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Background: Inflammation and vascular calcification are risk factors for cardiovascular disease, but their 
relationship is still under investigation. This longitudinal in vivo study aimed to monitor inflammation and 
calcification during the formation of atherosclerotic plaques in apolipoprotein E knockout (ApoE−/−) rats 
by 18F-fluorodeoxyglucose (18F-FDG) and 18F-sodium fluoride (18F-NaF) positron emission tomography/
computed tomography (PET/CT).
Methods: In the ApoE group, male ApoE−/− rats were fed a high-fat Western diet from 13 weeks of age, and 
in the normal group, male SD rats of the same age were fed a normal diet. A longitudinal PET/CT study 
using 18F-FDG and 18F-NaF was performed at 12, 27, and 46 weeks of age. T1-weighted magnetic resonance 
imaging (MRI) was used as an atlas template, and the uptake of the tracers in the cardiovascular system was 
analyzed based on atlas 3D geometry volumes-of-interest (VOIs). After the PET/CT study, pathological and 
immunohistochemical examinations were performed on the corresponding lesions.
Results: The body weight and plasma cholesterol levels of the ApoE−/− rats increased with time, and at 
each time point, significantly higher body weight and plasma cholesterol levels were observed in the ApoE−/− 
rats than in the normal rats. PET/CT showed that in ApoE−/− rats, the uptake of 18F-FDG was found in the 
aortic arch, while the uptake of 18F-NaF was found in pulmonary arteries. The uptake of the two tracers in 
the ApoE group increased with time. Extensive early stage of atherosclerotic plaques, with high expression 
of CD68 and alizarin red, were observed in pulmonary arteries. However, only a thickened intima with very 
high expression of hypoxia-inducible factor-1 alpha (HIF-1α) was seen in the aortic arch.
Conclusions: In ApoE−/− rats fed a high-fat Western diet, early atherosclerotic lesions developed in the 
pulmonary arteries; however, 18F-FDG failed to accumulate in these lesions but to accumulate in the aortic 
arch with only neointimal hyperplasia and significantly high expression of hypoxia.
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Introduction

Vascular inflammation and calcification occur as part 
of atherosclerosis. They are both actively controlled 
processes that play a key role in atherosclerosis. In human 
atherosclerosis, inflammation and calcification interweave 
with each other, and their relationship is unclear. Positron 
emission tomography/computed tomography (PET/CT) 
is a highly sensitive and noninvasive molecular imaging 
modality that offers the opportunity to explore a variety of 
pathophysiological processes within atherosclerotic plaques 
in vivo using various radiotracers.

18F-fluorodeoxyglucose (18F-FDG) is a radiolabeled 
glucose analog. It can be transported into cells by glucose 
transporters and phosphorylated by hexokinases, but it 
cannot be metabolized further and becomes trapped in  
cells (1). 18F-FDG is a nonspecific radiotracer that is taken 
up by cells with an elevated metabolic rate and an increased 
number of glucose transporters compared to normal 
cells (2). In addition to malignant tumor cells, glucose 
transporters are also increased in active inflammatory cells, 
such as macrophages (3-5). Thus, 18F-FDG, as a marker 
for active inflammation, is often used for the detection of 
atherosclerosis in preclinical and clinical studies.

18F-sodium fluoride (18F-NaF) is a tracer for active 
microcalcification. The mechanism is 18F-fluoride 
ion exchange with hydroxyl groups on the surface of 
hydroxyapatite crystals, the dominant component of both 
bone and vascular calcifications (6-8). Unlike calcium 
scoring measured by CT, which quantifies established 
macrocalcifications, 18F-NaF quantifies the current active 
microcalcification status (9-12).

The apolipoprotein E (ApoE) gene produces ApoE 
to participate in the transport of cholesterol-rich 
lipoproteins. Knockout of the ApoE gene results in high 
cholesterol levels in the blood and the development of  
atherosclerosis (13). Because the size of the rat can provide 
a more detailed image in vivo and the characteristics of lipid 
metabolism in rats are more similar to those of humans than 
the mouse model (14), the ApoE−/− rat model is becoming 
attractive in cardiovascular system PET/CT imaging. 
However, there are only a few studies on atherosclerosis in 
the ApoE−/− rat model.

This study aimed to track the development of vascular 
inflammation and calcification in an early stage of 
atherosclerosis by 18F-FDG and 18F-NaF PET/CT imaging 
using a high-fat Western diet ApoE−/− rat model. However, 
our results showed that 18F-FDG PET imaging failed to 

visualize inflammation in early atherosclerotic lesions but 
instead might reveal hypoxia in the aortic arch.

We present the following article in accordance with the 
ARRIVE reporting checklist (available at http://dx.doi.
org/10.21037/cdt-20-609).

Methods

Ethical approval for this original research was obtained 
from the General Hospital of Ningxia Medical University 
Animal Ethics Committee (2013-0301), in compliance with 
national or institutional guidelines for the care and use of 
animals.

Animals

A total of 23 rats were used in this study. For the ApoE 
group, 19 male ApoE−/− rats were purchased from 
Biocytogen (through TALEN technology; Beijing 
Biocytogen Co., Ltd., Beijing, China). As a control group, 
three male Sprague-Dawley (SD) rats were purchased 
from the experimental animal center in the Affiliated 
Hospital of Southwest Medical University. One male SD 
rat aged 12 weeks purchased from Southeast University 
was used for a magnetic resonance imaging (MRI) study. 
The rats of the control group and ApoE group arrived at  
9 weeks of age. Normal SD rats were housed in 1 cage, 
and ApoE−/− rats were housed with 5 individuals per cage 
and a 12-h light interval at 21 ℃. ApoE−/− rats and SD rats 
were fed a normal diet (LAD1000M, Trophic Animal Feed  
High-tech Co., Ltd., China) after arrival. Then, the 
ApoE−/− rats were gradually changed to a Western-type 
diet (TP26305, Trophic Animal Feed High-tech Co., Ltd., 
China; 4.5 kilocalories/g, energy composition: 42% fat, 
14% protein, 44% carbohydrate, 0.2% cholesterol) from 
13 weeks of age. Diet and water were provided ad libitum. 
The rats were weighed at 12, 27, and 46 weeks of age before 
PET/CT scanning.

Cholesterol analysis

Blood samples were taken from the tail veins of the rats at 
12, 27, and 46 weeks of age. Before blood sampling, rats 
have fasted for 12 h. Blood was collected in a heparin tube, 
and plasma was obtained by centrifugation of the blood at 
3,000 rpm for 15 minutes at 4 ℃. Total cholesterol (TC), 
triglyceride (TG), low-density lipoprotein cholesterol 
(LDL-C), and high-density lipoprotein cholesterol 
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(HDL-C) levels were analyzed using an AU680 Automatic 
Biochemistry Analyzer (Beckman Coulter, USA).

Image protocol

The control group (n=3) and ApoE group (n=19) underwent 
PET/CT scans at 12, 27, 46 weeks of age using a PET/CT 
scanner (Inveon, Siemens, Munich, Germany). The study 
protocol is presented in Figure 1. The rats were fasted for  
12 h before 18F-FDG PET/CT scanning. Before scanning, 
the rats were anesthetized with 1–2% isoflurane, and 
18F-FDG (30.5±8.3 MBq) was injected intravenously 
through the tail vein. After CT scanning, PET images 
were acquired at 60 minutes after injection for 30 minutes 
of static scanning. 18F-NaF PET/CT (31.2±6.6 MBq) was 
conducted 1 day after 18F-FDG PET/CT scanning using 
the same scanning protocol.

For the MRI study, a rat was anesthetized with 1–2% 
isoflurane. The MRI data were collected on a 7T Bruker 
Biospin scanner (Bruker, Ettlingen, Germany). The T1-
weighted images were acquired in a 2D acquisition type, 
repetition time (TR) 500 ms, echo time (TE) 10 ms, 
number of excitations 4, slice thickness 1 mm, and field of 
view 3.5×3.5 cm and stored in a 256×256 matrix.

Image analysis

The 3D geometric volumes-of-interest (VOIs) of the aortic 
arch and pulmonary arteries were drawn using MRI images 
by Inveon Research Workplace Image Analysis software 

(Siemens Medical Solutions) (Figure 2) and used as an atlas 
template for PET analysis.

The PET and CT images were manually co-registered 
with the MRI template and analyzed using Inveon 
Research Workplace Image Analysis software (Figure 2). 
The 18F-FDG and 18F-NaF uptake of the aortic arch and 
pulmonary arteries were respectively assessed based on 
the atlas VOIs drawn by MRI. In each VOI, the mean 
standardized uptake value (SUVmean) and the maximum 
standardized uptake value (SUVmax) were automatically 
measured by the software.

Histological studies

ApoE−/− rats were euthanized by cardiac puncture at  
46 weeks after PET/CT scanning. The aortic arch and 
pulmonary arteries were observed under a dissection 
microscope. The artic arch and left pulmonary artery were 
excised, fixed in 4% paraformaldehyde, and embedded 
in paraffin. Each section was cut into 4-μm-thick slices. 
Adjacent slices were subjected to hematoxylin and eosin 
(HE) staining for overall morphology, alizarin red 
(NovaUltra Alizarin Red Stain Kit, IW-3001, IHC World, 
USA) staining for calcium, immunohistochemical staining 
with a CD68 antibody (BA3638; Boster, Wuhan, China) for 
inflammation, and immunohistochemical staining with a 
hypoxia-inducible factor-1 alpha (HIF-1α) antibody (PA1-
16601, Thermo Fisher Scientific, USA) for hypoxia. Images 
were acquired with an optical scanner for qualitative and 
quantitative analysis. The integrated optical density (IOD) 

Figure 1 Schematic diagram of the study protocol. ApoE, apolipoprotein E; FDG, fluorodeoxyglucose; PET, positron emission tomography; 
CT, computed tomography; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density 
lipoprotein cholesterol.
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Figure 2 A representative example of atlas-based VOIs, CT, T1-weighted MRI, PET, and corresponding fusion images. VOIs, volumes-of-
interest; CT, computed tomography; MRI, magnetic resonance imaging; PET, positron emission tomography; SUV, standardized uptake value.
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and positive area of each component were assessed in each 
slice using ImageJ software (http://rsb.info.nih.gov/ij). 
The IOD value and the positive area of each section were 
determined by taking the average of these slices.

Statistical analysis

Data values are expressed as the mean ± standard deviation. 
Statistical analyses were performed using OriginPro 
2018 software (Origin Lab Corporation, Northampton, 
MA, USA). The normality of the data distribution was 
tested by the Kolmogorov-Smirnov test. Differences 
between groups were analyzed using one-way analysis of 
variance (ANOVA) with a Tukey post-hoc test for normally 
distributed continuous data. For non-parametric data, data 

were analyzed by Kruskal-Wallis ANOVA with Dunn’s 
post-hoc test. For all the tests, P<0.05 was considered to be 
statistically significant.

Results

Body weight gain and plasma cholesterol measurements

The body weight and plasma cholesterol data are shown in 
Figure 3. The body weights of ApoE−/− rats and control rats 
increased significantly with age (P<0.0001, n=19; P<0.0001, 
n=3, respectively). The TC, LDL-C and HDL-C levels 
in the ApoE group also increased with age (P<0.0001, 
P<0.0001, P<0.0001, respectively). At each time point, 
significantly higher body weight and plasma lipid levels 

Figure 3 Body weight, plasma total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL-C) cholesterol, and high-density 
lipoprotein (HDL-C) cholesterol levels of normal control rats (n=3) and ApoE−/− rats (n=19) at 12 weeks (12 W), 27 weeks (27 W) and  

46 weeks (46 W) of age. The correlations between the groups were calculated by one-way ANOVA with a Tukey post-hoc test. *, P≤0.05; **, 
P≤0.01; ***, P≤0.001; ****, P≤0.0001.
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were observed in ApoE−/− rats than in control rats.

In vivo PET/CT imaging
18F-FDG PET/CT and 18F-NaF PET/CT images are 
presented in Figures 2,4. The PET/CT imaging results 
showed that in the cardiovascular system, 18F-FDG 
accumulated in the aortic arch, while 18F-NaF accumulated 
in either/both sides of the pulmonary arteries (Figure 4A).

The 18F-FDG uptake  in  the  aort ic  ar tery  and 
18F-NaF uptake in both pulmonary arteries are shown in  
Figure 4B,C. In the control group, there was no significant 
correlation between 18F-FDG and 18F-NaF uptake with 
age (P>0.05 for all). In the ApoE group, the 18F-FDG and 
18F-NaF uptakes were significantly correlated with age 
(P<0.0001 for all). No significant differences were observed 
in the 18F-NaF uptake between the left pulmonary artery 
and right pulmonary artery at each time point (P>0.05 for 
all). At 46 weeks of age, the 18F-FDG uptake in the ApoE 
group was significantly higher than that in the control 
group (P=0.011 for SUVmean, P=0.014 for SUVmax). For 
both the left and right pulmonary arteries, the 18F-NaF 
uptake in the ApoE group was significantly higher than 
that in the control group at 27 and 46 weeks of age (for 
the left pulmonary artery, at 27 weeks of age, P=0.0099 for 
SUVmean, P=0.021 for SUVmax; at 46 weeks of age, P=0.011 
for SUVmean, P=0.011 for SUVmax; for the right pulmonary 
artery, at 27 weeks of age, P=0.017 for SUVmean, P=0.012 for 
SUVmax; at 46 weeks of age, P=0.014 for SUVmean, P=0.021 
for SUVmax).

Histological studies

As shown in Figure 5, atherosclerotic lesions developed in 
the left and right pulmonary arteries of ApoE−/− rats. These 
lesions were at the early stage of atherosclerosis with fatty 
streaks. In the aortic arch of ApoE−/− rats, only neointimal 
hyperplasia was observed under a surgical microscope and 
on histological sections.

Immunohistochemical studies were performed on 
atherosclerotic lesions in the aortic arch and left pulmonary 
artery of both groups. Inflammation was measured with 
CD68 staining, calcification with alizarin red staining, and 
hypoxia with HIF-1α staining. In the control group, no 
significant difference was observed in the expression levels 
of CD68, alizarin red, and HIF-1α between the aortic arch 
and left pulmonary artery (P>0.05 for all, n=3). But for the 
ApoE group, the expression levels of CD68 and alizarin red 

in the left pulmonary artery were significantly higher than 
those in the aortic arch (P=0.001, n=17; P=0.013, n=17, 
respectively), while the expression level of HIF-1α in the 
left pulmonary artery was significantly lower than that in 
the aortic arch (P<0.0001, n=17). For the expression levels 
of alizarin red and HIF-1α in the aortic arch and CD68 and 
HIF-1α in the left pulmonary artery, the expression in the 
ApoE group was significantly higher than that in the control 
group (P=0.030; P=0.007; P=0.030; P=0.007, respectively).

Discussion

In this study, 18F-FDG was used as a PET tracer to 
monitor inflammation in the formation of atherosclerosis 
in an ApoE−/− rat model. However, 18F-FDG did not 
accumulate in atherosclerotic lesions with high expression 
of inflammation in pulmonary arteries.

ApoE−/− rats, generated through TALEN technology, 
were used as an atherosclerosis model to study the 
progression of atherosclerotic plaques. When fed a high-
fat Western diet, the ApoE−/− rats developed dyslipidemia 
with excess body weights and high cholesterol levels. At the 
endpoint of this longitudinal study, 46 weeks of age (rats 
were fed a Western high-fat diet for 34 weeks), ApoE−/− rats 
developed extensive early stage of atherosclerotic plaques 
in the pulmonary arteries but only neointimal hyperplasia 
in the aortic arch. It is reported that ApoE−/− rats generated 
through TALEN technology were reported to be resistant 
to hyperlipidemia-induced endothelial inflammation 
(15), while ApoE−/− rats developed by the CRISPR/Cas9 
technique could develop significant aortic plaques (16).

Atherosclerosis in pulmonary arteries has been reported 
in mice (17,18). This study is the first report describing 
pulmonary artery atherosclerosis in rats. We observed 
extensive plaques that developed in the pulmonary 
arteries, while atherosclerotic lesions in the aortic arch, as 
previously reported (15,19,20,21), were at the initial phase 
of atherosclerosis. As confirmed by surgical microscopy, 
H&E staining, CD68 staining, and alizarin red staining, 
atherosclerotic lesions in the pulmonary arteries were 
fatty streak lesions with larger areas of inflammation and 
calcification than those in the aortic arch. Intermittent 
hypoxia and hypercapnia are reported to induce pulmonary 
artery atherosclerosis in low density lipoprotein receptor 
deficient mice (22). For humans, pulmonary artery 
atherosclerosis is not common and related research is rather 
limited. Pulmonary hypertension is reported to be related 
to pulmonary artery atherosclerosis, but its relationship is 



45Cardiovascular Diagnosis and Therapy, Vol 11, No 1 February 2021

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2021;11(1):39-49 | http://dx.doi.org/10.21037/cdt-20-609

Figure 4 Representative PET/CT images of 18F-FDG and 18F-NaF around the aortic arch and pulmonary arteries in the ApoE group (n=19) 
(A). The exact locations of the aortic arch and pulmonary arteries were identified by the application of the atlas onto the co-registered PET/
CT images. The uptake of 18F-FDG in the aortic arch (B) and 18F-NaF in pulmonary arteries were extracted from the atlas-based VOIs 
in the normal group (n=3) and the ApoE group (n=19). The correlations between the groups were calculated by Kruskal-Wallis ANOVA 
with Dunn’s post-hoc test. 12 W, 12 weeks of age; 27 W, 27 weeks of age, 46 W, 46 weeks of age. *, P≤0.05; **, P≤0.01; ***, P≤0.001; ****, 
P≤0.0001. FDG, fluorodeoxyglucose; PET, positron emission tomography; CT, computed tomography; SUV, standardized uptake value; 
LPA, left pulmonary artery; RPA, right pulmonary artery; ApoE, apolipoprotein E; VOIs, volumes-of-interest.
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Figure 5 Pathology and immunohistological study of atherosclerotic lesions in the aortic arch and pulmonary arteries of the normal group 
(n=3) and the ApoE group (n=17). In the ApoE group, the expression of CD68 and alizarin red was significantly lower in the aortic arch 
than in the pulmonary arteries. However, the expression of HIF-1α in the aortic arch was significantly higher than that in the pulmonary 
arteries. The correlations between the groups were calculated by Kruskal-Wallis ANOVA with Dunn’s post-hoc test. *, P≤0.05; **, P≤0.01; ***, 
P≤0.001; ****, P≤0.0001. LPA, left pulmonary artery; RPA, right pulmonary artery.
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still unknown (23).
The availability of noninvasive imaging methodologies 

combining PET and CT provides the opportunity 
to understand the development and progression of 
atherosclerosis in vivo. 18F-FDG and 18F-NaF are two 
commonly used PET tracers that have already been 
used in clinical studies to investigate the mechanisms of 
atherosclerosis. 18F-FDG was reported to accumulate in 
metabolically active macrophages and was widely used 
to detect active inflammation (3-5), while 18F-NaF was 
used to identify active calcification (9-12). In this study, 
we monitored the formation of atherosclerotic plaques by 
using 18F-FDG and 18F-NaF PET/CT to visualize vascular 
inflammation and calcification. We assumed that 18F-FDG, 
as an index of vascular inflammation, would first accumulate 
in the vasculature and that 18F-NaF uptake, which is 
related to calcification, would appear at the same site later. 
However, in contrast to our prediction, although 18F-FDG 
uptake did appear earlier than 18F-NaF uptake, the two 
tracers were not present in the same arteries. 18F-FDG 
accumulated in the aortic arch, while 18F-NaF accumulated 
in the pulmonary arteries. CD68 staining showed that 
pulmonary arteries with higher inflammatory activity had 
no 18F-FDG accumulation. Another study also reported 
that there was no 18F-FDG accumulation in advanced 
atherosclerotic lesions of ApoE−/− mice (24). No correlation 
between 18F-FDG uptake and CD68 expression levels in 
atherosclerosis studies was reported by Myers et al. (25). 
Hypoxia, rather than inflammation, has been suggested to 
cause 18F-FDG accumulation (26). It has been reported that 
18F-FDG uptake is correlated with HIF-1α gene expression 
in human atherosclerotic carotid lesions (27-29). Therefore, 
in this study, HIF-1α staining was employed to identify 
hypoxia. The results indicated that the aortic arch with 
high 18F-FDG uptake had significantly higher expression of 
hypoxia than pulmonary arteries with no 18F-FDG uptake. 
Therefore, we proposed that 18F-FDG reflects hypoxia 
rather than inflammation in early atherosclerotic lesions 
of ApoE−/− rats. The increase in 18F-FDG uptake in the 
aortic arch with age reflects the increase in hypoxia during 
the process of atherogenesis. 18F-NaF correlated well with 
microcalcifications in lesions and accumulated at more 
severe atherosclerotic lesions in the pulmonary arteries. 
18F-NaF PET/CT is a promising method to detect damage 
associated with vascular endothelial injury.

This study had some limitations. The spatial resolution 
of PET is not high enough to determine the exact location 
of the uptake of the tracer. Though we used atlas-based 

VOIs, the location of arteries may not be accurate enough. 
For example, the high 18F-FDG uptake in the aortic arch 
of the control group at 12 weeks of age may be attributed 
to the spill-out effect of 18F-FDG physiological uptake in 
the thymus gland (30). Autoradiography studies should be 
included in future studies. Although the accumulation of 
18F-FDG correlates with hypoxia rather than inflammation 
in rodent models, this may not be the case in humans. 
Further studies are needed. However, one should be very 
cautious in using the nonspecific PET tracer 18F-FDG as an 
inflammation indicator in future studies.

Conclusions

Strikingly similar to the process of atherogenesis in humans, 
the ApoE−/− rat model provides a fertile source for the 
investigation of atherosclerotic plaques. In this study, we 
found that ApoE−/− rats fed a high-fat Western diet could 
develop early atherosclerotic lesions in the pulmonary 
arteries. However, 18F-FDG accumulates in the aortic arch 
with high expression of hypoxia rather than inflammatory 
lesions in the pulmonary arteries. Thus, this longitudinal 
18F-FDG and 18F-NaF PET/CT study showed the 
accumulation of hypoxia and microcalcifications at lesion 
sites in vivo during the process of atherogenesis.
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