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Introduction

Automated analysis of electrocardiogram (ECG) patterns 
could help in prompt detection of life-threatening 
arrhythmias such as atrioventricular block, ventricular 
tachycardia, and atrial fibrillation and be of great help to 
clinicians (1-4). Such systems will have to use algorithms to 
identify different waveform types in an ECG and recognize 
complex relationships between them over time. However, 
wide variability in wave morphology between patients and 
the presence of noise are major challenges (3).

Computerized recognition of ECG abnormalities is 
routinely used by cardiologists classifying long-term ECG 
records. Feature extraction methods include wave shape 
functions (5,6), Hermite functions (7), wavelet-based 

features (8-10), and statistical features (11). Methodologies 
to classify these extracted features include support vector 
machines (12), k-th nearest-neighbor rules (13,14), 
decision trees (12), artificial neural networks (10,15-21), 
and linear discriminants (5). State of the art automated 
ECG recognition systems often rely on a pattern-matching 
framework that represents the ECG signal as a sequence of 
stochastic patterns. They require complex feature extraction 
methods and high sampling rates and are therefore time 
taking (1). For real-time implementation in the clinic at 
reasonable cost these systems must use a simple set of 
features and a lower sampling rate.

A limitation of several algorithms that are used for 
automatic classification of ECG is the inability to handle 
large intraclass variations. They are highly dependent on 
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supervised training datasets and perform poorly when 
processing large numbers of new ECG records. In addition, 
the application of dimensionality reduction algorithm 
to extract complex features in the transform domain 
significantly improves the computational complexity of 
the whole process. Moreover, classifier algorithms do not 
perform when there are wide interpatient variations in ECG 
signals. Thus, inconsistent performance makes classifier 
algorithms unreliable in the clinical setting.

Deep learning is a new machine learning technique 
that is becoming the mainstream for pattern recognition 
(22,23). It has been successfully used for object recognition, 
image verification, classification, and speech recognition. 
Deep learning approaches have greatly improved the 
accuracy of recognition tools. They have been used to 
create a deep, multistage architecture for unsupervised 
learning and recognition systems. We drew on previous 
work in convolutional neural networks (CNNs) (3) to build 
a more accurate and robust approach for automated ECG 
diagnosis. In this paper we describe our algorithm-based 
system, which we call the Cardiovascular Disease Whole 
Process Management Platform.

Materials and methods

Data sets and reference standards

To develop the CNN, we constructed a data set from the 
ECG management system of the First Affiliated Hospital 
of Nanjing Medical University. A total of 277,807 12-
lead static ECG recorded in the cardiac function rooms 
of the institute between August 1, 2018, and May 31, 
2019, were included in the database. The ECGs lasted for  
10–60 seconds, with most being in the range of 24 to 
30 seconds. After cleaning, the ECGs were labeled 
according to clinical diagnosis by two experienced 
electrocardiologists. In rare cases, disagreements were 
settled by consultation with a senior cardiologist (a chief 
physician or an associate chief physician). The data set was 
randomly separated into training data set (n=259,789) and 
a testing data set (n=18,018). Each data set contained 18 
classes of abnormal and sinus ECG signals (Table 1). Figure 
1 shows the data processing flow.

CNN architecture and training

Our deep learning system takes as input an ECG waveform 

between 10 and 60 seconds long and outputs a label 
prediction of one of the 18 rhythm classes, along with a 
probability distribution over the 18 classes. Figure 2 shows 
the CNN architecture that was used.

Implementation and optimization

Python 3.5 on the Keras library (TensorFlow background) 
was used to implement the proposed deep CNN model, 
which was trained and evaluated using graphics processing 
unit (NVIDIA Tesla P100) computing in an Ubuntu 16.04 
environment. The training for cardiovascular disease 
detection was fully supervised. It back-propagated the 
gradients from the fully-connected layer through to the 
convolutional layers. As a loss function, we minimized the 
binary cross-entropy to optimize the model parameters. 
The gradient descent with the Adam update rule was 
utilized.

Results

Performance evaluation

The diagnostic capability of the proposed system was 
evaluated in terms of accuracy, precision, and specificity. 
The basic definitions used were as follows:

Patient: positive for the disease;
Healthy: negative for the disease;
True positive (TP) = the number of cases where the 

patient was correctly defined;
False positive (FP) = the number of cases where the 

patient was incorrectly defined;
True negative (TN) = the number of cases where a 

healthy individual was correctly defined;
False negative (FN) = the number of cases where a 

healthy individual was incorrectly defined.
The definitions of accuracy (ACC), precision (P), 

specificity (S) and f1-score are as follows (Eq. [1]–Eq. [4]):

ACC TP TN
TP TN FP FN

+
=

+ + +  [1]

P TP = 
TP+ FN   

[2]

S TN = 
TN + FP  [3]

f1- score = 2TP
2TP+ FP+ FN  [4]
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Experimental results

The model was tested on a random sample of 18,018 ECGs. 
Table 2 shows the accuracy, precision, specificity and f1-
score of every classification. The labels used covers more 
than 90% of clinical diagnoses. The overall accuracy of 
the model was nearly 95%; the accuracy of the model for 
diagnosis of normal rhythm/atrial fibrillation was 99.15%. 
For atrial fibrillation, the most frequently identified 
disorder, the accuracy was 98.27%. And in all labels, the 
highest accuracy is up to 99.75%.

The cardiovascular disease whole process management 
platform

We established the Cardiovascular Disease Whole Process 
Management Platform shown in Figure 3. The system provides 
a labeling tool (Figure 4). After training the CNN model, the 
system also offers the result of evaluation (Figure 5).

Discussion

In this paper we present a novel application of deep learning 
for classification of ECGs. Since existing deep learning 
networks do not have a suitable structure to handle the 12 
channels of the ECG recording, we applied the structure of 
channel convolution.

As Table 3 shows, we achieved accuracy of 98.27% for 
recognition of 18-classes of heart rhythms. Our CNN 
network has achieved good performance under the 
condition of more classification. Different from other ECG 
analysis algorithms reported earlier, our system considers 18 
classifications. A single ECG tracing might contain multiple 
main categories and subcategories of the label. The main 
categories included sinus rhythm, atrial fibrillation, atrial 
flutter, ventricular premature beat, atrial premature beat, 
low and flat T-wave, and so on. The main category of “sinus 
rhythm”, for example, could include subcategories such as 
“sinus arrhythmia” or “sinus tachycardia”.

Table 1 Summary of the ECG rhythm data set

ECG rhythm diagnosis
Training data set (n=259,789) Testing data set (n=18,018)

n % n %

Normal 160,115 61.63 10,801 59.95

Premature atrial beats 6,875 2.65 504 2.80

Atrial fibrillation 6,543 2.52 482 2.68

Atrial flutter 881 0.34 71 0.39

Ventricular premature complex 6,688 2.57 505 2.80

No cardiac electrical activity 854 0.33 83 0.46

Pervious myocardial infarction 330 0.13 15 0.08

Acute myocardial infarction/ST segment elevation 3,996 1.54 276 1.53

Left ventricular high voltage 9,212 3.55 640 3.55

Post-ischemic T-wave changes/ST segment depression 30,535 11.75 2,115 11.74

Hyperkalemia pattern/tall peaked T-wave 1,177 0.45 117 0.65

T-wave abnormalities (peaked, symmetrical, biphasic, flat, inverted) 19,246 7.41 1,548 8.59

Left ventricular hypertrophy 1,314 0.51 85 0.47

First-degree atrioventricular block 732 0.28 37 0.21

Second-degree atrioventricular block 81 0.03 3 0.02

Left bundle branch block 1,028 0.40 84 0.47

Right bundle branch block 11,361 4.37 764 4.24

Ventricular pre-excitation syndrome 431 0.17 25 0.14

ECG, electrocardiogram.
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Unequal lengths of signals and unbalanced data in ECG 
signals posed a problem. To solve the problem of unequal 
lengths of signals, we adopted the method of frame division. 
To address the issue of unbalanced distribution of abnormal 
data and normal data, a data amplification method was 

introduced to enhance the data.
Some of the published work is based on open datasets. 

We built our own datasets, and these data sets continue 
to grow. At present, because some individual labels have 
not enough data to adjust the parameters of the model, 

Figure 1 The data processing flow.
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Figure 2 The architecture of the CNN. CNN, convolutional neural network; ECG, electrocardiogram.
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Table 2 Accuracy of the proposed automated diagnostic system for different ECG features

Class ACC, % P, % S, % f1-score, %

Normal 85.49 81.14 88.52 82.11

Premature atrial beats 95.69 38.77 99.80 54.80

Atrial fibrillation 98.27 60.93 99.95 75.24

Atrial flutter 95.42 7.25 99.96 13.42

Ventricular premature complex 98.01 59.29 99.77 72.19

No cardiac electrical activity 99.75 64.84 100.00 78.67

Pervious myocardial infarction 87.28 0.61 99.99 1.21

Acute myocardial infarction/ST segment elevation 90.94 12.78 99.73 22.20

Left ventricular high voltage 96.64 51.46 99.86 67.07

Post-ischemic T-wave changes/ST segment depression 91.10 58.85 97.27 67.98

Hyperkalemia pattern/tall peaked T-wave 95.22 11.16 99.94 19.89

T-wave abnormalities (peaked, symmetrical, biphasic, flat, inverted) 89.39 43.77 98.19 57.14

Left ventricular hypertrophy 95.54 8.83 99.95 16.09

First-degree atrioventricular block 94.75 3.00 99.95 5.78

Second-degree atrioventricular block 92.16 0.21 100.00 0.42

Left bundle branch block 98.77 26.85 99.98 41.88

Right bundle branch block 96.41 54.34 99.85 69.59

Ventricular pre-excitation syndrome 96.49 3.23 99.98 6.22

ECG, electrocardiogram; ACC, accuracy; P, precision; S, sensitivity.

Figure 3 The interface of the cardiovascular disease whole process management platform.
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Figure 4 The interface of the labeling tool.

Figure 5 The interface of the evaluate result in the platform.
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the individual training effect is not ideal. We are gradually 
accumulating data and learning.

Conclusions

With the development of optimization methods for processing 
of the large amounts of data being accumulated, the sensitivity 
and specificity of automated ECG diagnosis will improve. The 
AI-aided ECG diagnosis system that we developed appears 
to be sufficiently reliable for clinical use. It could help reduce 
misdiagnosis and missed diagnosis in the primary care setting 
and also save manpower costs for large general hospitals.

Future research should attempt to improve the sensitivity 
and specificity in the individual classifications by adjusting 
the different parameters. Machine learning could also be 
combined with other techniques such as computational 
modeling and simulation to explain the results of machine 
learning. That will make the clinical application of the 
proposed system more interpretable and more credible.
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