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Introduction

Fabry disease (FD; OMIM 301500) is an X-linked (Xq22.1) 
lysosomal storage disorder taking origin in enzyme deficiency 
of the α-galactosidase A (enzyme commission no. 3.2.1.22) (1).  
This results into accumulation of globotriaosylceramides 

(Gb3) and the derivative globotriaosylsphingosine (lyso-
Gb3) in all lysosome carrying tissue. Clinically, phenotype 
expression is prominently accompanied by cardiac, renal and 
neurological impairments including young-aged cryptogenic 
stroke, chronic kidney disease, and a variant of hypertrophic 
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cardiomyopathy complicating with ventricular tachycardia 
and sudden cardiac death (1,2).

Until 2001, no specific therapy was available accounting 
for poor prognosis especially in classical disease variants with 
multisystem manifestations (3). The introduction of enzyme 
replacement therapy (ERT), first approved in 2001, led to 
a significant improvement of complication rates and early 
death. However, some patients deal with insufficient response 
to therapy or antibody-related adverse events. Unfortunately, 
all benefits of ERT might come along with degrading quality 
of life due to the need of intravenous application. Thus, 
the first oral Fabry-specific drug in form of the chaperone 
Migalastat (Galafold®, Amicus Therapeutics, USA) marked a 
further step to improved treatment options in FD. Dynamic 
drug development has ever since continued including 
substrate reduction and novel second-generation ERT agents 
waiting in line. Finally, gene therapy is moving forwards 
and first preliminary data has been presented. This review 
summarizes to date long-term results on first-generation 
ERT, the current state-of-the-art therapeutic options and 
gives a glimpse into the nearby future on Fabry-specific 
drugs. We present the following article in accordance with 
the Narrative Review reporting checklist (available at http://
dx.doi.org/10.21037/cdt-20-743).

Methods

We conducted a comprehensive systematic literature review 
considering literature in English and German language of 
articles on treatment of FD published up until April 2020 
available on PubMed (https://pubmed.ncbi.nlm.nih.gov). 
Key words: Fabry disease; enzyme replacement therapy; 
chaperone therapy; substrate reduction therapy; gene 
therapy; 

Current treatment options

In 2020 there are two different Fabry-specific therapy 
approaches with three drug agents available outside of 
ongoing clinical trials. Long-term data on efficiency and 
complications of ERT are broadly available, whereas real-
world data on the relatively new oral chaperone still remain 
restricted to relatively short time frames. 

Long-term results on first-generation ERT

Available since 2001, ERT has been the first commercially 
available Fabry-specific drug therapy. Almost 20 years after 

its first approval in Europe, several studies reporting long-
term data on clinical outcome of first generation ERT have 
been published aiming to provide clinical guidance on the 
optimal time of initiation and dosage (4).

Currently, two recombinant ERT agents are approved 
and aim to supplement the either insufficiently available or 
defectively produced physiologic human α-galactosidase A. 
While agalsidase alfa (Replagal®, Takeda Pharmaceutical, 
Tokio, Japan) is produced using human fibroblast lineages 
and administered in a dose of 0.2 mg/kg bodyweight, 
agalsidase beta (Fabrazyme®, Sanofi Genzyme, Cambridge, 
MA, USA) is usually administered in a dosage of 1.0 mg/kg  
and is produced using Chinese hamster ovary cells. Both 
agents are advised to be given intravenously every other 
week and have been shown save in various randomized 
controlled trials (3,5-10).

Eng et al. reported that ERT leads to Gb3-deposition 
clearance in glomerular  endothel ia l  cel l s ,  which 
corroborated to clinical data indicating a significant 
reduction in occurrence of Fabry-associated events in 
patients undergoing ERT (11). Hughes and colleagues 
reported that initiation of agalsidase alfa led to a significant 
increase of the glomerular filtration rate indicating good 
therapeutic response of renal organ involvement (7). Other 
publications reported a slowed but progressive decline in 
glomerular filtration rate following ERT initiation (12-18).  
While the occurrence of albuminuria has effectively been 
prevented in patients negative for proteinuria at point of 
ERT-initiation, it was reported to persist in those with 
pre-existing albuminuria (19). Thus, therapeutic success 
seems to be patient- and case-depended varying from either 
improvement, stabilization, or further decline of kidney 
function. Similar results were reported for cardiac organ 
involvement with left-ventricular hypertrophy declining, 
stabilizing or proceeding on a case-dependent level 
(16,20). Several studies indicate that ERT shows its best 
therapeutic potential in preventing disease progression and 
development of clinically relevant end-stage complications 
if started at early stages of disease where no irreversible 
organ damage has yet been set, while late therapy initiation 
might result in a diminished therapy efficacy (21-24). In this 
regard, Germain et al. reported that patients with no evident 
chronic kidney disease benefited more from agalsidase alfa 
therapy than patients presenting manifest kidney injury at 
point of ERT initiation (21). Similar results were published 
for cardiac organ involvement, were therapeutic effect 
was lower in patients presenting myocardial fibrosis at 
point of initiation (24). Furthermore, a multi-center study 
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comparing lyso-Gb3 decrease after ERT initiation in men 
with classical FD who started ERT before versus after age 
25 years, showed that early therapy initiation resulted 
into better biochemical response (23). As plasma lyso-
Gb3 has been shown correlating with clinically feasible 
severity of FD, it seems to be a reliable biomarker besides 
of Gb3 deposition clearance on a histological level and thus 
presumably a valid indicator of therapy success, respectively 
failure (25,26). While a trend towards a reduction of 
plasma Gb3 and lyso-Gb3 levels has been reported for both 
currently available ERT agents (6,21,27-36), some data 
have indicated a higher potential on a significant reduction 
observed in patients treated with agalsidase beta compared 
to agalsidase alfa therapy (27,28,30). A potential positive 
impact of dose increase or regime change into weekly 
infusions was neglected by Schiffmann et al., who reported 
no significant impact on plasma Gb3 levels following 
intensification of therapy intervals to 0.2 mg/kg or even  
0.4 mg/kg agalsidase alfa once per week (37,38).

Beginning in June 2009, viral contamination of agalsidase 
beta production facilities resulted into a worldwide drug 
shortage implying ‘drug holiday’, dose reduction, or 
product switch in most patients with FD who had previously 
received agalsidase beta therapy (39,40). Many of those 
patients who had previously received the regular dose of 
1.0 mg/kg every other week now underwent dose reduction 
to 0.3–0.5 mg/kg agalsidase beta, or were switched to 
agalsidase alfa (40). Especially the latter was controversial, 
as clinical experience on ERT regime changing was 
very limited by then (17,41,42). While some studies 
indicate kidney function deterioration following therapy 
alterations in patients who had previously been stable on 
ERT (40,43,44), others discuss a neutral or clinically non-
relevant impact of dose change, respectively therapy switch 
in patients with FD. Even though short-term observation 
by Smid et al. did not reveal an increase in adverse events 
after dose reduction to 0.5 mg/kg, an increase of lyso-Gb3 
levels still indicated a rising disease activity (17). However, 
the latter has not been confirmed by other studies (29,45,46). 
In 2017, Pisani et al. performed a meta-analysis on seven 
studies focusing on the effects of therapy switch and in fact 
did not observe any significant differences in renal function 
during follow-up (47). In part contradictory results were 
observed in regard of cardiac organ manifestations and 
function deterioration, which however overall also remained 
stable with no clinically relevant disease progression being 
triggered by therapy alterations (45-47).

In conclusion, individual response, therapy success and 

disease-progression might significantly vary on a case-to-
case basis with personal risk factors, such as genotype, age 
and gender, time of ERT-initiation, the patients’ personal 
disease activity, and phenotype expression potentially 
serving as disease-modifying factors indirectly influencing 
therapeutic success (3,22). Finally, positive effects of first-
generation ERT come along with the burden of biweekly 
infusions and potentially severe directly infusion-related side 
effects (48). Anaphylactic or anti-drug antibody mediated 
reactions may indeed result into clinical complications in 
rare cases (3,49-54).

Chaperone therapy

Limitations of ERT, such as its inability to cross the blood-
brain-barrier, and the burden of intravenous application 
has emphasized the need of new, preferably orally available 
Fabry-specific drugs. This demand was pleased in 2016 
with the introduction of the first-in-class chaperone 
agent Migalastat (Galafold®, Amicus Therapeutics, USA). 
Chaperones are small molecules binding and stabilizing 
the modified alpha-galactosidase A in amenable mutational 
variants of FD. Hereby, it facilitates lysosomal trafficking 
and increases lysosomal enzyme activity subsequently 
enhancing enzymatic degradation of Gb3 into excretable 
form of Gb2 (55,56). In order to evaluate whether a 
pathogenic mutation is amenable to chaperone therapy, 
a Migalastat-specific assay measuring Migalastat-induced 
changes in human embryonic kidney (HEK) cells are 
transfected with DNA plasmids containing pathogenic GLA 
variants (56). The criteria for amenability were defined as 
an increase of enzyme activity by at least 1.2-fold above 
the baseline value, with an absolute increase of at least 
3% compared to wild type enzyme activity (56). After a 
GLA variant has been tested once, all results are available 
in a public database (www.galafoldamenabilitytable.com), 
allowing physicians a simple and efficient planning of 
therapy. 

In the phase III licensing trial, Germain et al. reported 
that among the randomly assigned patients with amenable 
mutations, left ventricular hypertrophy decreased 
significantly within the interventional arm. Furthermore, 
unspecific but Fabry-associated symptoms such as diarrhea, 
reflux, and indigestion decreased. The slight decrease 
in glomerular filtration rate can be argued to be within 
physiological ranges, however, indicating no strong benefit 
regarding renal organ involvement of respective patients 
under observation (57). 
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Hughes et al. compared ERT with chaperone therapy 
in the phase III ATTRACT study. 57 Fabry patients 
(44% male) on stable ERT were randomized to switch to 
Migalastat for 18 months or stay on ERT. A significant 
decrease of left ventricular mass index (measured via 
echocardiography) was reported for the Migalastat group 
(n=34). Migalastat and ERT had identical effects on renal 
function and lyso-Gb3 levels (58). 

In the extension of the phase III FACETS trial, Germain 
et al. reported clinical benefit of Migalastat especially 
for male Fabry patients with classic phenotype. After  
24 months, activity of alpha-galactosidase A increased, 
renal function was stabilized and left ventricular mass 
index was reduced in a subgroup of the FACETS trial (59). 
However, the examined group of patients was small (n=14) 
and included only male patients with classic phenotype 
compared with a subgroup of nearly exclusively female 
patients (n=36). Therefore, results should be interpreted 
carefully. 

Even though the data published within the described 
randomized trials indicated a strong benefit especially 
regarding cardiac organ involvement, many aspects of the 
heterogeneous disorder FD remain unaddressed. Real world 
data from patients treated with the commercially available 
drug have shown that there might be specific positive 
effects in the myocardium exceeding positive ERT effects, 
such as reverse remodeling with a decrease in myocardial 
late enhancement in cardiac magnetic resonance imaging 
after initiation of treatment (60). However, the question 
which patients might benefit most from chaperone—
specifically in direct comparison to ERT—is still mostly 
unanswered. Importantly, it has been shown that also 
among the amenable patients there can be vast differences 
in biochemical response to therapy, ranging from 
normalization of enzyme activity to only marginal changes 
in vivo (60,61). In a monocenter real world collective, 
median enzyme activity increased rapidly from 29% to 44% 
of the normal wild-type activity (P=0.01). Plasma lyso-Gb3 
levels at one year were stable with a tendency for reduction 
in both females (P=0.35) and males (P=0.20), while a 
reduction of GFR over the first year of treatment was seen 
[creatinine: 0.94 (IQR 0.81–1.09) vs. 1.0 (IQR 0.77–1.18); 
P=0.021] (61). Interestingly, at one year, enzyme increase 
in patients correlated with myocardial mass reduction 
(r=−0.546; P=0.044), but not with renal function (r=−0.086; 
P=0.770) (61,62).

To better evaluate the safety along with cardiovascular, 
renal and patients-reported outcomes and disease 

biomarkers under real world conditions, a prospective multi-
center observational study was initiated as early as 2017 (63). 
The results from 59 (28 females) patients with amenable 
mutations following twelve months of chaperone therapy 
strengthen the preliminary results from clinical trials and 
single center experience regarding therapeutic effectiveness, 
especially in regard of cardiac organ involvement. Oral 
Migalastat therapy was generally safe with no severe adverse 
events occurring within the 12-month observational period. 
In detail, female as well as male patients both showed 
a significant reduction of left ventricular mass index, 
which had been predefined as primary endpoint (63). The 
glomerular filtration rate slightly decreased over the first 
year of therapy in concordance to the licensing trial (57). 

Of note, the irregular intake every other day leads 
to different days of therapy every week. Therefore, an 
estimation of adherence control in patients with Migalastat 
is required implicitly. The ongoing MALTA study 
(NCT03683966) investigates therapy adherence of Fabry 
patients receiving chaperone therapy. Further long term data 
are to be obtained in order to finally evaluate the definitive 
value, benefits, and potentially also risks of Migalastat therapy 
as compared to ERT, the therapeutic approach with longest 
experience so far. 

Adjunct therapy

Besides the disease-specific therapeutics listed above, 
a broad spectrum of non-specific adjunct therapies are 
applied regularly in patients with FD (Table 1). These 
not only include non-FD-specific drugs, but also non-
pharmacological therapeutic interventions such as renal 
replacement or cardiac device therapy.

Due to their reno- and vasculoprotective effects, many 
FD patients require angiotensin converting enzyme 
inhibitors (ACEi), respectively angiotensin receptor II 
blockage (ARBs) in case of hypertension or proteinuria 
and still compensated kidney function (64). Warnock 
and colleagues showed that the additional application of 
ACEi/ARBs resulted into a significant antiproteinuric 
effect in patients with severe Fabry nephropathy who 
were undergoing enzyme replacement therapy (65). 
However, as these agents do not address the underlying 
pathophysiologic mechanisms including Gb3 accumulation 
in podocytes, the long-term positive effect of ACEi/ARBs 
remains speculative and most likely largely dependent on 
the success of the Fabry-specific therapy (66). In end-stage 
Fabry nephropathy, renal replacement therapy including 
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hemodialysis and kidney transplantation are well-established 
treatment options with results comparable to those in other 
diseases (1,67,68).

Cardiac organ involvement and its clinical complications 
remain the main cause of premature death in FD, 
highlighting importance of cardiac interventions. Fabry 
cardiomyopathy is a common cause of heart failure typically 
starting in the 3rd or 4th decade in life. Systolic function 
is usually preserved until late stages where left ventricular 
ejection fraction drops due to progressive scaring. The 
whole spectrum of heart failure medication might be 
applied taking into account clinical stage (69). Of note, 
betablockers are often not well tolerated by the patients, 
probably due to neurohumoral dysregulation. While 
aldosterone antagonists are well established, experience and 
long-term effects of novel therapeutics such as sacubitril/
valsartan are still limited in FD. Rhythm disorders are 
common, often resulting in the indication for pacemaker 
implantation. Despite the positive effects of Fabry-specific 
therapeutics, patients with advanced Fabry cardiomyopathy 
also still face a relevant burden of malign ventricular 
arrhythmia and sudden cardiac death. With only few 
published articles available, beneficial effects of implantable 
cardioverter defibrillator therapy remains inconclusive with 
no guidelines been established to date (70-73). This is of 
special relevance in those patients demonstrating with the 
“cardiac variants” where organ manifestations are almost 
completely limited to the heart. These patients often face a 
significant delay in identifying FD as underlying pathology, 
which can even worsen the risk of cardiac complications due 
to inadequate treatment (74). Clinical experience indicates 
that irreparable damage is often set at the point of FD 
diagnosis. Thus, the decision towards a recommendation 
of implantable cardioverter defibrillator therapy should be 
evaluated and discussed as a case-to-case decision especially 
in patients demonstrating with high-risk profile such as 
advanced Fabry cardiomyopathy with extensive replacement 
fibrosis, end-stage wall-thinning and/or prior ventricular 
tachycardia.

Clinical studies have also shown that FD is a relevant 
differential diagnosis in young-aged patients with cryptogenic 
stroke (75). In case of cerebrovascular events, diagnostic 
and therapeutic decisions should be performed according 
to current guideline recommendations for stroke (76). As 
treatment of Fabry-associated pain is complex, these patients 
should be referred to specialized neurologists for adequate 
pain therapy (77).

New drug developments

Second-generation ERT

While both first-generation lysosomal enzyme replacement 
agents are produced using mammalian cell lines, new 
“second-generation” ERT agents aim to overcome 
disadvantages of mammalian cell line production, including 
higher production costs and the risk of contamination by 
mammalian pathogens, and to extend therapeutic effects (78). 
As tissue uptake of intravenously applied enzyme replacement 
agents is usually performed though either the mannose or 
the mannose 6‐phosphate receptor, it is assumed that these 
receptors might play a key role responsible for therapeutic 
efficiency of ERT in lysosomal storage disorders (78). Recent 
approaches aiming to establish lysosomal enzyme production 
in plant-derived cell lines have been reported before (79-81).  
For FD, two plant-derived ERT agents (Pegunigalsidase 
alfa®, Protalix Biotherapeutics, Israel; and moss-aGal®, 
Greenovation biopharmaceuticals, Germany) are currently 
tested in clinical trials. 

Pegunigalsidase alfa intends to not only increase plasma 
half-life of infused recombinant enzyme, but also to further 
improve long-term therapeutic tolerance by reducing the 
formation of anti-drug immunogenicity through pegylation 
of the enzyme (82). Murine models underlined the aimed 
therapeutic effect by prevention of Gb3 accumulation 
in both cardiac and renal tissues (83). Furthermore, 
clinical phase I/II trials also reported a reduction of Gb3 
accumulation in human glomerular biopsy tissue acquired 
by kidney biopsies (82). First preliminary data of the phase 
III BRIDGE trial (NCT03018730) report that therapy 
switch from agalsidase alfa to Pegunigalsidase alfa was 
save, well-tolerated and resulted into stabilization, or at 
least slower progression of kidney failure (eGFR slope 
improvement from −5.1 to 0.23 mL/min/1.73 m2/year in 
both male and female) (84). Further results of currently 
ongoing clinical trials (NCT02795676; NCT03018730, 
NCT03180840) evaluating Pegunigalsidase alfa treatment 
are expected to be published soon.

Different to the currently available mammalian cell 
based ERT agents, moss-aGal does not rely on mannose-
6-phosphate receptor mediated endocytosis but targets 
the mannose receptor for tissue uptake (85). Shen et al. 
evaluated the effectiveness of a non‐phosphorylated α‐
galactosidase A produced from moss (thus referred as “moss‐
aGal”) in an in-vitro and in-vivo mouse model of FD (78). 
Their key findings were that (I) endocytosis of moss‐aGal 
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was mannose receptor‐mediated and dependent, (II) moss‐
aGal was more preferentially targeted to renal cells than 
agalsidase alfa, (III) a single injection of moss‐aGal resulted 
into a comparable substrate clearance in both cardiac and 
renal tissue as perceived in agalsidase alfa (78). Hennermann 
et al. conducted a phase I clinical trial evaluating moss‐aGal 
therapy in six patients receiving a single dose of 0.2 mg/kg  
moss‐aGal (86). In all patients, single dose moss‐aGal 
application was well tolerated and showed a reduction of 
both plasma lyso‐Gb3 levels (−3.8%) and urinary Gb3 levels 
(up to −60%) after 28 days (86). Currently phase II/III trials 
further investigating this promising novel ERT-agent are in 
preparation. 

Substrate reduction therapy

In contrast to currently available medication, substrate 
reduction therapy (SRT) neither aims to replace the 
insufficiently available or dysfunctional enzyme, nor to 
improve its activity by refolding. Instead, it blocks the 
emergence of Gb3 overload as well as its accumulation 
at an earlier step, namely at its point of production. 
Importantly, its therapeutic effects might also result into 
adverse events, as too intense abrogation of enzymatic 
reactions might result into homeostatic imbalance as 
discussed before (87). However, from the current point 
of view the unique selling point could become the 
ability of passing the blood-brain barrier, subsequently 
preventing cerebrovascular events, which to date remains 
an unmatched goal in Fabry-specific treatment (88).  
Two different SRT molecules (Venglustat®, Sanofi 
Genzyme, Massachusetts, USA; and Lucerastat®, Idorsia 
Pharmaceuticals, Switzerland) have been developed 
for disease-specific treatment of FD and are currently 
evaluated in both pre-clinical and clinical trials (89-91). 
While Venglustat is still at an early stage of approval 
and only few data has been published so far. Preliminary 
data suggest a slow but gradual clearance of Gb3 from 
superficial skin capillary endothelium and a gradual 
decrease of plasma lyso-Gb3 in most therapy-naive 
patients (92). Lucerastat is currently undergoing clinical 
evaluation in the randomized multi-center double-blind 
clinical phase III MODIFY-trial (NCT03425539) (93). 
Promising initial results from phase I/II clinical trials show 
that therapy with lucerastat has been save with no clinically 
relevant safety abnormalities observed over a 12-week  
long oral application (93). Furthermore, a significant 
decreased of plasma glycosphingolipids, glucosylceramide, 

lactosylceramide, and globotriaosylceramide compared 
to baseline values were observed rising hope for future 
application (93). 

Both novel SRT agents are promising potential oral 
therapeutics for the nearby future with no limitation 
regarding specific mutations as seen in chaperone therapy. 

Gene therapy

The strive for a curative therapy of FD intensified the 
efforts of enabling gene therapy over the last years. 
Different viral vectors have been tested and first FD 
patients already treated within early clinical phase I/II trials 
(NCT02800070; NCT03454893) (94). Current approaches 
comprise re‐administration of lentiviruses-transfected 
haematopoetic stem cells (NCT02800070; NCT03454893), 
adeno-associated viral gene therapy (FLT190®, Freeline 
therapeutics, UK; and ST-920®, Sangamo Therapeutics) 
and micro-RNA based therapy (Moderna Inc; Translate 
Bio) (95-100). The first reports available so far have shown 
that the concept in general is valid, leading to a prompt 
substantial rise of alpha-galactosidase A levels in the first 
patients after treatment. However, it currently remains 
largely unclear whether these initial effects will be long-
lasting, or repetitive gene therapy will be needed. Future 
results of further clinical trials will further evaluate benefits 
but also risks, such as the development of neutralizing 
antibodies and immunologic reactions. 

Summary

Treatment of FD in an exceptionally dynamic field with 
various new therapy approaches either already tested in 
clinical trials or arising in the near future. While ERT has 
proven its positive effects over many years, the availability 
of the first oral drug has led to a significant improvement 
at least of quality of life in many patients with FD already. 
However, due to amenability limitations, this approach 
is not an option for all patients with FD, currently 
leaving ERT essential as the only specific therapeutic 
option in most patients. Based on long-term experience 
and observational data from more than 20 years, early 
therapy initiation—before irreversible organ damage has 
occurred—is critically important, irrespective of the type 
of therapy chosen. Due to the rarity of FD, heterogeneity 
of the disease, and high therapy costs, therapeutic options 
should be thoroughly examined and re-evaluated annually 
thereafter in a specialized Fabry center, carefully taking the 
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various factors such as individual risk, efficacy of therapy, 
and quality of life into account. With novel therapy options 
such as oral drugs but also gene therapy just arriving, this 
aspect becomes even more relevant in the future.
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