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Introduction

In the past few decades, percutaneous coronary intervention 

(PCI) has been a revolutionary innovation in the treatment 

of coronary artery disease. Risk stratification for prognosis 

is essential for the individualised management of patients 

undergoing PCI (1). However, an evaluation system for the 
long-term prognosis of PCI patients may need to integrate 
powerful multi-faceted factors. Traditional prognostic risk 
assessment has limited power to develop risk stratification 
under these conditions.
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(GRACE) and the Thrombolysis in Myocardial Infarction 
(TIMI) scores commonly used in clinical practice mainly 
evaluate the short-term prognosis of patients with ST-
segment elevation myocardial infarction (STEMI) (2,3). For 
non-elective coronary artery disease patients who need PCI, 
a more accurate scoring system is needed to assess long-
term outcomes. It is necessary to integrate multiple clinical 
indicators to make the scoring system easier to apply in 
daily clinical practice.

Machine learning (ML) is a field of computer science 
that applies a variety of complex rules and multidimensional 
recognition pattern technologies to process large  
datasets (4). In the past few years, these types of algorithms 
and technologies have been effectively used in the 
clinical field for various applications, including diagnostic 
radiology, cardiac electrophysiology, dermatology, and 
accurate determination of phenotypes, which are effective 
in the diagnosis and prognosis of patients (5-8). To date, 
the benefit of utilising ML in predicting hard-prognostic 
endpoints has not been evaluated on a large scale. 

Given its practicality, accessibility, and the impressive 
results achieved so far, we expect the application of ML 
in the healthcare sector to increase in the next few years. 
Despite the large number of cardiac patients requiring 
PCI, there is no accurate score based on ML applied to this 
target population.

The purpose of this study was to (I) develop and validate 
different ML-based models to predict five-year all-cause 
mortality in patients with coronary heart disease prior to 
PCI and (II) identify the important predictors for clinical 
outcomes in a large population.

We present the study in accordance with the TRIPOD 
reporting checklist (available at http://dx.doi.org/10.21037/
cdt-21-37).

Methods

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and approved 
by the Fuwai Hospital Research Ethics Committee (No. 
2013-449). The institutional review board approved the 
study protocol, and all patients provided written informed 
consent.

Study design

In this prospective study, we enrolled 10,724 consecutive 
patients with coronary artery disease who underwent 

PCI between January 2013 and December 2013 at Fuwai 
Hospital (Beijing, China). Individuals with prior coronary 
artery bypass grafting were excluded from the study.

Data collection

Based on previous models of patients with PCI, 87 risk 
factors were identified, as shown in Table 1. We mined 
the following groups of variables from the electronic 
health records: demographic and physical characteristics, 
comorbid conditions, medication, laboratory biomarkers, 
and electrophysiological and echocardiographic results. 
Hypertension was characterised by a history of systolic 
blood pressure of at least 140 mmHg. Diabetes mellitus 
was defined by a diagnosis made previously by a physician 
and/or the use of insulin or oral hypoglycaemic agents. 
Smoking history was defined as current smoking or 
cessation of smoking within the last 3 months. A family 
history of premature coronary artery disease was defined 
as myocardial infarction in a first-degree relative, 55 years 
(male) or 65 years (female). Dyslipidemia was defined as 
known but untreated dyslipidemia or current treatment 
with lipid-lowering medications. Laboratory data were 
based on fasting venous blood samples collected on the 
day before PCI. Echocardiographic parameters were 
collected by certified sonographers using two-dimensional 
echocardiography (Vivid 7 Dimension/Pro System, GE 
Healthcare, USA) to measure left ventricular end-diastolic 
diameter and left ventricular ejection fraction (LVEF) 
according to the modified Simpson’s rule on the day before 
device implantation. 

Follow-up and endpoints 

All patients participated in follow-up outpatient clinic visits 
or telephone interviews. Primary endpoint events were 
defined as all-cause mortality. 

Machine learning 

Feature selection: Information gain attribute ranking was 
used to select appropriate features (6,9). Information gain is a 
measure of the effectiveness of an attribute in classifying the 
training data. It is defined as the amount at which the entropy 
of a class decreases, which reflects additional information 
about the class provided by the feature (Figure 1). 

ML algorithms: We compared the performance of six 
ML models (support vector machine, decision tree, random 
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Table 1 Features used in final model development

Domain Individual features

Demographics Gender, age, height, body mass index, systolic blood pressure, diastolic blood pressure, smoking, alcohol,  
family history of premature coronary artery disease

Comorbid conditions Heart failure, hypertension, duration of hypertension, diabetes, duration of diabetes, atrial fibrillation, stroke,  
pulmonary artery hypertension, structure heart disease, hyperuricemia, hyperlipidemia, peripheral vascular  
diseases, cerebrovascular, previous myocardial infarction, previous PCI

Electrophysiology Heart rate, PR duration, QRS duration, QT duration, P-axis, QRS axis, middle of ST segment amplitudes, end of 
ST segment amplitudes, left bundle branch block, ventricular tachycardia

Coronary angiography Number of lesions, location of lesion, origin of coronary artery, distribution of coronary artery 

PCI procedure Stent placement, number of DES, number of BMS, preoperative Syntax score, postoperative Syntax score, 
intervention time, operative complications

Medications ACE inhibitor or angiotensin-receptor blocker, beta-blocker, calcium channel blocker, spironolactone, digoxin, 
diuretics, statins, aspirin, clopidogrel, low molecular weight heparin, IIb/IIIa receptor antagonist

Laboratory test results Hemoglobin, erythrocyte sedimentation rate, platelet count, platelet distribution width, white blood cell count, 
total bilirubin, direct bilirubin, albumin, alanine aminotransferase, aspartate aminotransferase, total triglycerides, 
total cholesterol, low density lipoprotein cholesterol, high density lipoprotein cholesterol, B-type natriuretic 
peptide, high-sensitivity C-reactive protein, hemoglobin A1c, serum sodium concentration, uric acid, glomerular 
filtration rate, big endothelin-1, serum creatinine, creatine phosphokinase-isoenzyme-MB, creatine  
phosphokinase-isoenzyme-BB, cardiac troponin I, cardiac troponin T, urine microalbumin 

Echocardiogram Left ventricular ejection fraction, left ventricular end diastolic diameter, left atrial diameter, right ventricular  
diameter 

PCI, percutaneous coronary intervention; DES, drug eluting stent; BMS, bare metal stent; ACE, angiotensin converting enzyme. 

Figure 1 Workflow for machine learning. Information such as clinical examination and treatment of percutaneous coronary intervention 
(PCI) patients was collected, and different machine-learning methods were evaluated after feature selection to establish the best clinical 
outcomes prediction model.
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forest, gradient boosting decision tree, neural network, and 
logistic regression) in predicting all-cause death in coronary 
heart disease patients who underwent PCI (10,11).

Cross-validation: we used 10-fold cross-validation to 
evaluate the performance of all six models. The entire 
dataset was divided into ten mutually exclusive subsets, nine 
of which were used for training and one for evaluation. 
This process was repeated 10 times using 10 different 
but overlapping training sets and 10 unique testing sets. 

Model performance was assessed according to the area 
under the receiver operating characteristic curve (AUC). 
The calibration of scores was assessed using the Hosmer-
Lemeshow test. Models with similar expected and observed 
event rates were defined as well calibrated (Hosmer-
Lemeshow test: P>0.05) (12,13). Discrimination was also 
assessed graphically by plotting the cumulative incidence 
of death over 5 years for patients classified into ten risk 
groups, as published (14,15). 

Statistical analysis

All analyses were performed using SPSS Statistics version 
23 (IBM, Armonk, NY, USA) and Python 3.7.3 (Python 
Software Foundation, Python Language Reference, version 
2.7; available at http://www.python.org). Data are presented 
as mean and standard deviation for continuous variables 
and as counts and percentages for categorical variables. For 
non-normally distributed data, the results are presented as 
medians (interquartile range). Two-sided P values <0.05 
were considered to be significantly different.

Results

Study population and baseline characteristics

In total, 9,680 patients with coronary heart disease who 
underwent PCI were included. During a median follow-
up period of 5.5 years, 467 (4.82%) patients died. Baseline 
characteristics of this cohort are shown in Table 2. The 
mean age of the cohort was 58.5±10.3 years; 76.92% 
(7,446/9,680) were male, 64.61% (6,254/9,680) had a 
history of hypertension, and 30.33% (2,936/9,680) had 
diabetes. 

Summary measures of discrimination and calibration 
of six ML models for all-cause mortality in patients 
undergoing PCI

Figure 2 shows the performance of the six ML models for 
predicting the primary endpoint. When algorithms were 
trained with the basic input variables (without advanced 
laboratory biomarkers), the decision tree model showed the 
worst discrimination ability (AUC: 0.51±0.07), whereas the 
random forest model showed the best discrimination ability 
(AUC: 0.71±0.04). In addition, the result of the Hosmer-
Lemeshow goodness-of-fit test suggested that the random 
forest model was well calibrated (P>0.05). A calibration 

Table 2 Baseline characteristics for our cohort

Variable Overall

Age, (years) 58.5±10.3

Male, n (%) 7,446 (76.92)

Body mass index (kg/m2) 24.53±4.46

Systolic blood pressure (mmHg) 127.1±17

Diastolic blood pressure (mmHg) 77.5±10.8

Hypertension, n (%) 6,254 (64.61)

Hyperlipidemia, n (%) 6,502 (67.17)

Diabetes, n (%) 2,936 (30.33)

Total cholesterol (mg/dL) 4.2±1.1

HDL-C (mg/dL) 1±0.3

BNP (pg/mL) 756.9±584.4

Serum creatinine (μmol/L) 935±3,534.8

Leukocyte (×109/L) 6.8±1.7

ESR (mm/h) 10.9±11.6

Big ET-1 (fmol/mL) 0.3±0.2

Hemoglobin (g/dL) 143.1±15.4

HbA1c (%) 6.6±1.2

hsCRP (pg/mL) 3.1±3.7

LVEF (%) 62.8±7.3

Smoking, n (%) 5,531 (57.14)

Aspirin, n (%) 9,556 (98.72)

Clopidogrel, n (%) 9,529 (98.44)

Statin, n (%) 9,287 (95.94)

All-cause death, n (%) 467 (4.82)

HDL-C, high-density lipoprotein cholesterol; BNP, B-type  
natriuretic peptide; ESR, erythrocyte sedimentation rate; Big  
ET-1, big endothelin-1; HbA1c, hemoglobin A1c; hsCRP, high 
sensitivity C-reactive protein; LVEF, left ventricular ejection  
fraction.
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plot confirmed close agreement between the random forest 
model (RF-PCI) scores and the observed 5-year risk of all-
cause death (Figure 3). 

Feature selection

According to the information gain ranking criteria for this 
study, the 15 top-ranked features in RF-PCI are shown in 
Figure 4. As expected, 11 of the 15 were laboratory factors 
with top 15 features for 5-year all-cause mortality; diastolic 
blood pressure, age, and LVEF were important features in 
the RF-PCI model.

Discussion

In the present study, among the evaluated ML classifiers, 
the RF model demonstrated the best performance. With 
an average AUC of over 0.71, the RF-PCI score can be 
used to predict the long-term prognosis of PCI patients. 
We also found the top 15 features that were related to PCI 
candidates’ long-term prognosis, among which 11 were 
laboratory measures.

Prognosis assessment is the key to coronary heart disease 
diagnosis and treatment. It can assist clinicians in choosing 
the best intervention methods according to the different 
risk stratification. In recent years, the predictive scores 

of coronary heart disease have been widely used for risk 
assessment before revascularisation (16). The GRACE 
score, one of the most commonly used scores, has been 
used to predict the short-term clinical prognosis of patients 
with acute coronary syndrome (2,17). The higher the score, 
the greater the risk of death of the patient, and the greater 
the need for earliest possible revascularisation to reduce 
the occurrence of adverse endpoints. Furthermore, it is 
crucial to conduct a risk assessment for patients after PCI 
treatment as it will help provide more targeted control 
and management of cardiovascular disease and other 
accompanying risk factors, thereby improving the long-
term prognosis of patients.

Independent factors have limited predictive value for 
disease prognosis. Currently, traditional cardiovascular 
risk assessment models predict cardiovascular event 
endpoints based on traditional statistical models such as 
linear models. For diseases with multiple complex risk 
factors, traditional statistical models have limited power. 
For patients with coronary heart disease who are planning 
to receive PCI treatment, the prognostic factors are more 
complex (4,7,18). The current cardiovascular prediction 
tools cannot correctly perform effective risk stratification 
and guide effective intervention in the next step. It is urgent 
to develop a personalised risk stratification tool for patients 
with coronary heart disease undergoing PCI.

ML is a subset of artificial intelligence, which refers to 
the ability of a machine to learn independently and make 
accurate predictions. In recent years, artificial intelligence 

Figure 2 Receiver operating characteristic curves of the models. 
Six machine-learning algorithms [support vector machine (SVM), 
decision tree, random forest, gradient boosting decision tree 
(GBDT), neural network, and logistic regression] were evaluated 
by area under the curve (AUC) for all-cause death.

Figure 3 Observed frequencies vs. model-predicted 5-year survival 
in 10 risk groups. Risk groups 1–10 represent risk scores 0.7–26.4, 
26.4–49.0, 49.0–64.5, 64.5–72.5, 72.5–79.7, 79.7–86.1, 86.1–90.9, 
90.9–93.8, 93.8–95.9 and 95.9–99.6, respectively.
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technology has developed rapidly and has begun to penetrate 
the fields of medicine and cardiovascular medicine. It has 
been used with large amount of medicine data in diagnosis, 
classification, and prediction (19-21). ML, as an effective 
means of information processing, may innovate prediction 
methods for cardiovascular diseases and improve the 
prediction accuracy, thus benificial to the diagnosis and 
treatment of clinical cardiovascular diseases (19).

Our study was based on patients with coronary heart 
disease who underwent PCI, without referring to specific 
subgroups of the type of coronary heart disease or the 
timing of PCI. Therefore, the results shows that ML-based 
predictive scores provide good practical prediction of the 
long-term prognostic risk stratification of patients after PCI 
and are easy to apply in clinical practice. This feature of 
ML methods is particularly important, given the ease with 
which the machine can seamlessly incorporate new data 
to continually update and optimise its algorithm and thus 
continually improve its predictive performance over time. 
Diastolic blood pressure, age, and brain natriuretic peptide 
are the top three risk factors for 5-year mortality in patients 
undergoing PCI. High-risk patients who were screened 
before PCI should be managed more strictly after PCI.

In addition to these clinical findings, our method has 

some methodological implications. First, it demonstrates 
the feasibility of a data mining approach for predicting 
the long-term prognosis of patients with PCI. Second, 
we found that non-parametric algorithms such as 
RF maintain high predictive performance, even in 
multidimensional scenarios with dozens of variables; this 
finding is consistent with previous studies using ML to 
predict clinical endpoints (22-24). With the emergence of 
electronic medical records, the completeness of disease-
related information of PCI patients has been accumulated 
to an unprecedented degree, and the practical application 
of ML, a new type of disease prognosis prediction method, 
is highly feasible.

In the current study, to ensure the generalizability of 
our model, we used 10-fold cross-validation to evaluate 
the feasibility and performance of ML-based models in 
patients undergoing PCI. However, prospective practical 
implementation in the external population is scarce. As 
a prospective single-centre study, our ML-based models 
should be validated in external centres to confirm their 
generalizability. Another limitation is the lack of impact 
analyses to determine how the utilisation of the models 
improves patient care and outcomes. Further research is 
needed for targeted interventions for high-risk patients 

Figure 4 Feature selection. Information gain ranking was used to evaluate the worth of each variable by measuring the entropy gain 
with respect to the outcome. The importance of each feature was quantified by calculating the decrease in the model’s performance after 
permuting its values. The higher its value, the more important the feature is. As the feature importance values were spread over a wide range 
(multiple orders of magnitude), base-10 logarithmic transformation was performed to facilitate plotting. The top 15 variables in the random 
forest model were shown. DBP, diastolic blood pressure; BNP, B-type natriuretic peptide; SBP, systolic blood pressure; CK-MB, creatine 
phosphokinase-isoenzyme-MB; LVEF, left ventricular ejection fraction; HbA1c, haemoglobin A1c; ESR, erythrocyte sedimentation rate; 
Scr, serum creatinine; HDL-C, high-density lipoprotein cholesterol; Big ET-1, big endothelin-1; CHO, cholesterol.
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identified by this score. Although we evaluated 87 distinct 
variables with ML, along with variable-variable interactions, 
we did not consider the totality of features that may offer 
improved risk prediction due to the limitation of data 
collection. Because of the popularisation of electronic 
medical records, the evaluation model can be embedded in 
the electronic medical record system, and the risk prediction 
score can be continuously optimised to further improve the 
prediction ability. 

Conclusions

In this study, we developed and validated an ML-based 
model to predict the clinical outcomes of coronary heart 
patients undergoing PCI. The performance of the RF 
model is better than that of the other models, providing 
a meaningful stratification of long-term outcomes in 
coronary patients following PCI. This study provides useful 
information for a predictive model for PCI recipients.

Acknowledgments

Funding: This work was supported by National Key R&D 
Program of China (2017YFC1307800).

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at http://dx.doi.
org/10.21037/cdt-21-37

Data Sharing Statement: Available at http://dx.doi.
org/10.21037/cdt-21-37

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (Available at http://dx.doi.
org/10.21037/cdt-21-37). The authors have no conflicts of 
interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. This study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013) and approved by the Fuwai Hospital 
Research Ethics Committee (No. 2013-449). The 
institutional review board approved the study protocol, and 
all patients provided written informed consent.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Granger CB, Goldberg RJ, Dabbous O, et al. Predictors of 
hospital mortality in the global registry of acute coronary 
events. Arch Intern Med 2003;163:2345-53.

2. Fox KA, Dabbous OH, Goldberg RJ, et al. Prediction 
of risk of death and myocardial infarction in the six 
months after presentation with acute coronary syndrome: 
prospective multinational observational study (GRACE). 
BMJ 2006;333:1091.

3. Antman EM, Cohen M, Bernink PJ, et al. The TIMI risk 
score for unstable angina/non-ST elevation MI: A method 
for prognostication and therapeutic decision making. 
JAMA 2000;284:835-42.

4. Al'Aref SJ, Anchouche K, Singh G, et al. Clinical 
applications of machine learning in cardiovascular 
disease and its relevance to cardiac imaging. Eur Heart J 
2019;40:1975-86.

5. Ghorbani A, Ouyang D, Abid A, et al. Deep learning 
interpretation of echocardiograms. NPJ Digit Med 
2020;3:10.

6. Tokodi M, Schwertner WR, Kovács A, et al. Machine 
learning-based mortality prediction of patients undergoing 
cardiac resynchronization therapy: the SEMMELWEIS-
CRT score. Eur Heart J 2020;41:1747-56.

7. Motwani M, Dey D, Berman DS, et al. Machine learning 
for prediction of all-cause mortality in patients with 
suspected coronary artery disease: a 5-year multicentre 
prospective registry analysis. Eur Heart J 2017;38:500-7.

8. Litjens G, Ciompi F, Wolterink JM, et al. State-of-the-Art 
Deep Learning in Cardiovascular Image Analysis. JACC 
Cardiovasc Imaging 2019;12:1549-65.

9. Mandal I, Sairam N. Accurate prediction of coronary 
artery disease using reliable diagnosis system. J Med Syst 
2012;36:3353-73.

10. Liu Y, Zhao H. Variable importance-weighted Random 
Forests. Quant Biol 2017;5:338-51.

11. Deo RC. Machine Learning in Medicine. Circulation 

http://dx.doi.org/10.21037/cdt-21-37
http://dx.doi.org/10.21037/cdt-21-37
http://dx.doi.org/10.21037/cdt-21-37
http://dx.doi.org/10.21037/cdt-21-37
http://dx.doi.org/10.21037/cdt-21-37
http://dx.doi.org/10.21037/cdt-21-37
https://creativecommons.org/licenses/by-nc-nd/4.0/


743Cardiovascular Diagnosis and Therapy, Vol 11, No 3 June 2021

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2021;11(3):736-743 | http://dx.doi.org/10.21037/cdt-21-37

2015;132:1920-30.
12. Nashef SA, Roques F, Michel P, et al. European system 

for cardiac operative risk evaluation (EuroSCORE). Eur J 
Cardiothorac Surg 1999;16:9-13.

13. Cook NR. Statistical evaluation of prognostic versus 
diagnostic models: beyond the ROC curve. Clin Chem 
2008;54:17-23.

14. Sartipy U, Dahlström U, Edner M, et al. Predicting 
survival in heart failure: validation of the MAGGIC heart 
failure risk score in 51,043 patients from the Swedish heart 
failure registry. Eur J Heart Fail 2014;16:173-9.

15. Rahman MS, Ambler G, Choodari-Oskooei B, et al. 
Review and evaluation of performance measures for 
survival prediction models in external validation settings. 
BMC Med Res Methodol 2017;17:60.

16. Houston M. The role of noninvasive cardiovascular 
testing, applied clinical nutrition and nutritional 
supplements in the prevention and treatment of coronary 
heart disease. Ther Adv Cardiovasc Dis 2018;12:85-108.

17. Roffi M, Patrono C, Collet JP, et al. 2015 ESC Guidelines 
for the management of acute coronary syndromes in 
patients presenting without persistent ST-segment 
elevation: Task Force for the Management of Acute 
Coronary Syndromes in Patients Presenting without 
Persistent ST-Segment Elevation of the European Society 

of Cardiology (ESC). Eur Heart J 2016;37:267-315.
18. Poss AM, Maschek JA, Cox JE, et al. Machine learning 

reveals serum sphingolipids as cholesterol-independent 
biomarkers of coronary artery disease. J Clin Invest 
2020;130:1363-76.

19. Johnson KW, Torres Soto J, Glicksberg BS, et al. 
Artificial Intelligence in Cardiology. J Am Coll Cardiol 
2018;71:2668-79.

20. Johnson KW, Shameer K, Glicksberg BS, et al. Enabling 
Precision Cardiology Through Multiscale Biology and 
Systems Medicine. JACC Basic Transl Sci 2017;2:311-27.

21. Antman EM, Loscalzo J. Precision medicine in cardiology. 
Nat Rev Cardiol 2016;13:591-602.

22. Churpek MM, Yuen TC, Winslow C, et al. Multicenter 
Comparison of Machine Learning Methods and 
Conventional Regression for Predicting Clinical 
Deterioration on the Wards. Crit Care Med 
2016;44:368-74.

23. Handelman GS, Kok HK, Chandra RV, et al. eDoctor: 
machine learning and the future of medicine. J Intern Med 
2018;284:603-19.

24. Sengupta PP, Kulkarni H, Narula J. Prediction of 
Abnormal Myocardial Relaxation From Signal Processed 
Surface ECG. J Am Coll Cardiol 2018;71:1650-60.

Cite this article as: Liu S, Yang S, Xing A, Zheng L, Shen 
L, Tu B, Yao Y. Machine learning-based long-term outcome 
prediction in patients undergoing percutaneous coronary 
intervention. Cardiovasc Diagn Ther 2021;11(3):736-743. doi: 
10.21037/cdt-21-37


