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Introduction

The concept of using medical image data for the creation 
of computational models and the subsequent simulation of 
hemodynamics in these models has been expressed already 
almost 20 years ago (1,2). Around a decade ago, this concept 
was revived mainly because of the progress in computational 
hardware which enables the researcher to now conduct 
these simulations on personal computer workstation with 
cost-effective, versatile software that is flexible enough to 
be used with computational models derived from medical 
image data for a specific patient (3). Since then, a variety of 
studies have been published exploring the feasibility of using 
computational fluid dynamics (CFD) for the simulation 
and quantification of aneurysm hemodynamics as well as 

investigating its usefulness for therapeutic applications. 
In cerebral aneurysms, geometrical properties of the parent 

artery (4-6) were reported to influence the simulation results 
as did variations in the inflow waveform of the boundary 
conditions (7,8), and the duration of the simulated cardiac 
cycle (9). Hemodynamic conditions in the parent artery 
were potentially associated with aneurysm formation (10) 
as were hemodynamics values in the aneurysm itself with 
risk of rupture (11-14). Validation of simulation results was 
attempted using fluoroscopic angiographic images (15,16) 
or phase contrast magnetic resonance imaging (pcMRI). For 
the latter, first 2D methods were explored (17,18) and, later, 
the time-dependent velocity fields obtained with the novel 
4D pcMRI methods were correlated with corresponding 
quantities obtained with the CFD simulations (19,20). In 
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addition, CFD methods have been employed to investigate 
the potential of this technique for predicting hemodynamics 
changes and to explain different outcome after endovascular 
treatment with the novel flow diverter devices (21-23). 

All these efforts contributed to translating CFD as 
an engineering technology into a clinical research tool. 
While the high potential of CFD for the quantification 
and visualization of cerebral aneurysm hemodynamics 
has been established in the last decade, recent discussions 
show that a better understanding and a thorough validation 
of this technique is needed, before its potential value for 
therapeutic decisions can be assessed (24-26). In addition 
to validating software performance and reproducibility of 
simulation results, it is important to understand limitations 
for the application of these simulation techniques to in vivo 
data. In this study we compare measurements of velocity 
patterns using a 2D phase contrast magnetic resonance 
method with results of a novel CFD prototype system. 

Materials and methods

2D pcMRI

The 2D pcMRI images were acquired at a 1.5 T MRI 
scanner (Siemens AG, Erlangen) from six patients diagnosed 
with a cerebral aneurysm. From a 3D time-of-flight (TOF) 
scan, which was acquired as a localizer (FOV 220 mm, 
matrix: 512×256, slice thickness: 0.5 mm), cross-sectional 
planes intersecting each aneurysm at approximately two 
perpendicular orientations were selected. Dependent on the 
length of the cardiac cycle, 12-20 pcMRI images per cardiac 
cycle were obtained using a peripheral monitor and a 
retrospective gating approach [FOV 160 mm, slice thickness 
5 mm, matrix: 256×192, velocity-encoding (VENC) values, 
perpendicular to scan plane only, ranged from 60-150 cm/s]. 
Images at systole were selected for comparison with CFD 
results.

CFD simulations

CFD, as a branch of fluid dynamics, utilizes numerical 
methods to solve problems which involve fluid flows. 
Computational algorithms which approximate the real 
system and which use boundary conditions that define 
the geometry, the inflow and outflow parameters of the 
model, calculate the velocity vector field and other derived 
hemodynamic parameters such as pressures and wall 
shear stresses, i.e., forces, which the fluid exerts onto the 
wall. As a first step in this process, the physical bounds 

of the computational model are defined. This so defined 
volume is then divided into small elements (cells) that 
constitute the computational mesh. The governing physical 
equations, for this case, the Navier-Stokes equations, 
are then iteratively solved on the computational mesh 
taking into consideration the boundary conditions. Post-
processing software is then utilized for further analysis and 
visualization. 

IRB approval was obtained for this study. The 3D 
digital angiography subtraction (DSA) image data, 
originally acquired during a diagnostic angiogram, were 
retrospectively collected for the six aneurysms. Image data 
was transferred to the dedicated workstation of a CFD 
research prototype (Siemens AG, Figure 1). While client-
server systems have been recently described as a model 
for integration into the clinical workflow (27), the CFD 
research prototype described here consisted of stand-
alone software installed on a single workstation with 
computational power similar to a personal computer. 
The software as well as the entire prototype is currently 
developed as a research tool and not part of any commercial 
clinical software package. An optimized algorithm 
consisting of different parts was utilized to conduct the 
CFD simulations using this prototype: in part 1, a 3D 
surface model of the corresponding vasculature was 
created. In part 2, small arterial branches and venous 
contamination (if present) were manually eliminated. In 
part 3, the computational mesh was created after manually 
defining inflow and outflow regions. In part 4, steady CFD 
simulations were performed (maximum inflow velocity 
0.8 m/s). Using a level-set based embedded boundary 
method, the Navier-Stokes equations were solved with user-
specified boundary conditions (28). Blood was modeled as 
an incompressible fluid with a density of 1,000 kg/m3 and 
a viscosity of 0.004 kg/ms. In part 5, simulation results 
were stored on disk using the visualization toolkit (vtk) file 
format (Kitware Inc.) and cross sections were defined across 
the computational model at the same locations as the cross 
sections measured with 2D pcMRI. At these cross sections, 
velocity components perpendicular to each cross section 
were visualized in a similar fashion as the measured velocity 
components.

Results

In all six cases, generally a good agreement was found 
between the major flow features in the cross sections 
calculated with the CFD prototype and measured with 2D 
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pcMRI. A more detailed discussion for each case follows 
(please also refer to Figure 2).

Case 1

In the first cross section, the bilobular or dumbbell shape 
of the aneurysm shows regions of opposite flow directions 
at the base of the dumbbell relative to both lobes for 
both simulated and measured data. Qualitatively higher 
velocities were visible in the simulated case compared to 
the measurements. The velocity overestimation in the 
simulation might be due to the assumption of rigid walls, 
which may be less valid for the lobes, as these were found 
to exhibit higher wall pulsatility then the main body of the 

aneurysm (29). In the second cross section, opposite flow 
directions are visible at the left and right wall indicating a 
circular blood motion typically found in cerebral aneurysms. 
Excellent qualitative agreement between the major flow 
features in this cross section was apparent.

Case 2

Both the simulated as well as the measured data agreed in 
the overall direction of blood flow, however, the shape and 
extend of the major flow features differ considerably in both 
cross sections. Particularly in the second cross section, the 
area represented by low voxel intensity was underestimated 
in the simulations.

Figure 1 User interface of the dedicated CFD research prototype system for displaying the CFD simulation results of case #1. Cross 
sections through the aneurysm dome can be easily defined (upper left quadrant). Wall shear stress information can be integrated into 3D 
surface reconstructions of the vasculature (upper right and lower left quadrant) and streamlines of flow can be shown within the aneurysm 
dome (lower right quadrant). CFD, computational fluid dynamics.
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Case 3

In this large and irregularly shaped aneurysm, major flow 
features were well represented by the simulation results in 
comparison to the 2D pcMRI measurements. Low signal to 
noise in the 2D pcMRI images at regions of slow flow (potentially 
more pronounced in this large aneurysms compared to the 
other ones of smaller diameter) were appreciated.

Case 4

Agreement was overall found favorable in the velocity 
patterns visible in both cross sections between measurement 
and simulations sections despite some apparent differences 
towards the aneurysm dome, in particular in the first cross 
section. Opposite regions of flow were quite distinguishable 
in the 2D pcMRI inside the entire dome while in the 
simulation results, a more diffuse, slow flow pattern was 
attributed to the dome region. In the second cross section, 
perpendicular to the first, agreement was better concerning 
the shapes of the velocity patterns while the simulation 
seemed to underestimate blood flow velocities.

Case 5

In this large aneurysm, focal areas of high velocity blood 

flow were well reproduced in the simulation results 
compared to the measurements. Low signal to noise 
corresponding to regions of slow velocities were again 
appreciated similar to case 3.

Case 6

In this aneurysm, which exhibited a thrombosed dome 
region, velocity patterns agreed very well in the second 
cross section while also qualitatively moderate to good 
agreement was found in the first cross section where the 
CFD simulation overestimated velocity magnitudes.

Discussion

Illustrated by the qualitative comparison of in vivo 
measurements realized by 2D pcMRI and steady-inflow 
CFD simulations performed with a dedicated CFD 
prototype, CFD as implemented as a dedicated prototype 
system is capable of reproducing major flow features in 
cerebral aneurysms. 

The findings of this preliminary results study is in 
good agreement with previously published work using the 
commercially available CFD solver software (30). In contrast 
to a commercial software, which, due to its high flexibility 
in the kinds of simulations it can perform, most often is of 
high complexity perhaps unsuitable for easy use in a clinical 
research setting, the application of the CFD prototype system 
employed here, was very easy to use for the six described 
cases. The workflow was predefined and segmentation as well 
as definition of boundary conditions for the simulations was 
greatly simplified. As costs of this simplification, currently 
only zero pressure boundary conditions are available and 
inflow can only be defined by a velocity value. Thus, no 
pressure values or a velocity profile defined across the 
diameter of the parent artery are currently feasible. 

In this preliminary results study, steady simulations were 
chosen as only these are from a practical clinical standpoint 
sufficiently fast to provide results within the time frame 
of a diagnostic angiogram or during an endovascular 
embolization procedure. Despite this simplified approach, 
the qualitative agreement between simulation and 
measurement was generally very good in that it provided 
quickly information for the intra-aneurysmal blood flow 
patterns. It may be argued that this information may 
be too cursory and more sophisticated simulations are 
needed utilizing time-varying inflow (and even perhaps) 
outflow conditions. To address this issue, it would be also 

Figure 2 Cross sections on left were measured (pcMRI) or 
simulated (CFD) of aneurysms shown on the right. Black 
patterns and light blue patterns represent blood velocity values of 
opposite direction relative to the cross sectional plane. Qualitative 
agreement between simulation and measurement was assessed by 
similarity in size and shape of the velocity patterns in each cross 
section. pcMRI, phase contrast magnetic resonance imaging; CFD, 
computational fluid dynamics.
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necessary to define expectations for the CFD simulation 
results: while the possibility of calculating an aneurysm 
rupture risk has been discussed as a potential application 
for CFD, it should be kept in mind that in addition to 
geometrical and morphological factors giving rise to 
mechanical forces (31,32), also other factors, such as current 
smoking, hypertension, family history of stroke other 
than subarachnoid hemorrhage, hypercholesterolemia and 
regular physical exercise have been implicated to attribute 
to aneurysm rupture risk (33). While hypertension might 
be related to elevated wall shear stress, a hemodynamic 
parameter accessible via CFD, it might be difficult to 
account for the remaining factors in the computational 
simulations.

Other clinical research applications of CFD have recently 
been reported which investigate entirely mechanical effects, 
e.g., the influence of eight different configurations of 
stenting for bifurcation aneurysms on the hemodynamics 
inside the aneurysm (34). The authors demonstrated 
that the crossing-Y and kissing stent configuration lead 
to lower flow velocity within the aneurysms. In another 
study, CFD simulations helped to predict the rupture side 
in subarachnoid hemorrhage in a patient with bilateral 
vertebral aneurysms in order to decide which aneurysm 
need to be treated first (35). These are examples of scenarios 
where CFD was used to address a well-defined clinical 
research issue, and these kinds of scenarios may be readily 
addressed by the CFD research prototype describe here.

Conclusions

CFD simulations of cerebral aneurysms is an evolving 
technology with promising applications in clinical research 
for the near future. A standardized approach, as realized 
by the dedicated CFD prototype system described in this 
study, will be beneficial for comparison and exchange of 
simulation results.
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