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Background: Myocardial blood flow (MBF), CT fractional flow reserve (CT-FFR) and high-risk plaque 
(HRP) features have been revealed to be associated with patients’ prognosis. However, direct intra-
individual comparison of these CT-derived parameters has not been explored yet. The aim of this study was 
to investigate the prognostic value of CT-derived MBF, CT-FFR and HRP features for predicting major 
adverse cardiac events (MACEs).
Methods: Consecutive patients with chest pain and intermediate-to-high pre-test probability of coronary 
artery disease (CAD) were prospectively enrolled. All patients were referred for dynamic CT myocardial 
perfusion imaging (CT-MPI) + coronary CT angiography (CCTA) and followed up for at least 1 year. 
MBFischemic (mean MBF of all ischemic segments), MBFratio (MBF of ischemic segments/MBF of reference 
segments), CT-FFR and HRP features were measured and multivariate analysis was used to evaluate the 
predictive value of all above parameters for MACEs. 
Results: One hundred and forty-two patients were included into final analysis. MBFischemic and MBFratio was 
significantly lower in patients with MACE compared to patients without MACE (87 vs. 153 mL/100 mL/
min and 0.64 vs. 0.95, both P<0.001). Similarly, CT-FFR was also markedly lower in patients with MACE 
(0.58 vs. 0.88, P<0.001) whereas coronary artery calcium score (CACS) was significantly higher (1,038.9 vs. 
34.2, P<0.001). According to ROC curve analysis, MBFischemic, MBFratio and CACS had largest area under 
curve (AUC =0.872, 0.855 and 0.813 respectively, all P<0.001) for identifying patients with MACE. After 
adjusted by multivariate analysis, MBFischemic (hazard ratio =23.382, P=0.003) and CACS (hazard ratio =3.759, 
P=0.029) were revealed to be the independent predictors for MACE where CT-FFR and HRP features failed 
to have prognostic value.
Conclusions: MBFischemic derived from dynamic CT-MPI was the strongest predictor for MACE, followed 
by CACS. MBFischemic outperformed HRP features and CT-FFR for prediction of unfavorable clinical 
outcome.
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Introduction

Dynamic CT myocardial perfusion imaging (CT-MPI) has 
emerged as one useful approach for absolute quantification 
of myocardial blood flow (MBF) and consequently precise 
evaluation of hemodynamic significance of coronary artery 
disease (CAD) (1-3). Coronary CT angiography (CCTA) in 
combination with dynamic CT-MPI can provide anatomical 
and functional assessment to guide treatment strategy (4). 
In addition, the MBF derived from CT-MPI also bears 
prognostic value as lower MBF has been found to be related 
to increased risks of unfavorable clinical outcome (5-7). 

Other than MBF, the CCTA data acquired in the 
integrated dynamic CT-MPI combined with CCTA 
protocol can also be used to simulate CT fractional flow 
reserve (CT-FFR) as well as to evaluate high-risk plaque 
(HRP) features. According to previous studies, both CT-
FFR and HRP features are associated with major adverse 
cardiac events (MACE) (8-13).

Although dynamic CT-MPI + CCTA enables “one-stop 
shop” assessment of all the aforementioned parameters, it 
remains unclear that which one has the strongest predictive 
value for clinical outcome. Hence, our purpose was to 
investigate the prognostic value of MBF, CT-FFR and HRP 
features for predicting MACE. We hypothesized that MBF 
had the highest prognostic value for predicting MACE.

We present the following article in accordance with the 
STARD reporting checklist (available at https://dx.doi.
org/10.21037/cdt-21-219).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the ethics committee of Shanghai Jiao Tong 
University Affiliated Sixth People’s Hospital (No. 2016-073) 
and informed consent was taken from all the patients. 

Study population

From November 1st, 2016 to June 30th 2019, consecutive 
patients with stable angina or atypical chest pain were 
prospectively screened and recruited from the cardiology 
service if the following inclusion criteria were fulfilled: 
(I) patients were evaluated to have intermediate to high 
pre-test probability of obstructive CAD according to 
updated Diamond and Forrester Chest Pain Prediction 
Rule; (II) patients were at least 18-year-old and without 

contraindications to the usage of iodine contrast medium 
and adenosine triphosphate (ATP). The exclusion criteria 
were: (I) patients with previous history of coronary 
revascularization; (II) patients with previous history of 
myocardial infarction; (III) patients with concomitant 
cardiomyopathy; (IV) poor image quality of CT-MPI or 
CCTA which were not sufficient for MBF quantification, 
CT-FFR calculation or plaque analysis; (V) patients 
underwent early revascularization after index test (within  
90 days), (VI) lost follow-up. All patients were followed up 
for at least 1 year after index test.

Dynamic CT-MPI + CCTA acquisition

An integrated protocol, which incorporated calcium 
score, dynamic CT-MPI and CCTA, was employed 
for acquisition. All patients underwent CT scanning 
using third generation dual source CT (SOMATOM 
Force, Siemens Healthineers). In brief, calcium score 
was calculated to assess the calcification burden of each 
coronary branch. Before the triggering of dynamic stress 
CT-MPI acquisition, adenosine triphosphate (ATP) was 
intravenously infused at the rate of 160 µg/kg/min for  
3 minutes. Dynamic stress CT-MPI acquisition was 
initiated 4 seconds after the beginning of contrast injection, 
using a shuttle mode technique. Dynamic stress CT-MPI 
was triggered at the end-systolic phase (250 ms after the R 
wave in all patients). Scanning intervals depended on the 
patient's heart rate and scans were initiated every second or 
third heart cycle. CARE kV and CARE Dose 4D were used 
to reduce radiation dose. The reference tube voltage was  
80 kVp and the effective current was 300 mAs.

All patients were given nitroglycerin 5 minutes after 
dynamic stress CT-MPI acquisition. CCTA images were 
obtained by using prospective ECG-triggered sequential 
acquisition. The detailed parameters of contrast medium 
usage, dynamic stress CT-MPI and CCTA scanning were 
given in Appendix 1.

Image analysis of CT-MPI

A dedicated kernel (Qr36) was used to reconstruct 
dynamic stress CT-MPI datasets to reduce the iodine 
beam-hardening artifacts. Further analysis was performed 
using a dedicated CT-MPI software package (Myocardial 
perfusion analysis, VPCT body, Siemens Healthineers, 
Forchheim, Germany). Motion correction was performed 
i f  mis-registration of the left  ventricle caused by 
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breathing occurred. MBF was calculated using a hybrid 
deconvolution and maximum slope model model, as 
previously reported (14).

Based on the 17-segment model with exclusion of apical 
segment, region of interest (ROI) was manually delineated 
on short axis view with pseudo color on a segment base to 
measure the absolute value of MBF (15). When perfusion 
defect was visually present, the ROIs were drawn 
separately to cover the whole area of decreased perfusion 
(MBFischemic) as well as area without decreased perfusion 
(reference territory). Stress MBFratio was also measured, 
which was defined as the mean MBF of decreased 
perfusion territories versus that of reference territories. 
In cases with normal myocardial perfusion, MBFischemic was 
measured as same as that of global MBF whereas MBFratio 
was recorded as 1. 

Plaque analysis and CT-FFR simulation

CCTA datasets were reconstructed with smooth kernel 
(Bv 40) and third generation iterative reconstruction (IR) 
technique (strength 3, ADMIRE, Siemens). A dedicated 
research software (Coronary Plaque Analysis, version 
4.3, Siemens Healthineers, Germany) was employed for 
further analysis of all lesions with stenosis extent ≥30% at 
any epicardial vessel with diameter ≥2 mm. The following 
parameters and characteristics were measured and recorded: 
(I) diameter stenosis (DS); (II) HRP features: low-attenuation 
plaque (LAP) (10), positive remodeling (PR) (10), Napkin-
ring sign (NRS) (11) and spotty calcification (SC) (13). The 
detailed definitions of the above parameters were given in 
Appendix 1. HRPs were defined as plaques with at least two 
HRP features (16). The stenosis severity of individuals was 
evaluated according to Coronary Artery Disease - Reporting 
and Data System (CAD-RADS) and patients with CAD-
RADS grade 3 or above were considered the presence of 
obstructive CAD (16).

Lesion-specific CT-FFR values were measured for 
all stenosis with DS ≥30% at any epicardial vessel with 
diameter ≥2 mm. The current study used a machine 
learning (ML)-based approach for CT-FFR simulation 
(cFFR, version 3.0, Siemens Healthineers, Forchheim, 
Germany). In brief, this model was trained on a large 
database of synthesized coronary anatomies, where the 
reference values are computed using a computational fluid 
dynamics-based model (17). The details regarding how this 
ML-based model was trained and how onsite processing was 
performed were given in Appendix 1. The lesion-specific 

CT-FFR values were measured at the distal shoulder of the 
lesion, where no plaque could be detected. When multiple 
lesions were present within one patient, the lesion with 
lowest CT-FFR value was used for further patient-based 
analysis.

Two experienced radiologists (with 12 years and 3 years 
of experience of cardiac imaging) who were blinded to 
clinical histories and outcome independently analyzed all 
the above parameters and the mean values of quantitative 
parameters measured by two radiologists were used for 
further analysis. Disagreements in qualitative parameters 
between the two radiologists were resolved by discussions 
to reach a final consensus. The intra-class correlation 
coefficients (ICC) were used to evaluate the intra-observer 
and inter-observer agreement of all parameters.

Clinical follow-up and study endpoint

All enrolled patients were followed up for at least 1 year 
after dynamic CT-MPI + CCTA by cardiologists who knew 
the clinical histories and findings of index test via outpatient 
clinic visit. The primary endpoint of the present study was 
to determine the predictive value of various CT-derived 
parameters (perfusion parameters, plaque features and CT-
FFR) for MACE. MACE was defined as all-cause mortality, 
myocardial infarction, late revascularization (≥90 days after 
dynamic CT-MPI + CCTA), rehospitalization due to heart 
failure or aggravated angina symptom.

Statistical analysis

Statistical analysis was conducted using IBM SPSS 
Statistics (version 22.0, IBM Corporation, Armonk, NY, 
USA) and MedCalc Statistical Software (version 11.4.2 
MedCalc Software bvba, Ostend, Belgium). Continuous 
data were represented as mean ± standard deviation (SD) 
or median and interquartile range (IQR), depending 
on whether they were normally distributed (tested 
with Kolmogorov-Smirnov test). Categorical data were 
displayed as absolute frequencies and proportions. Inter-
observer and intra-observer agreement of CT-derived 
parameters was evaluated by intra-class correlation 
coefficient (ICC). t-test was used for data with normal 
distribution, while Mann-Whitney U test was used 
for data that were not normally distributed. The chi-
square test or Fisher exact test was used to compare 
the frequency distribution of categorical and binary 
data between subgroups, according to the data cell size. 
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Receiver operating characteristic curve (ROC) analyses 
were performed to calculate the AUC of all CT-derived 
parameters. The optimal cutoff values for coronary artery 
calcium score (CACS), MBFischemic and MBFratio to predict 
MACE were calculated using the Youden index whereas 
preset cutoffs were employed for CAD-RADS (≥3), 
HRP (≥2 HRP features) and CT-FFR (≤0.8). Diagnostic 
performance was compared between MBFischemic and other 
CT-derived parameters by using ROC analysis with 
the DeLong method. The univariate Cox proportional 
hazards regression model was used to analyze the 
prognostic value of CT-derived parameters and clinical 
characteristics individually for MACE. Multivariate Cox 
proportional hazards regression analysis was performed to 
determine the independent predictors of MACE, which 
was performed using the “forward” method. The model 
included variables with P value <0.20 in the univariable 
analysis. Kaplan-Meier survival curves fitted for MACE 
were used to estimate the cumulative event rates stratified 
by CT-derived parameters. The log-rank test was used 
to test for significant differences in cumulative event 
rates between groups. A two-tail P<0.05 was considered 
statistically significant.

Results

Clinical characteristics

Three hundred and two patients with stable angina and 
intermediate to high pre-test probability of obstructive 
were referred for dynamic CT-MPI + CCTA. Among them, 
224 patients were initially enrolled according to inclusion 
and exclusion criteria. Seventy-six patients were excluded 
due to early revascularization whereas 6 patients were ruled 
out because of loss of follow-up (details shown in Figure 1). 
Finally, a total of 142 patients were included in the analysis 
(mean age 66.66±12.72 years, range 37 to 96 years, 96 males). 
An overview of demographics was presented in Table 1. No 
adverse events occurred when this index test was performed.

The median dose length product (DLP) of dynamic 
stress CT-MPI plus CCTA was 372.00 mGy × cm (315.75–
471.00 mGy × cm, range 202.00 to 805.00 mGy × cm), 
corresponding to 5.21 mSv (4.42–6.60 mSv, range 2.83 to 
11.27 mSv) when using 0.014 as the conversion factor (18). 
The median amount of contrast material used for dynamic 
CT-MPI + CCTA was 100 mL (range 90 to 100 mL). There 
were good Intra-observer and Inter-observer agreements 
in the measurement of CT-derived parameters (ICC >0.75, 

P<0.001 for all) (details shown in Tables S1,S2).

Clinical outcomes

The median follow-up time was 23.00 (17.00–32.25) 
months. In the current cohort, 15 patients (10.56%) 
experienced MACE during the follow-up and met the 
primary endpoint. Of these 15 patients in whom MACE 
occurred, 3 patients died from sudden cardiac death, 7 
patients underwent late percutaneous coronary intervention, 
and 5 patients were re-hospitalized due to aggravated 
angina symptom (4 cases) or heart failure (1 case).

Comparison of CT-derived parameters between patients 
with and without MACE

In patients with MACE, MBF ischemic and MBFratio was 
significantly lower compared to patients without MACE (87 
vs. 153 mL/100 mL/min and 0.64 vs. 0.95, both P<0.001) 
(Figure 2). Similarly, CT-FFR was also markedly lower 
in patients with MACE (0.58 vs. 0.88, P<0.001) whereas 
CACS was significantly higher (1,038.9 vs. 34.2, P<0.001). 
Moreover, higher CAD-RADS grades were noted in 
patients with unfavorable prognosis. In contrast to the 
above parameters, among HRP features, only PR was more 
frequently presented in patients with MACE whereas SC, 
NRS and LAP were found to have similar distribution 
between two groups (details shown in Table 2, Figure S1). 

Prognostic value of CT-derived parameters

According to ROC curve analysis, MBFischemic had the largest 
AUC (AUC =0.872, P<0.001) among all parameters for 
identifying patients with MACE, followed by MBFratio 
and CACS (Figure 3). There was no significant difference 
between the AUC of MBFischemic, MBFratio and CACS (both 
P>0.05) while the AUC of MBFischemic was significantly 
larger than those of CAD-RADS, HRP and CT-FFR (all 
P<0.05).

As revealed by Kaplan-Meier curve analysis, patients 
with presence of HRPs, CACS ≥519.95, CAD-RADS ≥3, 
CT-FFR ≤0.80, MBFischemic ≤119.50 mL/100 mL/min or 
MBFratio ≤0.82 were more likely to experience MACE than 
those without these positive parameters (Figure 4). 

Based on univariate Cox proportional hazards regression 
model,  age, diabetes mellitus,  presence of HRPs,  
CACS ≥519.95,  CAD-RADS ≥3,  CT-FFR ≤0.80,  
MBFischemic ≤119.50 mL/100 mL/min and MBFratio ≤0.82 
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were all significant predictors for MACE. However, 
after adjusted by multivariate Cox proportional hazards 
regression model, only MBFischemic (HR =23.382, P=0.003) 
and CACS (HR =3.759, P=0.029) remained the independent 
predictors for MACE (details given in Table 3).

Discussion

The present study evaluated the prognostic value of various 
CT-derived parameters and revealed several major findings. 
First, MBFischemic was found to be the strongest predictor for 
MACE among all parameters, followed by CACS. Moreover, 
MBFischemic outperformed HRP and CT-FFR for prediction 
of unfavorable clinical outcome in the current cohort.

MBF derived from stress dynamic CT-MPI is a useful 
quantitative parameter representing the global and 
segmental status of myocardial perfusion. In addition to 

its discriminative power for the diagnosis of myocardial 
ischemia (1-3), MBF also bears prognostic value for 
predicting prognosis (5-7). In the current study, more 
MACEs occurred in patients with reduced MBF due to 
late revascularization and rehospitalization for aggravated 
angina symptom. MBFischemic, which indicated the severity 
of myocardial ischemia, showed the best predictive power 
and provided powerful risk estimates of MACE. In contrast, 
although CT-FFR was another approach for the assessment 
of hemodynamic significance of coronary stenosis, it failed 
to be the independent predictor for MACE according to 
multivariate analysis. This discrepant performance between 
MBFischemic and CT-FFR could be ascribed to the following 
reasons. First, the diagnostic accuracy of CT-FFR can 
be dramatically impaired in the presence of severe vessel 
calcification (19,20) whereas dynamic CT-MPI is not 
affected. The overall diagnostic performance of dynamic 

Patients with stable angina 
and underwent CCTA + 

dynamic CT-MPI
n=302

Patients had previous history of 
myocardial infarction

n=15

Patients had concomitant 
cardiomyopathies

n=3

Patients underwent early 
revascularization after index test

n=76

Final inclusion
n=142

Patients had previous 
history of revascularization

n=59

Lost follow-up
n=6

Uninterpretable image 
quality of CCTA

n=1

MACE (+) during follow-up
n=15

MACE (−) during follow-up
n=127

Initial enrollment
n=224

Patients with stable angina and 
underwent CCTA + dynamic 

CT-MPI n=302

Patients had previous history of 
revascularization n=59

Uninterpretable image quality 
of CCTA n=1

Patients had concomitant 
cardiomyopathies n=3

Initial enrollment 
n=224

Final inclusion n=142

MACE (+) during follow-up  n=15 MACE (−) during follow-up n=127

Lost follow-up n=6 Patients underwent early revascularization 
after index test n=76

Patients had previous history of myocardial 
infarction n=15

Figure 1 Flow chart of inclusion and exclusion. CCTA, coronary computed tomography angiography; CT-MPI, computed tomography 
myocardial perfusion imaging; MACE, major adverse cardiac event.
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Table 1 Univariate comparison of clinical characteristics between patients with and without MACE

Characteristics Total (n=142) MACE (+) (n=15) MACE (−) (n=127) P value

Age (years) 66.66±12.72 77.73±10.85 65.35±12.32 <0.001

Males, n (%) 96 (67.61) 9 (60.00) 87 (68.50) 0.708

Weight (kg) 68.00 (60.00–74.00) 66.00 (58.00–78.00) 68.00 (60.00–73.00) 0.757

BMI (kg/m2) 24.22 (22.47–26.02) 24.22 (23.23–26.37) 24.22 (22.34–25.99) 0.661

Risk factors, n (%)

Diabetes mellitus 41 (28.87) 8 (53.33) 33 (25.98) 0.056

Hypertension 99 (69.72) 15 (100.00) 84 (66.14) 0.016

Dyslipidemia 66 (46.48) 6 (40.00) 60 (47.24) 0.595

Current smoking 26 (18.31) 2 (13.33) 24 (18.90) 0.862

NYHA functional classification, n (%) 0.001

I 65 (45.77) 3 (20.00) 62 (48.82) 

II 71 (50.00) 7 (46.67) 64 (50.39)

III 6 (4.23) 5 (33.33) 1 (0.79)

Values are mean ± SD, n (%), or median (IQR). BMI, body mass index; IQR, interquartile range; MACE, major adverse cardiac events; SD, 
standard deviation. 

Figure 2 Representative case of patient with MACE. An 86-year-old male with stable angina underwent CCTA + dynamic CT-MPI. CCTA 
showed mixed plaque with moderate stenosis at proximal LAD. This lesion was revealed to be HRP feature free and hemodynamically 
insignificant with CT-FFR value of 0.82. However, dynamic CT-MPI demonstrated decreased myocardial perfusion of apical anterior 
and apical lateral segments, with MBFischemic of 85 mL/100 mL/min. This patient underwent late revascularization of LAD lesion due 
to aggravated angina symptom at follow-up of 27 months after index test. CCTA, coronary computed tomography angiography; CT-
FFR, computed tomography fractional flow reserve; CT-MPI, computed tomography myocardial perfusion imaging; LAD, left anterior 
descending; LAP, low attenuation plaque; MACE, major adverse cardiac event; MBF, myocardial blood flow; PR, positive remodeling. 
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Table 2 Univariate comparison of CT-derived parameters between patients with and without MACE

Parameters Total (n=142) MACE (+) (n=15) MACE (−) (n=127) P value

Spotty calcium, n (%) 12 (8.45) 2 (13.33) 10 (7.87) 0.820

Napkin-ring sign, n (%) 9 (6.34) 2 (13.33) 7 (5.51) 0.243

Positive remodeling, n (%) 59 (41.55) 10 (66.67) 49 (38.58) 0.037

Low attenuation plaque, n (%) 16 (11.27) 3 (20.00) 13 (10.24) 0.484

CACS 54.05 (0.00–424.75) 1,038.90 (56.20–1,974.00) 34.20 (0.00–255.50) <0.001

CAD-RADS classification, n (%) 0.005

<3 67 (47.18) 2 (13.33) 65 (51.18)

≥3 75 (52.82) 13 (86.67) 62 (48.82)

HRP*, n (%) 24 (16.90) 5 (33.33) 19 (14.96) 0.152

MBFischemic (mL/100 mL/min) 148.50 (107.25–182.25) 87.00 (82.00–108.00) 153.00 (123.00–188.94) <0.001

MBFratio 0.94 (0.76–1.00) 0.64 (0.56–0.77) 0.95 (0.87–1.00) <0.001

CT-FFR 0.87 (0.69–0.95) 0.58 (0.50–0.77) 0.88 (0.71–0.96) 0.001

Values are mean ± SD, n (%), or median (IQR). *, HRP is defined as the presence of two or more CT HRP features. CACS, coronary artery 
calcium score; CAD-RADS, Coronary Artery Disease - Reporting and Data System; CT= computed tomography; CT-FFR, computed 
tomography fractional low reserve; IQR, interquartile range; MACE, major adverse cardiac event; MBF, myocardial blood flow; SD, 
standard deviation. 

Figure 3 ROC analysis of different parameters for prediction of MACE. For parameters shown in (A,B,C), preset cutoff values (CAD-
RADS ≥3, presence of two or more HRP features, and CT-FFR ≤0.8) were used for ROC analysis. For parameters shown in (D,E,F), best 
cutoff values were generated using the Youden index. AUC ,area under curve; CACS, coronary artery calcium score; CAD-RADS, Coronary 
Artery Disease - Reporting and Data System; CI, confidence interval; CT-FFR, computed tomography fractional flow reserve; MACE, 
major adverse cardiac event; MBF, myocardial blood flow. 
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CT-MPI outperformed CT-FFR for detection of ischemic 
coronary stenosis and had less false positive results (1). 
Second, MBF represents the myocardial perfusion status 
secondary to the impacts from epicardial vessel disease 
as well as microvascular dysfunction. In contrast, CT-
FFR is the parameter only suggesting the hemodynamic 
significance of epicardial vessel stenosis (21). In light of the 
above facts, MBF is not only more accurate than CT-FFR 
for diagnosing myocardial ischemia, but also able to evaluate 
microvascular dysfunction which is also associated with 
patients’ prognosis (22). Therefore, it is conceivable that 
MBF outperformed CT-FFR in terms of risk stratification.

Another important finding of the present study 
demonstrated that MBF was a stronger predictor than HRP 
with regard to prognostic evaluation, which has not been 
previously reported. HRP features as assessed by CCTA 
are thought be the fingerprints for the plaque phenotype 

that is prone to rupture and associated unfavorable clinical 
outcome (23,24). Previous studies have confirmed that 
plaques with large volume and positive vessel remodeling 
are more unstable than plaques without these features, 
which is more likely to lead to adverse clinical outcome 
(9,10). Our study also confirmed that patients with MACE 
had a higher incidence of positive remodeling than those 
without MACE. Nevertheless, late revascularization 
rather than acute coronary syndrome accounted for a large 
proportion of MACEs occurred in the current cohort. MBF 
is a parameter for precise evaluation of myocardial ischemia 
and therefore had larger predictive power for MACEs, 
which were primarily driven by ischemic coronary stenosis.

It is also of note that CACS was another independent 
predictor for MACE, which is in line with the results from 
MESA study (25). As revealed by previous nuclear MPI 
studies, in patients with CACS >400, the overall incidence 

Figure 4 Kaplan-Meier curves for cumulative event-free rate from MACE according to (A) CAD-RADS classification; (B) HRP; (C) CT-
FFR; (D) CACS; (E) MBFischemic and (F) MBFratio. CACS, coronary artery calcium score; CAD-RADS, Coronary Artery Disease - Reporting 
and Data System; CT-FFR, computed tomography fractional flow reserve; MACE, major adverse cardiac event; MBF, myocardial blood 
flow.
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of myocardial ischemia was as high as 35.2% (26). In other 
words, higher CACS is associated with the presence 
of decreased MBF, which is more likely to result in 
revascularization. 

The potential clinical implications of the present study lie 
in the following aspects. First, given the highest prognostic 
value, MBFischemic derived from dynamic CT-MPI may be 
the ideal parameter for precise risk stratification in patients 
with intermediate to high pre-test probability of CAD. 
The presence of reduced MBF in patients with suspected 
CAD should raise caution in clinical practice because it 
was closely associated with late revascularization. Further 
investigations, such as ICA and invasive FFR, are warranted 
to optimize the treatment strategy. Second, CACS also 
has strong predictive power for MACEs according to 
multivariate analysis so that calcium score scan might serve 
as an easy-to-perform method for preliminary screening 
in patients with intermediate to high pre-test probability 
of obstructive CAD. For patients with high CACS score, 
dynamic CT-MPI combined with CCTA is more preferred 
than CCTA alone for comprehensive assessment of disease 
severity and risk stratification.

Despite the above promising findings, the current study 

has several limitations. First, the overall MACE number in 
the present cohort was relatively small and the major type 
of MACE was late revascularization. This heterogeneous 
distribution of MACE type might have an impact on 
the result of predictive value of different parameters. 
Therefore, future prospective studies with larger sample 
size and longer follow-up period are warranted to validate 
the current findings. Moreover, the current cohort referred 
to the population with stable angina or atypical chest pain 
and immediate to high pre-test probability of obstructive 
CAD. More than half of patients had obstructive stenosis 
(CAD-RADS ≥3). Thus, the present findings could 
not be directly applied to a more general population. 
In addition, the myocardial perfusion parameters were 
derived from third generation of dual source CT using 
a hybrid deconvolution model in the current study. 
Different calculation algorithms can lead to varied values 
of quantified MBF (27). Thus, the present cut-off value of 
MBFischemic could not be directly employed in other cohorts 
quantified using different calculation algorithms. Finally, 
the contrast load of CT examination was relatively high 
due to double injection of contrast medium for CT-MPI 
and CCTA. This might limit the clinical application in 

Table 3 Univariate and multivariate analysis: CT-derived parameters and clinical characteristics predicting MACE

Variables
Univariate analysis Multivariate analysis*

HR 95% CI P value HR 95% CI P value

CACS ≥519.95 11.109 3.535–34.916 <0.001 3.759 1.146–12.329 0.029

CAD-RADS ≥3 7.094 1.591–31.619 0.010

HRP 2.955 1.005–8.688 0.049

MBFischemic ≤119.5 mL/100 mL/min 41.485 5.434–316.683 <0.001 23.382 2.859–191.231 0.003

MBFratio ≤0.82 21.550 4.819–96.377 <0.001

CT-FFR ≤0.8 6.827 1.922–24.253 0.003

Age ≥71 years 4.855 1.545–15.260 0.007

Male 0.655 0.233–1.844 0.424

Diabetes mellitus 2.952 1.070–8.144 0.037

Hypertension 35.747 0.343–3,722.158 0.131

Dyslipidemia 0.735 0.261–2.066 0.559

Current smoking 0.773 0.174–3.443 0.736

*, data for variables not included in the equation using the “forward” method were not provided. CACS, coronary artery calcium score; 
CAD-RADS, Coronary Artery Disease - Reporting and Data System; CI, confidence interval; CT, computed tomography; CT-FFR, 
computed tomography fractional low reserve; HR, hazard ratio; IQR, interquartile range; MACE, major adverse cardiac event; MBF, 
myocardial blood flow; SD, standard deviation. 



965Cardiovascular Diagnosis and Therapy, Vol 11, No 4 August 2021

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2021;11(4):956-966 | https://dx.doi.org/10.21037/cdt-21-219

patients with impaired renal function.
In conclusion, MBFischemic was found to be the strongest 

predictor for MACE among all parameters, followed by 
CACS. Moreover, MBFischemic outperformed HRP and CT-
FFR for prediction of unfavorable clinical outcome in the 
current cohort.
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Supplementary

Dynamic CT-MPI + coronary CT angiography 
protocol

Calcium score was calculated to assess the calcification 
burden of each coronary branch. The scan range of 
dynamic stress CT-MPI was confirmed on the basis of the 
images of calcium score, covering the whole left ventricle 
and all epicardial vessels. Before the triggering of dynamic 
stress CT-MPI acquisition, adenosine triphosphate was 
intravenously infused at the rate of 160 µg/kg/min for  
3 minutes. All subjects were injected with a fixed volume of 
contrast media (50 mL, Ultravist, 370 mg iodine/mL, Bayer) 
at the rate of 6 mL/s, followed by a 40 mL saline flush by 
using dual-barrel power injector (Tyco, Cincinnati, US). 
Dynamic stress CT-MPI acquisition was initiated 4 s after 
the beginning of contrast injection with a coverage of 
10.5 cm for complete imaging of the whole left ventricle, 
using a shuttle mode technique. Image acquisition was 
triggered at the end-systolic phase (250 ms after the R 
wave). Scanning intervals depended on the participant's 
heart rate and scans were initiated every second or 
third heart cycle. Data acquisition was performed for  
32 s with a total of 10 to 15 phases. The scan parameters of 
dynamic stress CT-MPI is listed as follow: gantry rotation  
time =250 ms, collimation =96×0.6 mm, automated tube 
current modulation (CARE Dose 4D, Siemens Healthineers) 
was used and the effective current =300 mAs, automated 
tube voltage modulation (CAREKv, Siemens Healthineers) 
was used and the reference tube voltage =80 kVp, 
reconstructed slice thickness =3 mm and reconstructed 
slice interval =2 mm. 

All patients were given nitroglycerin 5 minutes after 
dynamic stress CT-MPI acquisition, prior to the acquisition 
of coronary CT angiography. A bolus tracking technique 
was used in CCTA acquisition and regions of interest was 
placed in the ascending aorta. A bolus of contrast media was 
intravenously injected at the rate of 4–5 mL/s, followed by 
injection of a 40 ml saline flush by using dual-barrel power 
injector. The dose of the contrast media was determined 
based on the patient's body weight (patients with body mass 
index <18 injected with 40 mL contrast media at 4 mL/s, 
patients with body mass index between 18 and 24 injected 
with 50 mL contrast media at 4.5 mL/s, patients with body 
mass index >24 injected with 60 mL contrast media at  
5 mL/s). CCTA images were obtained by using prospective 
ECG-triggered sequential acquisition, with the acquisition 
window covering from 35% to 75% of R-R interval, with 

gantry rotation time =250 ms collimation =96×0.6 mm, 
reconstructed slice thickness =0.75 mm, reconstructed slice 
interval =0.5 mm and application of CAREKv and CARE 
Dose 4D. The reference tube current was set as 320 mAs 
and the reference tube voltage was set as 100 kVp.

Plaque analysis and CT-FFR simulation

CCTA datasets were reconstructed with smooth kernel 
(Bv 40) and third generation iterative reconstruction (IR) 
technique (strength 3, ADMIRE, Siemens). A dedicated 
research software (Coronary Plaque Analysis, version 
4.3, Siemens Healthineers, Germany) was employed for 
further analysis of all lesions with stenosis extent ≥30% at 
any epicardial vessel with diameter ≥2 mm. The following 
indices were measured and recorded: (I) diameter stenosis 
(DS) was calculated as (reference diameter − minimal lumen 
diameter)/reference diameter and was measured manually 
with a digital caliper at the narrowest level of the lesion and 
the proximal reference on the cross-sectional images; (II) 
remodeling index was defined as a maximal lesion vessel 
diameter divided by proximal reference vessel diameter 
(at the site where no plaque component can be detected), 
with positive remodeling (PR) defined as a remodeling  
index ≥1.1; (III) low-attenuation plaque (LAP) was defined 
as non-calcified plaques with low-density components (CT 
value <30 HU); (IV) spotty calcification (SC) was defined 
by an intra-lesion calcific plaque <3 mm in length that 
comprised <90 degrees of the lesion circumference; (V) 
Napkin-ring sign (NRS) was characterized by a plaque 
core with low attenuation areas on CT surrounded by a 
rim-like area of higher attenuation (CT value ≤130 HU) 
as previously reported. HRPs were defined as plaques with 
at least two HRP (LAP, PR, NRS and SC) features. The 
coronary stenosis of individuals was evaluated according 
to Coronary Artery Disease - Reporting and Data System 
(CAD-RADS) and patients with CAD-RADS grade 3 or 
above were considered the presence of obstructive CAD.

Lesion-specific CT-FFR values were measured for 
all stenosis with DS ≥30% at any epicardial vessel with 
diameter ≥2 mm. The current study used a machine 
learning (ML)-based approach, which is an alternative to 
physics-based approach and can be used on-site to simulate 
CT-FFR (cFFR, version 3.0, Siemens Healthineers, 
Forchheim, Germany). It’s trained using a synthetically 
generated database of 12,000 different anatomies of 
coronary arteries with randomly placed stenosis among 
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different branches and bifurcations. A computational fluid 
dynamic (CFD) by solving reduced-ordered Navier-Stokes 
equations is applied to calculate the pressure and flow 
distribution for each coronary tree. Quantitative features of 
anatomy and computed CT-FFR value were extracted for 
each location along the coronary tree. Then deep machine 
learning model is trained by using a deep neural network 
with four hidden layers to learn the relationship between 
the FFR value and quantitative anatomic features.

For the on-site processing, the centerline and luminal 
contours for whole coronary tree were automatically 
generated after CCTA data were successfully loaded. The 

centerline and luminal contour which can be manually 
adjusted when needed are fundamental and critical 
information for computing CT-FFR value. Users need 
to label all stenotic lesions manually to extract their 
geometrical features required for cFFR algorithm. Finally, 
those data were input into the pre-learned model and 
cFFR at all locations were generated automatically, and the 
resulting values were visualized by color-coded 3D coronary 
maps. The lesion-specific CT-FFR values were measured at 
the distal shoulder of the lesion, where no plaque could be 
detected. 

Table S1 Intra-observer reproducibility

Variables ICC 95% CI P value

DS (%) 0.907 0.828–0.950 <0.001

MBFischemic 0.938 0.887–0.967 <0.001

MBFratio 0.939 0.888–0.967 <0.001

CT-FFR 0.921 0.840–0.960 <0.001

Spotty calcium 0.884 0.827–0.923 <0.001

Napkin-ring sign 0.877 0.818–0.918 <0.001

Positive remodeling 0.911 0.844–0.950 <0.001

Low attenuation plaque 0.893 0.831–0.933 <0.001

CI, confidence interval; ICC, intraclass correlation coefficient; DS, diameter stenosis; CT-FFR, computed tomography fractional flow 
reserve; MBF, myocardial blood flow.

Table S2 Inter-observer reproducibility

Variables ICC 95% CI P value

DS (%) 0.913 0.842–0.953 <0.001

MBFischemic 0.928 0.868–0.961 <0.001

MBFratio 0.922 0.857–0.958 <0.001

CT-FFR 0.911 0.826–0.954 <0.001

Spotty calcium 0.824 0.745–0.880 <0.001

Napkin-ring sign 0.840 0.767–0.891 <0.001

Positive remodeling 0.873 0.783–0.926 <0.001

Low attenuation plaque 0.857 0.782–0.908 <0.001

CI, confidence interval; ICC, intraclass correlation coefficient; DS, diameter stenosis; CT-FFR, computed tomography fractional flow reserve; 
MBF, myocardial blood flow. 
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Figure S1 Representative case of patient without MACE. A 69-year-old female with atypical chest pain underwent CCTA + dynamic  
CT-MPI. CCTA showed mixed plaque with mild stenosis at proximal LAD. This lesion was revealed to have two HRP features (LAP and 
PR) and hemodynamically insignificant with CT-FFR value of 0.87. Dynamic CT-MPI demonstrated normal myocardial perfusion, with 
global MBF of 215 mL/100 mL/min. This patient was MACE free during a follow-up period of 17 months. CCTA, coronary computed 
tomography angiography; CT-FFR, computed tomography fractional flow reserve; CT-MPI, computed tomography myocardial perfusion 
imaging; LAD, left anterior descending; LAP, low attenuation plaque; MACE, major adverse cardiac event; MBF, myocardial blood flow; 
PR, positive remodeling. 


