead to plaque 
grow and instability by mediating cellular proliferation and 
migration, angiogenesis and inflammation. 

TF: potential therapeutic approaches? 

The demonstrations that the TF/FVIIa complex may exert 
other functions, besides being involved in coagulation, 
have opened several hypothetical interesting therapeutic 
scenarios. However, it is extremely complicated to 
modulate separately the two TF activity (active effector/
true receptor). It should be kept in mind that TF main 
physiological activity is to protect against bleeding, while 
its pathological role could be considered evident only in 
several diseases, such as atherosclerosis and, mainly, ACSs. 
Thus, the fine balance between these two TF activities 
(protective and pathological functions) appears to be the 
great limitation in terms of therapeutic strategies. 

It has been suggested that a potential therapeutic 
approach to balance risks and benefits might be represented 
by selective modulation of TF/FVIIa pathway (112,113), 
including PAR signaling (114) and/or the proteases 
generated during the coagulation cascade (37,115). To date, 
preclinical studies with different anti-TF interventions 
have been conducted with promising results in terms 
of antithrombotic efficacy (116), anti-angiogenetic  
effects (117), as well as anti-inflammatory (118) and anti-
fibrotic potential (119). However, despite these promising 
results, the clinical trial was designed to contrast only the 
procoagulant TF effects and failed to confirm the safety of 
TF inhibition, because an increased risk of major bleeding 
and, consequently, of mortality was observed in the treated 
group (120). More promising results come from the only 
physiological inhibitor of TF/FVIIa complex, TFPI (121). 
It is synthesized and released by endothelial cells and binds 
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to the complex TF/FVIIa/FXa to inhibit the downstream 
pathway that ends with thrombin activation and clot 
formation (122). Several studies have underlined that 
recombinant human TFPI could have anti-inflammatory 
effects and inhibits cell migration as well as progression 
of atherosclerosis (123). Active site-inhibited FVIIa 
(FFR-FVIIa) is another possible therapeutic inhibitor 
of the TF-FVIIa-dependent initiation of coagulation. 
It competes with endogenous FVIIa for binding to TF 
and, thus limiting the formation of functional TF-FVIIa  
complex (124). Its possible use as therapeutic agent to 
reduce thrombus formation and inflammatory changes 
has been already reported (125). Other small molecule 
inhibitors, namely naphthylamidines, have been tested  
in vivo and shown to be efficacious in inhibiting thrombus 
formation and reducing bleeding (126). However, because of 
a non-specific inhibition of other coagulation proteases aside 
from inhibition of FVIIa activity, their use has been limited. 
Anti-TF antibodies have been also tested as anti-thrombotic 
agents, designed to interfere with the association of TF with 
FVIIa (127) or with substrate docking (128). Exogenous 
inhibitors of the TF/FVIIa catalytic complex have been 
isolated from hookworms. Nematode anticoagulant protein 
c2 (rNAPc2) is an 85-amino-acid serine protease inhibitor 
that in contrast to TFPI binds FX or FXa prior to the 
formation of an inhibitory complex with TF/FVIIa (129). 
Its anticoagulant effect has been investigated in ischemic 
patients (130). Recently, novel and more sophisticated 
approaches have been identified based on the complex 
biology of TF. Targeting specific post-transcriptional 
modifications of the TF gene, such as alternative splicing, 
may be potentially addressable (131). The recent discovery 
of the role of non-coding microRNA in modulating 
biological functions (132,133) opened a new and interesting 
scenario. For example, it has been already reported that 
microRNA-19b, that functions downregulating TF mRNA, 
may exert potential anti-thrombotic properties in patients 
with unstable angina (134).

It must be pointed out that most of these agents has been 
designed to test the anticoagulant properties and to prevent 
thrombosis. However, beyond coagulation, TF is involved 
in many intracellular signaling that linked to different 
pathological disorders. It has been reported that in addition 
to inhibition of coagulation anti-TF antibodies and NAPc2 
may reduce tumour growth and metastasis by interfering 
with signalling pathways (135,136).

Recently, a first generation of TF-Targeting Antibody-
Like Immunoconjugates (called ICON or ICON-1) 

has been investigated in cancer disease. ICON is a 210 
kDa chimeric antibody-like homodimer that consists 
of murine or human FVII fused to the Fc region of 
IgG1. The procoagulant effects of ICON-encoded 
zymogen FVII have been significantly eliminated via 
targeted mutation of the lysine reside at position 341  
(K341A) (137). Its administration has been associated to 
marked tumor inhibition, and in some cases, complete 
eradication without affecting normal tissues. Upon binding 
to TF-expressing malignant cells, ICON can mediate 
natural killer and complement-dependent cytotoxicity 
(CDC) as its mechanism of action (137). However, because 
the procoagulant activity in ICON was not completely 
eliminated (138) coagulation disorder may occur in cancer 
patients who usually have a hypercoagulation status. 
Starting from this limitation, a second-generation ICON, 
named L-ICON1, consisting of only the light chain of FVII 
fused to an IgG1 Fc has been developed (139). These newer 
and improved TF-targeting agents are being evaluated in 
preclinical studies with potential to translate into clinical 
trials.

Since translation of preclinical studies in clinical practice 
is always difficult, large randomized trials addressing hard 
endpoints should be designed to confirm the potential 
therapeutic role of TF/FVIIa inhibition. In this context, 
however, it should be remarked that any new strategy has a 
therapeutic role its benefit will overcome any side effect.

Conclusions

In conclusion, TF should be no more considered as the 
trigger of extrinsic coagulation pathway only. Recent 
evidences demonstrating that it is a true receptor involved 
in several cellular mechanisms, have indicated that this 
glycoprotein might be involved in a wider number of 
pathophysiological phenomena beyond coagulation. 
Starting from these new concepts, researcher have focused 
their attention to this glycoprotein by another point of view 
and have done many efforts to obtain a clearer point of view 
about the role played by this molecule in several disease. 
Thus, several potential therapeutic approaches have been 
proposed including those to reduce, at the same time, the 
atherosclerosis progression and its acute complication in a 
thrombotic acute event. 
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