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Background: Technological advances in arterial wall imaging permit the opportunity to visualize 
coronary atherosclerotic plaque with sufficient resolution to characterize both its burden and compositional 
phenotype. These modalities have been used extensively in clinical trials to evaluate the impact of lipid 
lowering therapies on serial changes in disease burden. While the findings have unequivocally established 
that these interventions have the capacity to either slow disease progression or promote plaque regression, 
depending on the degree of lipid lowering achieved, their impact on plaque phenotype is less certain. More 
recently optical coherence tomography (OCT) has been employed with a number of studies demonstrating 
favorable effects on both fibrous cap thickness (FCT) and the size of lipid pools within plaque in response to 
statin treatment.
Methods: The phase 3, multi-center, double-blind HUYGENS study will assess the impact of incremental 
lipid lowering with the proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitor, evolocumab, on 
plaque features using serial OCT imaging, in statin-treated patients following an acute coronary syndrome 
(ACS). Subjects with non-ST-elevation ACS (n=150) will be randomized 1:1 into two groups to receive 
monthly injections of evolocumab 420 mg or placebo.
Results: The primary endpoint is the effect of evolocumab on coronary atherosclerotic plaques will be 
assessed by OCT at baseline and at week 50.
Conclusions: The HUYGENS study will determine whether intensified lipid lowering therapy with 
evolocumab in addition to maximally tolerated statin therapy will have incremental benefits on high-risk 
features of coronary artery plaques.
Trial registration: This study was registered on Clinicaltrials.gov (NCT03570697).
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Introduction

Randomized controlled tr ials  have unequivocal ly 
established that lowering levels of low-density lipoprotein 
cholesterol (LDL-C) reduces cardiovascular event rates 
in both the primary and secondary prevention setting (1). 
Meta-analyses have subsequently demonstrated a direct 
association between the degree of LDL-C reduction and 
cardiovascular benefit (1). As a result, treatment guidelines 
for cardiovascular prevention have increasingly emphasized 
the use of intensive statin therapy for higher risk patients (2). 
However, the observation of a considerable residual clinical 
risk in statin-treated patients related to insufficient LDL-C 
targets (3,4). And the emerging reality of statin intolerance 
has supported the need to develop additional LDL-C 
lowering strategies for use in clinical practice (5).

Lipid lowering beyond statins

A number of therapeutic agents have been developed 
for patients who are not able to achieve satisfactory 
LDL-C lowering despite use of maximally tolerated statin 
therapy. Ezetimibe is a cholesterol absorption inhibitor, 
which lowers LDL-C by 15–25% when administered as 
monotherapy or in addition to statin therapy (6). Two large 
clinical outcomes trials have demonstrated that ezetimibe 
administration on top of statin therapy results in a reduction 
in cardiovascular events in patients with end stage kidney 
disease and on long term follow up after an acute coronary 
syndrome (ACS) (7,8). Bempedoic acid inhibits ATP 
citrate lyase, a factor which similarly to statins is involved 
in the hepatic cholesterol synthesis pathway (9,10). As a 
result, this agent has the ability to lower LDL-C levels by 
16–25% (11,12). The effect of this agent on cardiovascular 
outcomes is currently being evaluated in a large clinical 
trial of high-risk patients with statin intolerance and 
hypercholesterolemia.

Proprotein convertase subtilisin kexin type 9 (PCSK9) 
inhibitors present the opportunity to profoundly lower 
LDL-C. Genetic studies associate gain of function PCSK9 
mutations with hypercholesterolemia (13) and loss of 
function polymorphisms with both low LDL-C levels 
and a lower prevalence of cardiovascular disease (14,15). 
Subsequent genetic and biochemical studies have established 
that PCSK9 plays an important role in the regulation 
of cholesterol metabolism, by lowering expression of 
the LDL receptor on the hepatocyte surface (13,16,17). 
Development of inhibitory monoclonal antibodies have 

been demonstrated to effectively reduce PCSK9 activity and 
to lower LDL-C in a dose dependent fashion on average to 
60% when administered as monotherapy or in combination 
with statin therapy (18-20). This provides the opportunity 
to achieve effective lipid lowering, particularly in patients 
with statin intolerance and familial hypercholesterolemia, 
but also to reduce LDL-C to very low levels in those 
patients already treated with a statin (21,22). Two large 
outcomes trials have demonstrated that lowering LDL-C 
to much lower levels than previously observed reduced 
cardiovascular events in patients with either stable 
atherosclerotic cardiovascular disease (23) or in those with 
an ACS in the prior 4–52 weeks (24). It is therefore likely 
that the patient at elevated cardiovascular risk warrants 
efforts to lower LDL-C to very low levels.

Effect of statins on atherosclerotic plaque using arterial 
wall imaging

Technological advances in arterial wall imaging have 
produced a range of modalities with the ability to not only 
localize plaque in a range of vascular beds, but also to 
quantify its burden and characterize its composition. Early 
studies demonstrating the benefit of statins on disease 
progression using coronary angiography (25,26) and 
carotid intima-medial thickness (27,28) have been extended 
to intravascular ultrasound (IVUS), which examines the 
full burden of coronary atherosclerosis. Clinical trials 
employing serial IVUS imaging have demonstrated 
that increasingly intensive statin therapy slows disease 
progression and promotes plaque regression, with the 
degree of benefit proportional to the extent of LDL-C 
lowering achieved (29-31). Additional studies have revealed 
that C-reactive protein (CRP) lowering with statins 
independently associates with their impact on plaque 
progression, supporting reports that statins possess anti-
inflammatory properties (32,33).

With increasing interest in the potential for plaque 
compos i t ion to  be  an  important  determinant  of 
the translation of atherosclerotic disease to clinical 
manifestation, considerable attempts have been made to 
characterize the effects of statins on plaque morphology, 
beyond its size. Pathology studies have demonstrated 
that statin treatment prior to endarterectomy produces 
atheroma that contains less lipid and inflammatory material, 
supporting a potential role for plaque stabilization (34).  
While IVUS imaging lacks the resolution to effectively 
visualize plaque components, serial studies have reported 
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that statin use associates with progressive plaque 
calcification (35). Studies using different imaging modalities 
have reported that statins may also reduce plaque lipid 
on near infrared spectroscopy (NIRS) (36), necrotic 
core on magnetic resonance imaging (MRI) (37) and the 
degree of inflammatory activity using positron emission 
tomography (PET) (38). While these findings align with the 
observations from pathology studies, these modalities have 
been less commonly used in serial imaging studies of anti-
atherosclerotic therapies.

Intracoronary optical coherence tomography (OCT) is 
a catheter-based imaging technique using coherent near 
infrared light to generate images with micrometer spatial 
resolution from optical backscatter, thus enabling detailed 
imaging of the intimal aspects of the coronary artery wall. 
As a result, OCT has been established to visualize the 
fibrous cap and underlying lipid pools with high resolution, 
permitting their measurement in vivo. Numerous reports 
have emerged from OCT-based studies demonstrating 
the presence of hallmark features of vulnerable plaque, 
including a thin fibrous cap, large lipid pool, cholesterol 
crystals, spotty calcification, neovascularization and 
potentially macrophage collections in culprit lesions (39-42)  
and other sites within the vasculature (43,44) of ACS 
patients. Furthermore, the presence of a lipid rich plaque, as 
evidenced primarily by a thin fibrous cap, but also with wide 
lipid arc and presence of macrophages on OCT, has been 
reported to associate with a greater rate of cardiovascular 
events on long term follow-up (45).

This technique has also been employed to study the 
effects of LDL-C levels and statins on atherosclerotic 
plaque. Observational studies have demonstrated that 
higher LDL-C levels associate with a thinner fibrous cap 
and large lipid pool (46), while use of more intensive statin 
therapy associates with a greater fibrous cap thickness (FCT) 
and less evidence of neovascularization (47). Clinical trials 
using serial OCT imaging have demonstrated that statin 
therapy has a favorable effect on plaque, as evidenced by an 
increase in FCT and a reduction in the size of the lipid pool 
(47-53). These findings provide an important contribution 
to the literature understanding the mechanistic effects of 
statins on plaque.

Effect of the PCSK9 inhibitor, evolocumab, on 
atherosclerotic plaque using arterial wall imaging

In parallel with the outcomes trials, the effect of the PCSK9 
inhibitor, evolocumab, on coronary atherosclerosis has been 

studied in the Global Assessment of Plaque Regression 
with a PCSK9 Antibody as Measured by Intravascular 
Ultrasound (GLAGOV) study. This study compared the 
effects of treatment with evolocumab or placebo on plaque 
progression in statin-treated patients with angiographic 
coronary artery disease (CAD). Addition of evolocumab 
reduced LDL-C from 93.0 to 36.6 mg/dL, and was 
associated with a reduction in percent atheroma volume 
(PAV) by 0.95% and a greater proportion of patients 
demonstrating any degree of plaque regression over 18 
months (54).

A virtual histology substudy reported progressive 
increases in plaque calcium with both statin monotherapy 
and when used in combination with evolocumab. The 
inverse association between achieved LDL-C levels and 
plaque calcification, suggests that this effect is a result of 
lipid lowering, rather than a pleiotropic effect of statins (55). 
A study in 129 subjects assessed the effect of evolocumab 
compared to placebo on arterial wall inflammation, in 
patients with elevated Lp(a) but did not meet the primary 
endpoint, as measured by fluorodeoxyglucose (FDG) 
PET uptake (56). Whether this reflects a lack of impact 
of evolocumab on plaque inflammatory activity, resistance 
to modification in the setting of elevated Lp(a) levels or a 
limitation of FDG scanning as a tool to evaluate medical 
therapies is uncertain. Nevertheless, there is an ongoing 
interest to further characterize the effects of PCSK9 
inhibition on atherosclerotic plaque.

HUYGENS study objective

The High-Resolution Assessment of Coronary Plaques in 
a Global Evolocumab Randomized Study (HUYGENS) 
will employ serial OCT imaging to evaluate the impact of 
PCSK9 inhibition with evolocumab on coronary atheroma 
phenotype. The primary objective is to evaluate the effect 
of evolocumab on changes in FCT in patients with a 
non-ST-elevation ACS taking maximally tolerated statin 
therapy. Additional objectives are to evaluate the impact of 
evolocumab on other measures of plaque phenotype and the 
safety and tolerability of evolocumab when administered to 
patients in the post ACS setting. The primary hypothesis of 
the study is that achieving a low LDL-C with evolocumab 
in combination with statin therapy will result in a greater 
increase in the minimum FCT compared with statin 
monotherapy. We present the protocol in accordance with 
the SPIRIT reporting checklist (available at http://dx.doi.
org/10.21037/cdt-20-684).

http://dx.doi.org/10.21037/cdt-20-684
http://dx.doi.org/10.21037/cdt-20-684
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Methods

All procedures in this study will be conducted in accordance 
with the Declaration of Helsinki (as revised in 2013), 
International Conference on Harmonization, Good Clinical 
Practice guidelines, and applicable regulatory requirements. 
The final protocol was reviewed and approved by Ethics 
Committees and Institutional Review Boards at each study 
site and by Amgen Inc. (No. RES-18-0000-283A). All 
study participants will provide informed consent before 
participating in this study.

HUYGENS study design and inclusion criteria

HUYGENS (ClinicalTrials.gov Identifier: NCT03570697) 
is an ongoing (study commenced November 2018) 
randomized, double-blind, placebo-controlled, global, 
clinical trial to evaluate the impact of evolocumab on 
plaque phenotype. Eligible patients will include those who 
are (I) at least 18 years of age, (II) able to provide written, 
informed consent, (III) undergoing clinically indicated 
coronary angiography during admission due to non-ST-
segment elevation ACS with interventional treatment of 
culprit plaque, (IV) have a qualifying LDL-C level at the 
time of screening depending on their use of either no statin 
(LDL-C ≥130 mg/dL), low or moderate intensity statin 
(LDL-C ≥80 mg/dL) or high intensity statin (LDL-C  
≥60 mg/dL) and (V) on maximally tolerated statin therapy 

in accordance with standard of care per local guidelines 
prior to randomization. In addition, patients must have 
evidence of (I) an angiographic stenosis of ≥20% in addition 
to the culprit plaque, (II) no left main coronary artery 
stenosis >50%, (III) a target vessel for imaging which 
cannot be deemed to be the culprit artery for the index 
or prior MI, has not undergone or intended to undergo 
revascularization and must be accessible by an OCT 
imaging catheter and (IV) an arterial segment containing no 
stenosis >50%, be at least 40-mm in length and containing 
at least one image with a FCT ≤120 μm and one image with 
a lipid arc >90°. Exclusion criteria for the study include 
the presence of an ST-elevation MI, triglyceride levels  
≥400 mg/dL, moderate to severe renal dysfunction (eGFR 
<30 mL/min/1.73m2), malignancy, statin intolerance, 
prior or current use of PCSK9 inhibitors, women who are 
pregnant or breastfeeding or intend to become pregnant 
and any other condition deemed by the treating physician 
to impair the ability of the patient to comply with all 
study related procedures. All patients who meet all of the 
inclusion criteria, none of the exclusion criteria and who 
tolerate the placebo run-in injection at the time of screening 
will be deemed eligible and proceed to randomization 
within 1 week of providing informed consent.

Patients will be randomized to treatment with evolocumab 
420 mg or matching placebo administered by subcutaneous 
(SC) in ject ion monthly  for  48 weeks  (Figure  1 ) . 
Randomization will be stratified by current statin use  

150 patients with (i) NSTEMI, (ii) angiographic CAD, (iii) LDL-C ≥60 mg/dL on high-intensity, ≥80 mg/dL on low/

moderate-intensity or ≥130 mg/dL on no statin at screening, (iv) subsequently treated with maximally tolerated statin 

and (v) target segment on OCT containing at least one image with a FCT <120 μm and one image with lipid arc >90°
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Figure 1 HUYGENS study design. NSTEMI, non-ST-elevation myocardial infarction; CAD, coronary artery disease; LDL-C, low-density 
lipoprotein cholesterol; FCT, fibrous cap thickness; IVUS, intravascular ultrasound; OCT, optical coherence tomography; SC, subcutaneous.
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(>4 or ≤4 weeks duration) at screening. Study visits will be 
performed in the clinic at weeks 4 and 24 and by telephone 
at weeks 12 and 36. Imaging of the target artery by OCT and 
IVUS will be performed at the time of the screening visit 
coronary angiography and then repeated at week 50. A final 
end-of-study telephone call will be performed at week 52  
to complete the safety evaluation.

Image acquisition and analysis

Intravascular imaging with OCT and IVUS will be 
performed within the target artery selected for investigation 
at both baseline and end of study. OCT imaging will 
be acquired by placement of an OCT imaging catheter 
(DragonFly Optis: Abbott) as distally as possible and 
withdrawn to the aorta by automatic pullback at a speed of 
36 mm/second. The IVUS imaging will be acquired in a 
similar fashion, using an IVUS imaging catheter (OptiCross 
40 MHz: Boston Scientific; Revolution 45 MHz: Phillips) at 

an automatic pullback speed of 0.5 mm/second. All imaging 
performed will be electronically transferred to the central 
core laboratory at the South Australian Health and Medical 
Research Institute. Screening OCT imaging will be assessed 
for image quality and to determine that the patient meets 
all eligible imaging inclusion criteria. Once a patient has 
completed the study and has evaluable imaging at both time 
points, measurements of plaque phenotype and burden 
will be performed. The segment selected for analysis will 
be defined by proximal and distal side branches and by the 
presence of at least one image containing a FCT ≤120 μm 
and one image with a lipid arc >90°. The same segment will 
undergo measurements of both OCT and IVUS imaging 
by analysts who are blinded to the treatment status of the 
patient and to imaging timepoint (baseline/follow-up). For 
the OCT imaging, cross-sectional images, spaced 0.2 mm 
apart will be selected for analysis. For each image, where 
plaque is present, measurements of minimum FCT and 
the lipid arc will be performed (Figure 2). Each image will 

Figure 2 OCT plaque measurements. Cross-sectional plaque images acquired with OCT and demonstration of measurements of FCT (upper 
panels) and lipid arc (lower panels). OCT, optical coherence tomography; FCT, fibrous cap thickness.
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be graded for the presence of macrophage and calcium 
accumulation (40). For IVUS imaging, cross-sectional 
images, spaced 0.5 mm apart, will be selected for analysis. 
The leading edges of the external elastic membrane (EEM) 
and lumen will be defined by manual planimetry. Plaque 
area in each image will be calculated as the area between 
the EEM and lumen. PAV will be calculated as the average 
of the proportion of plaque to EEM area in all images. 
Total atheroma volume (TAV) will be calculated as the 
average plaque area and normalized by the median number 
of images in the cohort. Regression will be defined as any 
decrease in PAV or TAV from baseline.

Statistical analysis

The primary and secondary endpoints will be analyzed by 
analysis of covariance (ANCOVA) with the covariates of 
treatment group, patient demographics, tobacco usage, 
type 2 diabetes mellitus, stratification factor of statin use at 
screening, baseline LDL-C, and baseline FCT. For missing 

post-baseline FCT measurements, values to be used for 
the primary and secondary endpoints will be imputed by 
multiple imputation. In addition, non-parametric Quade 
test will be used for the sensitivity analysis on the primary 
endpoint.

The assumptions in the sample size calculation are based 
on a linear regression meta-analysis of seven studies that 
have employed serial OCT imaging to evaluate the effect of 
statin therapy (47-53). The meta-analysis suggests that each 
1 mg/dL reduction in LDL-C associates with an increase 
in FCT by 1.48 μm during 12-month follow-up (Figure 3). 
Assuming a 50 mg/dL reduction in LDL-C, the predicted 
mean increase (95% CI) in FCT from the meta-analysis 
was 73.92 (50.97, 96.88) μm. For this study, the assumed 
treatment effect is at least 50.97 μm increase, which is 
approximated from the lower bound 95% confidence 
interval. The standard deviation of change in FCT was 
only reported in two of the seven trials, ranging from 22 to  
86 μm. To be conservative, the assumed common standard 
deviation for this study is 86 μm. 125 completers will 

Figure 3 LDL-C reduction and change in FCT. Relationship between reduction in LDL-C and annualized change in FCT in trials that 
have employed serial OCT imaging to evaluate the effect of statin therapy. Given the invasive nature of the imaging performed in this study, 
it is assumed that 16% of patients will not have evaluable imaging at both time points. Accordingly, 150 patients or more will be randomized 
1:1 to treatment with evolocumab 420 mg or placebo to ensure there will be at least 125 patients completing the study. LDL-C, low-density 
lipoprotein cholesterol; FCT, fibrous cap thickness; OCT, optical coherence tomography.
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be needed to reach 90% power to detect this difference  
in FCT.

Results

HUYGENS endpoints

The primary endpoint of the study is the absolute change 
in minimum FCT in a matched arterial segment from 
baseline to week 50. Secondary endpoints include the (I) 
percent change in minimum FCT, (II) absolute change in 
the average of the minimum FCT for all images and (III) 
absolute change in the maximum lipid arc. An additional 
plaque-based analysis will determine the absolute change 
in minimum FCT, maximum lipid arc and lipid core 
length in lipid rich plaques, defined as the presence of a 
minimum FCT ≤120 μm and a lipid arc >90° in at least 
three consecutive images. Measurements of plaque burden 
by IVUS and lipid parameters will be studied for an 
exploratory analysis to determine their relationship with 
changes in plaque phenotype on OCT imaging. Additional 
OCT imaging exploratory endpoints include the number of 
microchannels, thought to reflect plaque neovascularization, 
and macrophage presence and extension.

Discussion

Lipid lowering has had a major influence on cardiovascular 
outcomes. The use of arterial wall imaging has permitted 
the opportunity to characterize the effect of lipid lowering 
interventions on atherosclerotic plaque in vivo. HUYGENS 
will extend these observations to determine the impact of 
achieving very low LDL-C levels with a PCSK9 inhibitor 
on vulnerable coronary plaque features in patients with an 
ACS. The findings have the potential to further understand 
the potential link between the effects of evolocumab on the 
biology within the artery wall and how that may translate to 
a reduction in cardiovascular risk.

Registration details

This clinical trial is registered on Clinicaltrials.gov with the 
number NCT03570697.
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