
© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2021;11(2):411-421 | http://dx.doi.org/10.21037/cdt-20-746

Introduction

Keshan disease (KSD) is an endemic cardiomyopathy unique 
to China, and patients are mainly found in the narrow and 
low-selenium zone from the northeast to the southwest of 
China. According to statistics (1), 16 provinces (regions), 
with a population of 60 million, are affected. KSD is mainly 
characterized by myocardial involvement, and the clinical 

manifestations are ventricular enlargement and a decrease 
in myocardial contractility, which often causes heart failure, 
arrhythmia and even sudden death. Thus, the prognosis is poor.

The cause of KSD is not yet fully understood, but 
research results confirm there exists a close association 
between low selenium levels and KSD (2,3). As an essential 
trace element, selenium realizes its biological function 
mainly through selenoproteins. At present, a large number 
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of studies have revealed that selenium deficiency is closely 
related to the occurrence and development of KSD. The 
selenium content of the environment of the KSD area, 
as found in the soil, local food, and hair and blood of the 
people, and the plasma selenoprotein P are lower than those 
in non-affected areas (4,5). A systematic review and meta-
analysis of selenium deficiency and KSD revealed that the 
supplementation of selenium could significantly reduce the 
incidence of KSD (2). 

Current studies suggest that the mechanism of chronic 
KSD is mainly related to mitochondrial oxidative damage, 
apoptosis and fibrosis regulation (6-8). Low selenium can 
cause damage to myocardial mitochondria, and selenium 
deficiency can lead to a decrease in the synthesis of 
glutathione peroxidase. This then leads to the aggravation 
of oxidative stress damage, in turn causing myocardial 
damage and, ultimately, resulting in cardiomyopathy. 
Selenium deficiency may also amplify other pathogenic 
factors, including viral and other infections (3). Recent 
comparative studies on the gene expression of KSD 
and dilated cardiomyopathy have found that KSD and 
dilated cardiomyopathy have a different pathogenesis: the 
pathogenesis of KSD mainly manifests as viral infection, 
cell membrane damage and oxidative stress (9). 

In recent years, the advances in RNA sequencing 
technology mean that it has developed into a powerful 
research platform indispensable for exploring diseases. 
At present, it is widely used for research into a variety of 
complex human diseases, such as malignant tumors, immune 
diseases and unknown infectious diseases, and it is crucial 
to the search for pathogens and biomarkers, the exploration 
of pathogenesis, and the formulation of targeted treatment 
programs (10). In this study, RNA-sequence (RNA-seq, a 
transcriptome sequencing technology) was used to construct 
differential expression profiles of lncRNA in the peripheral 
blood plasma of KSD patients. These profiles were then 

analyzed by means of bioinformatics, providing a theoretical 
basis for shedding light on the mechanism of disease at the 
level of gene expression regulation. 

We present the following article in accordance with 
the MDAR reporting checklist (available at: http://dx.doi.
org/10.21037/cdt-20-746).

Methods 

Clinical data 

Ten KSD patients in the severe KSD area of Shandong 
Province were enrolled as the KSD group. There were five 
male patients and five female patients, ranging from 38 to 
45 years of age, with an average age of 42.6 years. All the 
patients had their medical histories taken, and underwent 
a physical examination, electrocardiography, X-ray 
photography, cardiac ultrasound and related biochemical 
examinations, and the examination results met the 
diagnostic criteria of KSD (GB17021-1997). In addition, 
10 healthy people, five males and five females, were 
enrolled locally as the control group, having undergone a 
comprehensive physical examination to confirm that they 
had no heart disease. The clinical data of the KSD group 
and control group are presented in Table 1. The present 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013) and was approved by the ethics 
committee of Liaocheng People’s Hospital (No. 201510), 
and all patients signed written informed consent. 

Main reagents and instruments 

Main reagents: Trizol kit (Invitrogen life technologies, 
USA), DEPC-treated water (Invitrogen life technologies, 
USA), RNase inhibitor (Epicentre, USA), SuperScriptTM 
III reverse transcriptase (Invitrogen, USA), 5× RT buffer 
(Invitrogen, USA), 2.5 mM dNTP mixture (HyTest 

Table 1 Clinical data of the KSD group and control group

Group
Number 
of cases

Gender 
(M/F)

Age (Y)
Systolic blood 

pressure (mmHg)
Diastolic blood 

pressure (mmHg)
Heart rate 
(times/min)

LA (mm) LV (mm) LVEF (%)
NYHA 

classification 
(I/II/III/IV)

KSD group 10 4/6 50.9±7.3 116.6±16.0 74.6±10.0 73.9±11.3 40.6±3.0* 59.7±2.9* 35.6±4.6* 0/7/3/0*

Control group 10 5/5 45.5±4.9 121.0±5.2 75.8±4.2 68.1±4.4 32.0±1.9 45.6±2.2 67.8±3.2 10/0/0/0

t or χ2 0.20 1.94 0.83 0.35 1.51 7.66 12.25 18.17 40.0

Compared with control group, *, P<0.01. LA, left atrial diameter; LV, left ventricular end-diastolic diameter; LVEF, left ventricular ejection 
fraction; NYHA, American College of Cardiology; KSD, Keshan disease. 

http://dx.doi.org/10.21037/cdt-20-746
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Ltd., Finland). Main instruments: NanoDrop ND-2000 
instrument (Thermo Fisher Scientific, USA), Ribo-Zero 
rRNA Removal kits (Illumina, USA), TruSeq Stranded 
Total RNA Library Prep Kit (Illumina, USA), BioAnalyzer 
2100 instrument (Agilent Technologies, USA), Illumina 
HiSeq4000 (Illumina, USA). 

Experimental methods 

Specimen acquisition 
The subjects fasted for 12 hours, and blood was withdrawn 
from the elbow vein in the morning, after they had got up. 
Five mL of peripheral venous blood was withdrawn from 
each subject in both the KSD group and the control group, 
with an anticoagulation negative pressure tube, and stored 
at −80 ℃. 

RNA extraction 
The blood sample was  removed from the −80 ℃ 
refrigerator, thawed, and centrifuged at 12,000 g at 4 ℃ for 
10 minutes to remove impurities. Next, 250 μL of the blood 
was taken and transferred to a 1.5-mL centrifuge tube,  
750 μL of TRIzol LS reagent and 20 μL of glacial acetic 
acid were added, and the tube was shaken to mix the 
solution up well. After homogenization, the sample was 
incubated at 15 to 30 ℃ for five minutes, 0.2 mL of 
chloroform was added, the tube was vigorously shaken for 
15 seconds, incubated at 30 ℃ for two minutes, and then 
centrifuged at 12,000 g and 4 ℃ for 15 minutes. After 
centrifugation, the blended liquid had separated out into 
layers, with the RNA in the colorless water layer. The upper 
water layer was transferred to another centrifuge tube, 
and 0.5 mL of isopropanol was added to it. The mixture 
was left to stand at room temperature for 10 minutes, then 
centrifuged at 12,000 g and 4 ℃. After 10 minutes, RNA 
gel-like precipitates could be seen on the bottom and sides 
of the tube. The upper liquid layer was removed, and  
1 mL of 75% ethanol was added to clean off the gelatinous 
sediment attached to the tube sides. It was fully oscillated, 
centrifuged at 75,000 g and 4 ℃ for five minutes. The upper 
liquid layer was removed again, and the sediments were left 
standing but not to completely dry out. About 5–10 minutes 
later, RNase-free water was added to dissolve the RNA, and 
the solution was incubated at 55–60 ℃ for 10 minutes and, 
finally, stored at −80 ℃. 

CDNA library preparation and sequencing
A Ribo-Zero rRNA Removal Kit (Illumina, USA) was used 

to remove rRNAs from the RNA, and a TruSeq Stranded 
Total RNA Library Prep Kit (Illumina, USA) was used to 
pre-process the RNA to construct a sequencing library. A 
BioAnalyzer 2100 instrument (Agilent Technologies, USA) 
was used for library quality control and quantification. In 
accordance with the Illumina sequencing instructions, the 
10 pM library was denatured into single-stranded DNA 
molecules, which were captured on an Illumina flow cell 
and amplified in situ into clusters. They then underwent  
150 cycles of sequencing on the Illumina HiSeq sequencer. 

Statistical analysis 

Original data was obtained after sequencing by an Illumina 
HiSeq4000 sequencer. The first quality control of the 
raw data was performed using the Q30 value. Cutadapt 
software (v1.9.3) was used to remove adapters and low-
quality reads, and then Hisat2 software (v2.0.4) was used 
under the guidance of an Ensembl gtf gene annotation 
file to align high-quality adapter-free reads to the human 
reference genome (UCSC MM10). Cuffdiff software (v2.2.1) 
was used to obtain a gene-level lncRNA/mRNA FPKM 
(Fragments Per Kilobase of transcript per Million fragments 
mapped) value, as the lncRNA/mRNA expression profile. 
Agilent Gene Spring software was used for data analysis, 
and standardized processing was performed to obtain two 
sets of fold change values. After statistical analysis using 
a t-test, differential lncRNA/mRNA expression profiles 
were obtained. The standard was that the fold change in 
the two groups was more than double and P<0.05. Gene 
Spring Software 11.0 was used to do a cluster analysis of the 
differentially expressed lncRNA/mRNA. As a regulatory 
factor, lncRNA can regulate adjacent protein-coding genes, 
and target gene detection finds differentially expressed 
genes and marks them as target genes. Differential 
genes were subjected to Gene Ontology (GO) biological 
function analysis and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis. P<0.05 was considered 
statistically significant. 

Results 

Clinical data of the KSD group and the control group

The differences in gender composition, age, systolic 
blood pressure (SBP), diastolic blood pressure (DBP) and 
heart rate between the two groups were not statistically 
significant; compared with the control group, in the KSD 
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group, the left ventricular end-diastolic diameter and left 
atrial diameter were significantly larger, the left ventricular 
ejection fraction was significantly lower (P<0.01), and the 
heart function was significantly lower (P<0.01, Table 1).

Quality control of RNA and library

The RNA concentration of each sample was measured by 
NanoDrop ND-2000 (Thermo Fisher Scientific, Waltham, 
MA, USA), and the OD260/OD280 value was used as an 
indicator of RNA purity. In this study, the OD260/OD280 
range was 1.8–2.1, which is to say, the purity of the RNA 
was qualified. RNA integrity was tested using denatured 
agarose gel electrophoresis. It was observed that the 
RNA5s, 18S and 28S bands were clear and intact without 
any obvious degradation. 

Differential expression of lncRNA/mRNA 

By using the RNA-seq technique, a total of 89,905 lncRNAs 
and 20,315 mRNAs were detected (Figure 1). Data analysis 
revealed that the difference in the expression of lncRNA 
in plasma between the KSD group and the control group 
was statistically significant. Statistical analysis revealed that  
921 lncRNAs had obvious differential expression (fold 
change >2, P<0.05), of which 36 were up-regulated and 
885 were down-regulated; 2,771 mRNAs presented with 
obvious differential expression, of which 253 were up-
regulated and 2,518 were down-regulated. A cluster analysis 
of the differential expression of lncRNA was conducted 
and the difference in lncRNA expression between the 
KSD group and the control group could clearly be seen. 
The same group of samples was gathered together, and 
the results indicated that the gene expression trend was 

consistent (Figure 2). The differentially expressed lncRNAs 
were tested for target genes, and 117 genes were found to 
be regulated by differential lncRNA. 

Bioinformatic analysis

In order to determine the biological process (BP) and 
molecular mechanism of differentially expressed genes in 
KSD, an enrichment analysis of the function and pathway 
of differentially expressed genes was also carried out. An 
enrichment analysis of the function and pathway was carried 
out using the database for annotation, the visualization 
and integrated discovery (DAVID) online tool (11). The 
tool is based on GO and the KEGG database. GO analysis 
is a biological gene bank used to annotate genes, gene 
products and sequences. It is divided into three parts, 
and determines the molecular function (MF), BP and cell 
component (CC). In this study, a CO function analysis 
of the differential expression of lncRNA was conducted 
to learn more about the function of these lncRNAs, 
GO terms with a P value of <0.05 were considered to be 
statistically significant. GO function analysis revealed that 
the differentially expressed lncRNAs were mainly involved 
in the BPs of neuronal differentiation, cell morphogenesis 
and differentiation, actin filament binding, superoxide anion 
generation and hydrogen peroxide biosynthesis (Figure 3).  
A KEGG pathway analysis was done to map molecular 
data sets from genomics, transcriptomics, proteomics and 
metabonomics to a KEGG pathway map for biological 
function interpretation, with P≤0.05 as the threshold of 
significant enrichment. The KEGG pathway analysis 
showed that differentially expressed lncRNAs were enriched 
in six signaling pathways (Table 2), among which the FOXO 
signaling pathway ranked first (Figure 4). 

Differentially expressed IncRNAs

921 
IncRNAs

2,771 
mRNAsCTRL CTRLKSD KSD

Differentially expressed mRNAs

Figure 1 Differential expression profiles of lncRNA/mRNA. KSD, Keshan disease; CTRL, control.
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Figure 2 Cluster analysis of the differential expression of lncRNA. (A) Cluster analysis of differentially expressed lncRNA between the KSD 
group (KSD 1-10) and control group (ctrl1-10), the red part represents the up-regulation of lncRNA, and the green part represents the down-
regulation of lncRNA. (B) Cluster analysis of mRNA differentially expressed between the KSD group (KSD 1-10) and control group (ctrl1-10), 
the red part represents the up-regulation of mRNA, and the green part represents the down-regulation of mRNA. KSD, Keshan disease.

A B

QRT-PCR validation

The names and the fold changes of the top 20 lncRNA/
mRNA are in Table 3. Three significantly up-regulated 
lncRNAs and three s ignif icantly  down-regulated 
lncRNAs were randomly selected (ENST00000421185, 
ENST00000410140, TCONS_l2_00004571; down-
regulated: ENST00000355500, ENST00000359888, 
ENST00000376025). A quantitative real-time polymerase 
chain reaction (qRT-PCR) was performed on 10 patients 
with KSD and 10 healthy controls. It was revealed that, 
in the expanded samples, the PCR results were basically 
consistent with the RNA-seq results (Figure 5). lncRNA/
mRNA network is in Figure 6.

Discussion

KSD was first found in Keshan County, Heilongjiang 
Province, China, in 1935. After the Second World War, 
similar cases were also found in the Nagano Prefecture 
of Japan and the northern mountainous area of Korea 
(12,13). After more than half a century of prevention and 
control, the type of KSD also changed from acute KSD and 
subacute KSD to chronic KSD. In patients with chronic 
KSD, the heart is significantly enlarged and the cardiac 
function is decompensated. This is mainly characterized by 
severe cardiomyopathy and multifocal myocardial necrosis, 
which are the focus of prevention and treatment research at 
present. Therefore, in this study, patients with chronic KSD 
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Figure 3 Functional distribution of differentially expressed lncRNA by GO analysis. (A) GO enrichment analysis of differentially expressed 
lncRNAs in biological process (BP). (B) GO enrichment analysis of differentially expressed lncRNAs in cell components (CC). (C) GO 
enrichment analysis of differentially expressed lncRNAs in molecular functions (MF). GO, Gene Ontology.

Table 2 Signaling pathways with enriched differential genes

Pathway ID Definition Genes

hsa04068 FoxO signaling pathway—Homo sapiens (human) IGF1R/TGFB2

hsa04390 Hippo signaling pathway—Homo sapiens (human) NKD1/TGFB2

hsa04020 Calcium signaling pathway—Homo sapiens (human) AVPR1B/GRIN2C

hsa05014 Amyotrophic lateral sclerosis (ALS)—Homo sapiens (human) GRIN2C/NEFM/SOD1

hsa04213 Longevity regulating pathway—multiple species—Homo sapiens (human) IGF1R/SOD1

hsa04520 Adherens junction—Homo sapiens (human) IGF1R/PVRL1
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Figure 4 FoxO signaling pathway (hsa04068).

were chosen as the study subjects, and RNA-seq technology 
was used to construct the differential expression profiles of 
lncRNA/mRNA in KSD, in order to explore the molecular 
mechanism and target genes of KSD at the gene level. 

At present, research into KSD mainly focuses on 
the association between selenium deficiency and KSD. 
However, studies on the mechanism have mainly focused on 
selenium-related mitochondrial oxidative damage, apoptosis 
and myocardial fibrosis. Selenium deficiency may also 
increase the infection of enterovirus and other pathogens, 
through the above-mentioned mechanism, leading to the 
occurrence and progress of KSD, and finally causing heart 
failure (3,6-8). In a previous study by this research team, 
miRNA sequencing was also conducted in patients with 
dilated cardiomyopathy, and bioinformatic analysis revealed 
that a neuronal differentiation process and a mitogen-
activated protein kinase (MAPK) signaling pathway were 
involved in the occurrence and development of dilated 
cardiomyopathy (14). Therefore, there are some differences 
in miRNA between KSD and dilated cardiomyopathy. 

RNA-seq can be used to study gene expression 
differences at the whole genome level, which has the 
advantages of more accurate quantification, higher 

repeatability, a wider detection range and more reliable 
analysis. It uses high-throughput sequencing technology to 
sequence all cDNA library from RNA reverse transcription 
in tissues or cells in order to calculate the expression levels 
of different RNAs by counting the number of related reads. 
Thus, more comprehensive genetic information, such as 
transcriptional location and splicing, can be determined (10). 

In the present study, a total of 117 genes were found 
to be regulated by differential lncRNAs. GO function 
analysis of the differentially expressed genes revealed that 
the differentially expressed lncRNAs were mainly involved 
in the BPs of neuronal differentiation, cell morphogenesis 
and differentiation, actin filament binding, superoxide 
anion generation and hydrogen peroxide biosynthesis. The 
results showed that KSD patients differ from normal people 
in cardiomyocyte differentiation and oxidative stress. Pei 
et al. (7) found that the level of oxidative stress increased 
significantly and was positively correlated with the degree 
of myocardial damage in patients with KD. The present 
study confirmed the argument that oxidative stress is related 
to myocardial injury in KSD at the gene expression level. 

KEGG pathway analysis demonstrated that the 
differentially expressed lncRNAs were enriched in six 
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Table 3 The names and the fold changes of the top 20 lncRNA/mRNA

EXP vs. CTRL differentially expressed lncRNAs top 20 EXP vs. CTRL differentially expressed mRNAs top 20

Transcript_id EXP_FPKM CTRL_FPKM P value Transcript_id EXP_FPKM CTRL_FPKM P value

ENST00000428088 3.86662 103.259 0.00005 MAP2 1.0499 105.324 0.00005

ENST00000433084 2.35982 49.2815 0.00005 SLC1A3 1.6004 71.4991 0.00005

ENST00000447372 0.313693 18.8243 0.00005 EPB41L2 6.47075 528.989 0.00005

ENST00000461291 0.28308 15.2866 0.0001 MXRA5 0.192223 6.49242 0.0001

ENST00000563424 0.418345 24.5947 0.00015 NDRG4 1.17598 166.429 0.0001

ENST00000565936 0.234962 11.9778 0.00015 CDR2L 0.639103 24.6539 0.00025

ENST00000566968 0.448172 13.5965 0.00015 SLC1A2 0.62356 186.516 0.00025

ENST00000567533 0.489348 23.7616 0.00015 HPCAL4 0.363686 23.0287 0.00035

ENST00000568063 0.263486 16.1909 0.00025 MUC5B 0.517991 16.0292 0.00035

ENST00000566733 0.25072 9.65832 0.00025 PLP1 1.23197 43.0059 0.00035

ENST00000568177 0.432795 19.1586 0.00025 C1orf61 1.6347 101.234 0.00045

ENST00000607352 0.476672 18.412 0.00025 KCNC1 0.630413 97.3282 0.00045

ENST00000608477 0.420748 8.64465 0.0003 UNC13A 0.284624 8.44909 0.0006

TCONS_00001652 46.5416 670.333 0.0003 GFAP 2.33385 205.76 0.00065

TCONS_00009934 0.508349 14.2331 0.00035 PTPN22 9.65913 502.588 0.00065

TCONS_00012197 34.475 977.85 0.00035 KIAA1644 0.288939 15.14 0.00085

ENST00000363624 1121.15 5.54397 0.0004 NAIP 6.29335 0.278693 0.00165

ENST00000363618 201.521 2.64544 0.0005 GIMAP7 17.7951 1.92021 0.00185

TCONS_l2_00004571 71.1207 3.23242 0.0005 MT-ND4L 197.199 5.47898E-18 0.00215

ENST00000459255 149.787 3.07453 0.0005 FOS 206.872 21.6916 0.00265

Figure 5 lncRNA (up-regulation: ENST00000421185, ENST00000410140, TCONS_l2_00004571; down-regulation: ENST00000355500, 
ENST00000359888, ENST00000376025) the results in the expanded samples verified by RT-PCR (*, P<0.05; **, P<0.01; ***, P<0.001). 
KSD, Keshan disease; CTRL, control.
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Figure 6 ncRNA/mRNA network for lncRNA-mRNA with Pearson correlation coefficient >0.99.

signaling pathways, in which the FoxO signaling pathway, 
which is related to apoptosis, ranked first. FOXO plays 
an important role in cell metabolism, cell survival and 
resistance to oxidative stress (15). It has been confirmed 
in one study that by increasing the resistance of mice 
to oxidative stress, FOXO could reduce myocardial 
in jury.  FOXOs play a  cr i t ica l  role  in  promoting 
cardiomyocyte survival during conditions of oxidative stress 
through the induction of antioxidants and cell survival 
pathways (16). Another experiment verified that FOXO 
expression was down-regulated in mice with oxidative 
stress-induced myocardial injury (17). This study revealed 
that the differentially expressed lncRNAs were significantly 
enriched in the FoxO signaling pathway and noticeably 
down-regulated. It can be inferred that the occurrence 
and development of KSD may be related to the weakening 
of myocardial resistance to oxidative stress caused by the 
down-regulation of the FoxO signaling pathway. The 
intervention of this signaling pathway may provide new 
ideas for the treatment of KSD. The key genes affecting the 
occurrence and development of KSD were further screened 
using the RNA-seq technique, and the two candidate 

genes detected in the preliminary results were IGF1R and 
TGFB2. IGF1R participates in the process of myocardial 
hypertrophy by changing cell cycle, apoptosis and 
interaction with the surrounding environment. A previous 
study revealed that the IGF1 level in the myocardium of 
patients with idiopathic hypertrophic cardiomyopathy 
was significantly higher than that in patients with aortic 
stenosis. Immunohistochemistry and in situ hybridization 
revealed that IGF1 expression was up-regulated in patients 
with idiopathic hypertrophic cardiomyopathy. Therefore, 
it is suggested that the up-regulation of IGF1 expression is 
not the result of myocardial hypertrophy but the cause of 
myocardial hypertrophy (18). One study induced IGF1R 
silencing with RNA interference, and the results were that 
the severity of myocardial hypertrophy was significantly 
reduced, and the myocardial function was improved. 
TGFB2, another gene screened candidate, is a transforming 
growth factor. A further study revealed that, after RXRA 
gene knockout, TGFB2 gene expression and cardiomyocyte 
apoptosis increased, and the embryonic cardiac outflow tract 
development was abnormal (19). The investigators believed 
that the abnormal expression of a target gene is related to 
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the occurrence and development of KSD. The next step 
is to construct a mouse model, with oxidative stress injury, 
selenium deficiency and vitamin deficiency, to verify this 
conclusion, using RNA interference induced gene silencing. 

In summary, in this study, RNA-seq technology was used 
to construct the differential expression profiles of lncRNA/
mRNA in KSD, a bioinformatics analysis of differentially 
expressed genes was performed, and IGF1R and TGFB2 
were preliminarily screened out as candidate genes. The 
investigators will next conduct animal experiments to verify 
these candidate genes, and continue to study the differential 
gene expression and regulation mechanism of KSD by 
increasing the sample size, in order to reveal the mechanism 
of the occurrence and development of cardiomyopathy of 
KSD and, ultimately, facilitate drug treatment. 
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