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Introduction

Multiple studies have tested the prognostic utility of left 
ventricular global longitudinal (LVGLS), circumferential 
(LVGCS) and radial (LVGRS) strains in a wide range of 
clinical applications, including cardiomyopathies, coronary 
heart disease and valvular heart disease (1-5). Despite 
significant investigation, there is no consensus of what 

constitutes normal variability and what is abnormal strain 
in an otherwise healthy patient (6,7). Strain measurement 
variability may stem from biologic variability (e.g., impact 
of gender, age, body size) or measurement system variability 
(echocardiographic image quality, software speckle 
detection, strain calculation). Biologic variability can be 
resolved by appropriately large, multi-institutional samples 
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of healthy individuals that take into account population 
diversity. Measurement system variability can be addressed 
by having a small sample with repeated echocardiographic 
exams obtained using different ultrasound systems or 
software. Yet it is close to impossible to perform a study in 
which both biologic and system variability are assessed. 

One way to overcome this problem is to perform a meta-
analysis with both biologic and measuring system variability 
addressed. While meta-analyses of strain measurements have 
been reported (8-10), they focused on the estimation of the 
pooled mean of the strain values with corresponding 95% 
confidence intervals (95% CI) for the mean alone. When 
determining normal ranges of systolic function parameters 
in cardiac imaging, such as ejection fraction, fractional area 
change, tricuspid annular plane systolic excursion and of 
course strain, the focus is on the threshold at which the 
value measured becomes abnormally low in magnitude to 
reflect impaired systolic function, otherwise known as the 
lower limit of normal (LLN) (7). It is important to note that 
the 95% CI of the pooled mean by meta-analysis does not 
accurately reflect the range of normal strain values and does 
not measure the LLN or its 95% CI, and therefore cannot 
be used in defining the cut-points for abnormal strain. Our 
meta-analysis aims to pool the LLNs and update the pooled 
mean data for two-dimensional (2D-) and three dimensional 
(3D-) LVGLS, LVGCS and LVGRS by speckle tracking 
echocardiography in healthy subjects, in order to redefine 
thresholds of abnormal strains, as well as analyzing baseline 
parameters that could be associated with left ventricular 
(LV) strain measurements. Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) checklist 
was followed and presented in the conduct of this meta-
analysis, without a separate review protocol.

We present the following article in accordance with the 
PRISMA reporting checklist (available at http://dx.doi.
org/10.21037/cdt-20-711).

Methods

Literature search and study selection

PubMed, Cochrane and Embase databases were searched 
for relevant studies with no restriction on start date until 
31 December 2019. The search terms used were (left 
ventricle) AND (echocardiography) AND (strain OR 
speckle tracking), with filters adult (age) and human (subject) 
applied. To be included, studies needed to report: (I) 
original data of the mean ± standard deviation or standard 

error, or median (lower quartile, upper quartile); (II) at least 
one of left ventricular global longitudinal, circumferential 
and/or radial strain measured by speckle tracking; (III) in at 
least 50 healthy individuals; (IV) and either sex must make 
up at least one third of the healthy cohort. The largest 
study of healthy subjects were selected when there are 
multiple studies from the same authors. Healthy subjects 
are defined by absence of known cardiovascular disease, 
risk factors including hypertension, diabetes and obesity, 
chronic disease including malignancy and single or multi-
organ failure and cardiac medications, with normal cardiac 
examination and investigations, both explicitly stated and 
confirmed by baseline characteristics reported. Reference 
lists of relevant articles were checked, while case reports, 
guidelines, editorials and letters were excluded. 

Data extraction

We extracted the following parameters from eligible 
studies into spreadsheets: author surname, year, number 
of subjects, country, definition of group studied, age, sex, 
body mass index, systolic blood pressure, heart rate, left 
ventricular ejection fraction (LVEF), left ventricular end 
diastolic volume (LVEDV), vendor software, frame rate, 
and type of strain (2D- or 3D-, and views from which 
longitudinal strain is measured). The strain outcomes of 
interest extracted were left ventricular global longitudinal 
(LVGLS), circumferential (LVGCS) and radial (LVGRS) 
strains. If strain for endo, mid and epicardial were presented 
separately, mid-wall strain was recorded. One author 
(TKMW) screened studies for inclusion and extracted the 
data, and another author (ZP) confirmed all the appropriate 
studies for inclusion and data entered.

Statistical analyses

LVGLS, LVGCS and LVGRS by 2D and 3D were 
separately analyzed. By convention from contemporary 
echocardiography guidelines and studies, the LLN of strain 
derived from individual studies of healthy subjects is the 
boundary of the 95% CI with the lower magnitude of strain, 
which would be the less negative boundary for LVGLS and 
LVGCS, and the less positive boundary for LVGRS (7). 
The process of obtaining pooled mean, pooled lower limit 
of normal, and corresponding 95% CIs from individual 
studies using meta-analysis is illustrated in Figure 1.  
The first step is obtaining mean and standard deviation of 
individual samples (i.e., studies). If medians (med), lower 
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Figure 1 Schematic illustration of the pooling of mean and lower limit of normal with their respective confidence intervals defined by 
standard deviation and standard error for any physiological parameter by meta-analysis. LLN, lower limit of normal.

Study 1 

Study 2 

Study 3 

Pooled mean 

Pooled LLN

Abnormal        Borderline                       Normal

Parameter

: 95% confidence interval estimate for range of values (mean ± 1.96 x SDmean) 
: 95% confidence interval of the mean value (mean ±1.96 x SEmean or LLN± 1.96 × SELLN)

: mean,         : lower limit of normal (LLN = mean − 1.96 x SDmean)

(q1) and upper (q3) quartiles were reported for a study, we 
used the equations proposed by Wan et al. below to derive 
estimates of the sample mean and standard deviation (11):

Mean = (q1+ med + q3) / 3 	 [1]
1SD = (q3 q1) / [2  (0.75 0.125) / ( + 0.25)]n−− ×Φ − 	 [2]

The mean and SD of mean of individual studies can 
then be used in meta-analysis to obtain pooled mean 
and corresponding 95% CI. In an identical manner, we 
used LLN and SDLLN of individual samples (studies), 
to calculate the pooled LLN and corresponding 95% CI 
using meta-analysis. We defined LLN for longitudinal 
and circumferential strains as the upper boundary of the 
95% CI for the sample mean strain calculated as mean 
plus 1.96 × standard error of the mean as this corresponds 
to a lower “absolute” (i.e., less negative) value for strain. 
LLN for radial strain were calculated in a standard manner. 
To calculate standard error of the lower limit of normal 
LLN (SELLN) of individual samples, we used the following 
formula (where SDmean is the standard deviation of the 
sample mean and n is number of patients in the sample) (12):

( )2
LLN meanSE SD 1/ 2 / 1n n= × + −   	 [3]

From this, we calculated as the parameter k as:

LLNk = SE  ( 1)n× − 	 [4]
Where k is used in conjunction with LLN of individual 

samples in the same way SDmean is used in conjunction with 
sample means.

To perform meta-analysis, we pooled both the mean ± 
SDmean and LLN ± k across studies using the DerSimonian-
Laird method and random effects models. We also analyzed 
the mean and LLN of LVGLS by baseline characteristics 
subgroups (either categorical or mean quantitative 
variables) if reported by at least two studies. Heterogeneity 
of studies were assessed using the Cochrane Q test (P 
value) and I2 (inconsistency) statistic. Study bias was not 
separately assessed as we were determining abnormal 
strain thresholds in healthy subjects. Univariable meta-
regression was used to identify associations between 
baseline characteristics with LVGLS mean and LLN, using 
the reported means or medians for continuous variables 
or proportion for categorical variables for characteristics 
at study level. A positive beta coefficient indicates higher 
quantitative parameter or the presence of a categorical 
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Figure 2 Literature search and disposition of studies.
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parameter correlates with a more positive (i.e., less negative 
or less absolute) strain. The reference group of countries 
and vendors/programs for comparison were Europe and 
GE Echopac as they were the most common subgroup for 
their classifications. Funnel plots were used to assess for 
publication bias. OpenMeta-Analyst software was used for 
all analysis (13), and P<0.05 was deemed to be statistically 
significant. 

Results

A total of 773 studies were obtained from the literature 
search excluding duplicates, and after reviewing all 
abstracts, 102 studies passed initial screening for full-text 
review, and 44 studies were eligible for analysis (14-38), 
totaling 8,910 subjects (Figure 2) (39-57). In one study 
we were able to obtain unpublished means and standard 
deviations for LVGLS from the authors (15). Characteristics 
of the eligible studies are displayed in Table 1. Studies were 
published between 2008–2019, the number of healthy 
subjects varied from 50–2,008, mean age 28–67 years old, 
and male sex made up 39–65% (overall 50%). 2D-strain was 

reported in 38 studies and 3D-strain in 7. 
Table  2  l i s ts  the pooled means and LLNs with 

heterogeneity testing of strain parameters on 2D and 3D. 
For 2D LV strain measurements, the pooled 2D-LVGLS 
mean and LLN (95% CI) were −20.1% (−20.7%, −19.6%) 
and −15.4% (−16.0%, −14.7%) respectively (Figure 3). 
The pooled 2D LVGCS mean and LLN (95% CI) were 
−21.9% (−23.4%, −20.3%) and −15.3% (−16.9%, −13.8%) 
respectively (Figure 4). The pooled 2D LVGRS mean and 
LLN (95% CI) were 48.4% (43.8%, 53.0%) and 25.5% 
(17.8%, 33.1%) respectively (Figure 5). 

For 3D LV strain measurements, the pooled 3D LVGLS 
mean and LLN (95% CI) were −18.5% (−20.1%, −16.9%) 
and −14.5% (−16.8%, −12.3%) respectively (Table 2). The 
pooled 3D LVGCS mean and LLN were −25.0% (−30.8%, 
−19.3%) and −17.6% (−22.6%, −12.6%) respectively. The 
pooled 3D LVGRS mean and LLN were 49.4% (40.8%, 
58.0%) and 27.9% (16.8%, 38.9%) respectively. 

Significant heterogeneity was found in all pooled 2D 
and 3D LV global strain analyses by Cochrane Q test and I2 
statistic. Funnel plots were symmetrical without revealing 
significant publication bias for all analyses, and the plots for 
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2D-LVGLS mean and LLN are shown in (Figure 6). 
Results of the meta-regression analysis for 2D-LVGLS 

are shown in Table 3. The only factor associated with 
2D-LVGLS means and LLNs was vendor software, 
specifically velocity vector imaging (VVI) having less 
negative values than GE Echopac. There was no significant 
interaction between LVGLS mean or LLN with year of 
publication, sex, region, body mass index, heart rate, systolic 
blood pressure, left ventricular ejection fraction or end-
diastolic volume, other vendors and frame rate. 

Discussion

Prior meta-analyses of LV strain assessment in healthy 
subjects focused on accurately defining the point estimate of 
the pooled average LV strain (8,9). A recent updated meta-
analysis was able to use patient-level data in 16 studies and 
2,396 subjects to determine the pooled means with 95% CIs 
and LLN of LVGLS only by vendor (10). The novelty of 
our findings is that we now also provide the estimate for the 
pooled LLN and the 95% CI of LLN using meta-analysis 
techniques for LVGLS, LVGCS and LVGRS, and for 2D- 
and 3D-strain, on top of being able to pool larger number 
of patients at the study level. This information is highly 
relevant as it can help define what should be considered an 
abnormal strain value in clinical practice. We also provide 
meta-regression results showing persistence of a small, but 
still present, between-vendor difference in strain despite 
recommendations for standardization of strain imaging with 
different LLNs (6). Finally, we did not detect any temporal 
trends in strain variability for both mean value and lower 
limit of normal. Notably, we focused on healthy participants 
with no cardiovascular disease or risk factors that could 
affect LV strain measurement so some large population 
studies were excluded (58,59), and also excluded studies that 
didn’t use speckle-tracking to measure LV strain such as 
tissue Doppler techniques (60). 

Interpretation of the pooled means and LLNs for normal 
strain

The goal of meta-analysis is to combine results from 
multiple studies that address a similar question in order to 
increase power of point estimate of some clinically relevant 
parameter. Most commonly, we seek to obtain pooled 
parameters of a single important point estimate, such as 
relative risk or odds ratio. In that manner previous meta-
analyses of LV strain in healthy subjects focused on a point T

ab
le

 1
 (c

on
tin

ue
d)

A
ut

ho
r

Ye
ar

N
C

ou
nt

rie
s 

 
(>

1 
ce

nt
er

)
H

ea
lth

y 
co

nt
ro

ls
  

of
 d

is
ea

se
 s

tu
di

ed
A

ge
  

(y
ea

rs
)

M
al

e 
(%

)
B

M
I  

(k
g/

m
2 )

S
B

P
 

(m
m

H
g)

H
R

  
(m

in
− 1

)
LV

E
F 

(%
) 

LV
E

D
V

 
(m

L)
Ve

nd
or

/ 
so

ft
w

ar
e

Fr
am

e 
ra

te
 (H

z)
2D

/3
D

S
tr

ai
n 

ty
pe

s
G

LS
 

vi
ew

s

W
an

g
20

14
50

C
hi

na
H

ea
rt

 fa
ilu

re
56

±
5

35
–

–
–

65
±

4
–

G
E

 E
ch

oP
ac

–
2D

LC
R

3V

W
ill

ia
m

s
20

18
60

C
an

ad
a,

 Is
ra

el
H

yp
er

tr
op

hi
c 

 
ca

rd
io

m
yo

pa
th

y
32

±
8

42
–

–
–

67
±

6
11

0±
20

S
ie

m
en

s 
V

V
I

–
2D

LC
3V

X
ia

20
14

15
3

C
hi

na
H

ea
lth

y 
on

ly
52

±
16

52
–

–
70

±
4

58
±

4
To

sh
ib

a
25

3D
LC

R
3D

X
u

20
18

67
C

hi
na

H
yp

er
te

ns
io

n
65

21
.3

±
2.

3
–

67
±

11
65

±
6

69
+

/1
3

G
E

 E
ch

oP
ac

–
2D

LC
2V

Ya
ng

20
14

15
2

K
or

ea
H

yp
er

te
ns

io
n

w
ith

 e
xe

rc
is

e

48
±

8
54

23
.0

±
2.

6
11

5±
11

73
±

11
65

±
5

–
G

E
 E

ch
oP

ac
60

–8
0

2D
L

1V

Y
ip

20
11

60
C

hi
na

H
ea

rt
 fa

ilu
re

53
±

10
52

23
±

3
11

9±
13

70
±

11
68

±
4

95
±

21
G

E
 E

ch
oP

ac
40

–8
0

2D
LC

R
3V

C
on

tin
uo

us
 v

ar
ia

b
le

s 
ar

e 
re

p
re

se
nt

ed
 b

y 
m

ea
n 

±
 s

ta
nd

ar
d

 d
ev

ia
tio

n 
or

 m
ed

ia
n 

(lo
w

er
 q

ua
rt

ile
-u

p
p

er
 q

ua
rt

ile
) 

or
 (

95
%

 c
on

fid
en

ce
 in

te
rv

al
). 

B
M

I, 
b

od
y 

m
as

s 
in

d
ex

; 
S

B
P,

 
sy

st
ol

ic
 b

lo
od

 p
re

ss
ur

e;
 H

R
, 

he
ar

t 
ra

te
; 

LV
E

F,
 l

ef
t 

ve
nt

ric
ul

ar
 e

je
ct

io
n 

fr
ac

tio
n;

 2
D

, 
tw

o-
d

im
en

si
on

al
; 

3D
, 

th
re

e-
d

im
en

si
on

al
; 

V
V

I, 
Ve

lo
ci

ty
 V

ec
to

r 
Im

ag
in

g;
 L

, 
lo

ng
itu

d
in

al
; 

C
, 

ci
rc

um
fe

re
nt

ia
l; 

R
, 

ra
di

al
 s

tr
ai

ns
; 

3V
, 

4,
 2

 a
nd

 3
 c

ha
m

be
r 

vi
ew

s 
(3

 v
ie

w
s)

; 
2V

, 
4 

an
d 

2 
ch

am
be

r 
vi

ew
s 

(2
 v

ie
w

s)
; 

1V
, 

4-
ch

am
be

r 
on

ly
 (1

 v
ie

w
). 

G
ap

s 
ar

e 
m

is
si

ng
 d

at
a 

no
t 

 
re

po
rt

ed
 b

y 
st

ud
ie

s.



1865Cardiovascular Diagnosis and Therapy, Vol 10, No 6 December 2020

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2020;10(6):1858-1873 | http://dx.doi.org/10.21037/cdt-20-711

estimate of pooled mean strain, with a corresponding 95% 
CI providing a measure of precision of this point estimate 
(8,9). However, as pooled 95% CI of the mean depend on 
sample size, they eventually become narrow with larger 
numbers, and do not reflect the general distribution of 
strain values in healthy subjects. These issues prompted us 
to develop a meta-analysis approach to define the LLN, 
with the specific purpose of detecting threshold beyond 
which strain measurements become “abnormal”. We 
addressed this task by emulating the approach of Bland who 
reported an elegant formula for estimating the standard 
error for the boundaries of the 95% CI of the mean, i.e., 
LLN (12). We can then combine these LLNs in a meta-
analysis fashion to estimate the pooled LLN and its 95% CI 
for all strain parameters. With this approach it is important 
to note that, by default, the pooled standard error for the 
LLN is higher than that of the pooled standard error of the 
mean. Furthermore, if we used 99% confidence interval for 
our definition of the LLNs, the estimated LLN would be 
even further from the mean with its own, wider, confidence 
interval.

How should the pooled LLNs found in this meta-
analysis be interpreted? Using the LLN of 2D-LVGLS as 
an example, the pooled estimate of −15.4% could be set 
as the cut-point for abnormal 2D-LVGLS. However, the 
95% CI of LLN, in this case −16.0% to −14.7% presents 
further complexities to its interpretation, as this is the range 
for which the real LLN is thought to most likely (but not 
definitely) lie. The pragmatic approach to its use this would 
be if 2D-LVGLS was below (more negative than) −16.0% 
then it is normal, and if it is above (less negative) than 
−14.7%, then it is abnormal. The range of values between 
−16.0% to −14.7% would then be in the borderline grey 

zone. Our pooled LLN for LVGLS is similar to the −18% 
to −14% LLNs depending on vendor in the most recent 
updated meta-analysis (10).

The pooled means do have value in illustrating the 
average strain values for healthy subjects, subgroups and 
allow comparisons between studies. Our updated meta-
analysis reported similar pooled means (95% CI) to the 
−19.7% (−20.4%, −18.9%), −23.3% (−24.6%, −22.1%) 
and 47.3% (43.6%, 51.0%) for 2D-LVGLS, LVGCS and 
LVGRS respectively reported in the earliest 2D-LV strain 
meta-analysis (8), and the more recent updated meta-
analysis −21.0% (−19.2%, −22.7%) (10). We also found 
similar pooled means for 3D-LV strain to the −19.1% 
(−19.9%, −18.2%), −22.4% (−21.0%, −23.9%) and 47.5% 
(41.5−53.5%) reported in the previous 3D-LV strain meta-
analysis (9), and in fact, 3D and 2D estimates were also 
similar. Still, there remains a significant heterogeneity 
between individual studies observed in previous meta-
analyses and ours, even though the pooled mean LV strains 
for healthy subjects were consistent, reflecting the multitude 
of factors that influence these measurements (8,9). 

Factors that influence strain by subgroups and regression

The only parameter we found on meta-regression for both 
the mean and LLN of 2D-LVGLS was vendor software. 
VVI had less negative 2D-LVGLS mean (by 2.8%) and 
LLN (by 3.9%) than GE Echopac whereas the Phillips 
QLab and Tomtech did not. The earliest 2D-LVGLS meta-
analysis compared non-GE versus GE vendor software in 
its meta-regression, and this was not associated with mean 
2D-LVGLS, although P value was 0.08 and VVI was not 
specifically analyzed (8). The more recent updated meta-

Table 2 Pooled means and lower limits of normal for two- and three-dimensional left ventricular global strain 

Strain Studies N Mean 95% CI (mean) Heterogeneity testing LLN 95% CI (LLN) Heterogeneity testing

2D

GLS (%) 38 7,430 −20.1% −20.7%, −19.6% 3,828 (<0.001), 99.0% −15.4% −16.0%, −14.7% 173 (<0.001), 97.9%

GCS (%) 31 2,990 −21.9% −23.4%, −20.3% 3,530 (<0.001), 99.5% −15.3% −16.9%, −13.8% 1,231 (<0.001), 98.5%

GRS (%) 16 2,597 48.4% 43.8%, 53.0% 2,368 (<0.001), 99.4% 25.5% 17.8%, 33.1% 2,182 (<0.001), 99.3%

3D

GLS (%) 7 1,486 −18.5% −20.1%, −16.9% 1,084 (<0.001), 99.4% −14.5% −16.8%, −12.3% 723 (<0.001), 99.2%

GCS (%) 6 1,436 −25.0% −30.8%, −19.3% 5,770 (<0.001), 99.9% −17.6% −22.6%, −12.6% 1,436 (<0.001), 99.7%

GRS (%) 6 1,436 49.4% 40.8%, 58.0% 1,937 (<0.001), 99.7% 27.9% 16.8%, 38.9% 162 (<0.001), 96.9%

Heterogeneity testing includes the Cochrane Q (P value) and I2. 95% CI, 95% confidence interval; LLN, lower limit of normal; 2D,  
two-dimensional; GLS, global longitudinal strain; GCS, global circumferential strain; GRS, global radial strain; 3D, three-dimensional. 
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Figure 3 Left ventricular global longitudinal strain pooled (A) mean and (B) lower limit of normal.
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Figure 4 Left ventricular global circumferential strain pooled (A) mean and (B) lower limit of normal.

analysis reported separate pooled means and LLNs by 
vendor software (GE −21.2% and −18.2%, Toshiba  −19.9% 
and −15.8%, Philips −19.6% and −15.5%, and Siemens 
−16.9% and −14.0% respectively) showed similar pattern 
to our findings (10). Furthermore, vendor software was 
significantly associated with 3D-strain in the other previous 
meta-analysis, where Toshiba and 3DWM tracking software 

had less negative mean 3D-LVGLS than Echopac, GE and 
Phillips (9). Other studies including a wider distribution 
of normal and abnormal strains have also found VVI to 
produce less negative values to GE (61). We therefore 
recommend using a different LLN for VVI adjusted by the 
meta-regression beta-coefficient from the overall values, 
or using one of the alternative vendor software instead. 

A

B
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Figure 5 Left ventricular global radial strain pooled (A) mean and (B) lower limit of normal.

Further large studies are required to establish this threshold 
for VVI as current data (two studies in this meta-analysis) is 
limited.

Limitations

This meta-analysis has some limitations. We assumed 
that all eligible studies had experienced readers following 
standardized methods and accurately measured LV strain 
which may not always be the case (6). Smaller studies 
and those with over-representation of male or female 
populations by more than two thirds were excluded to 

reduce bias, although this reduced the total number of 
subjects that couldn’t have been meta-analyzed with higher 
power. Heterogeneity was present for the range of normal 
LV strain reported across studies, as well as study design, 
populations and equipment, however this is expected and 
presented in all previous strain meta-analyses (8,9), and we 
also analyzed for parameters that may affect variations in 
LV strain measurements. Subgroup analysis particularly for 
the minority groups like the elderly age-group and non-
GE vendors have wider 95% CI and may be underpowered. 
Notably, we defined LLN mathematically as the boundary 
of the 95% CI of the mean from individual studies and 

A

B
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Figure 6 Funnel plots to assess for publication bias for the pooled (A) means and (B) LLN of 2D-LVGLS. LLN, lower limit of normal; 
LVGLS, left ventricular global longitudinal strain.

Table 3 Meta-regression of left ventricular global longitudinal strain mean and lower limit of normal

Parameter
LVGLS mean LVGLS LLN

Beta 95% CI P value Beta 95% CI P value

Year study published 0.00 −0.19, 0.18 0.968 −0.21 −0.45, 0.03 0.082

Age (years) 0.02 −0.03, 0.08 0.432 0.04 −0.03, 0.11 0.273

Male (%) 0.01 −0.07, 0.08 0.846 −0.02 −0.12, 0.08 0.665

Asian (versus European) −0.96 −2.09, 0.18 0.097 −0.64 −2.29, 1.01 0.446

Body mass index (kg/m2) 0.24 −0.11, 0.60 0.175 0.33 −0.11, 0.76 0.140

Systolic blood pressure (mmHg) 0.07 −0.03, 0.18 0.169 0.11 −0.04, 0.27 0.159

Heart rate (/minute) 0.04 −0.13, 0.20 0.642 0.00 −0.23, 0.22 0.977

Left ventricular ejection fraction (%) −0.07 −0.24, 0.11 0.445 −0.11 −0.32, 0.10 0.288

Left ventricular end-diastolic volume (mL) 0.01 −0.03, 0.06 0.584 −0.01 −0.06, 0.04 0.611

Vendor software

Phillips QLab (versus GE Echopac) 1.03 −0.49, 2.54 0.184 1.10 −0.97, 3.18 0.297

Tomtec (versus GE Echopac) −1.48 −3.53, 0.57 0.157 −1.48 −4.27, 1.31 0.298

VVI (versus GE Echopac) 2.76 1.03, 4.50 0.002 3.92 1.53, 6.31 0.001

Non-GE (versus GE Echopac) 1.72 −1.16, 4.59 0.241 0.62 −3.31, 4.55 0.757

Frame rate (/s) 0.04 −0.03, 0.11 0.238 0.04 −0.08, 0.16 0.517

Italic numbers refer to those with P values <0.05. LVGLS, left ventricular global longitudinal strain; LLN, lower limit of normal; VVI, Velocity 
Vector Imaging. 

pooled this, which is by convention and arbitrary for 
echocardiographic chamber quantification (7) but also not 
based on prognostic significance. The meta-regression 
analysis has some biases and power in terms of missing 
baseline characteristics in some studies as well as the lack 
of patient-level data. Publication bias may be present as 

for any meta-analysis although we did not find significant 
evidence for this. 

Conclusions

This meta-analysis study aimed to define the thresholds 
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of abnormal LV strains in healthy subjects by determining 
the pooled LLN and the 95% confidence interval of 
LLN. Based on this, we can classify LV strain parameters 
as normal, borderline or abnormal. For example, for 
2D-LVGLS the pooled LLN (95% CI) was −15.4% 
(−16.0%, −14.7%), therefore if 2D-LVGLS is less negative 
than −14.7% it would be abnormal, between −16.0% and 
−14.7% would be borderline, and more negative than 
−16.0% is normal. The pooled LLNs and updated pooled 
mean for 2D and 3D LVGLS, LVGCS and LVGRS 
parameters are provided. Meta-regression analysis revealed 
significant differences in LV strain by vendor software, 
but no differences by time, clinical or echocardiographic 
factors. These abnormal and borderline thresholds and 
methodology and methodology have significant clinical and 
academic applications for future practice and studies of LV 
strain. 
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