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Introduction

Background

We are currently witnessing rapid evolution in coronary 
artery disease (CAD) prevention-, diagnostic- and therapeutic 
technology, which include the application of artificial 

intelligence- (1-7), nano- (8-19), stem cell- and gene therapy 
technology (20-37), robotic intervention platforms (38-42), 
transcatheter coronary intervention technology (43-57),  
virtual and augmented reality (AR) (58-62) and less invasive 
surgical revascularization techniques (63-80). The current role 
of coronary artery bypass grafting (CABG) by conventional 
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sternotomy access as a preferred therapeutic option in the 
treatment of CAD is continuously being redefined by a 
progressive paradigm shift towards less invasive interventions 
(81,82), patient preferences (83), industry driven marketing 
and an aging population with higher procedural risks (84,85). 
The recent reconfirmation of the prognostic- and freedom 
from major adverse cardiac events (MACE) and other 
outcome advantages of conventional CABG over modern 
percutaneous coronary interventions (PCI) in various clinical 
scenarios (86-106) resulted in renewed interest in surgical 
revascularization and minimally invasive surgical coronary 
artery revascularization (MISCAR) techniques (107,108). 
Experienced MISCAR centres report equivalent outcomes 
compared to conventional CABG by sternotomy access for 
single- and multi-vessel CAD and expanded the application 
of MISCAR in combination with PCI to be a fundamental 
component of hybrid revascularization (109-112).

Rationale and knowledge gap

The progressive application of MISCAR approaches into 
routine surgical practice provides exciting less invasive 
surgical CAD revascularization alternatives within the context 
of rapid non-surgical diagnostic- and therapeutic technology 
advances. The potential impact of these new strategies on 
patient outcomes, patient expectations and on CAD referral 
patterns are uncertain and it is imperative that current and 
future cardiac surgeons and interventionists remain aware 
of technological advances that are influencing and defining 
future CAD prevention, diagnosis, and treatment.

Objective

This review outlines the recent technological advances in 
CAD diagnostic and treatment technology, provides an 
overview of current CAD revascularization decision-making 
evidence and describes the potential future role of MISCAR 
in an exciting era of rapid evolution in less invasive CAD 
prevention, diagnosis and treatment. 

Advances in diagnostic- and transcatheter CAD 
treatment technology

Artificial intelligence (AI)

Various commercially available AI algorithms that 
detect electrocardiographic changes suggestive of CAD 
are already in use as wearable- or smartphone-based 

application platforms that potentially speed the process of 
acute cardiac event diagnosis, pre-hospital care, definitive 
interventions and post-procedural continuity of care (1,2). 
Baxt and colleagues (3) recently reported the accuracy of 
an AI algorithm consisting of 40 variables to predict the 
probability of ischemia with a sensitivity and specificity 
of 88.1% and 86.2% respectively in 2,204 patients with 
acute coronary syndrome (ACS). Wu et al. (4) reported the 
sensitivity, specificity, positive- and negative predictive value 
of AI predicting ACS in 269 patients presenting with chest 
pain using 42 variables as 90.9%, 93.3%, 76.9% and 97.7% 
respectively. AI algorithms are also progressively applied in 
quantifying coronary artery calcification by non-invasive 
cardiac imaging with reported shortened processing times 
when compared to operator interpretation (5) and improved 
correlation in identifying high CAD plaque morphology (6).  
Apart from AI applications in electrocardiogram (7), 
external validation of AI are under investigation as increased 
funding for AI research coincides with rapid development 
of clinical databases, smartphone and wearable device 
technology platforms.

Nanotechnology

Nanoscale molecular engineered derivatives of bulk 
molecules provide increased surface area to volume, 
modifiable properties, shapes, sizes and compositions as 
hollow or solid structural platforms (8). Nanotechnology 
combined with biosensors are currently under investigation 
to expedite the early detection of CAD biomarkers by high-
affinity target molecule binding that amplify the biomarker 
presence. Almas and colleagues (9) reported on the low 
cost, simplicity, and ability to identify all relevant ACS 
biomarkers within the first 4 hours of an event, which may 
potentially provide favourable prognostic implication by 
improving quality of ACS detection and meeting healthcare 
needs in non-specialist healthcare facilities. Nanosized 
hydroxyapatite- and carbon nanoparticulated coatings 
provide platforms for improved control of coronary artery 
stent drug release that enhances endothelialization, reduce 
restenosis and neo-intimal formation and decreases platelet 
adhesion (10-16). Electrospun nanosized fibrous scaffolds 
as synthetic grafts as alternatives to autologous conduits 
for CABG are also under investigation (17), as is the use of 
nanotechnology in gene eluting stents (18-21). Despite all 
the exciting advances, extensive nanotechnology feasibility 
and outcome studies are required to justify its progression 
from translational medicine to routine clinical practice. 
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Vascular growth factors and stem cell therapy

The current application and clinical outcomes of vascular 
growth factor and stem cell technology in the treatment of 
CAD were reported in non-randomized and randomized 
trials (22-32) and confirmed its potential role in establishing 
controlled angiogenesis to ischemic myocardial regions and 
in myocardial cell regeneration. Stamm and colleagues (33)  
described improved left ventricular ejection fraction 
following injection of mononuclear stem cells within  
3 months of the ACS event. Yousef and colleagues (34) 
reported improved exercise capacity, reduced mortality and 
image defined scar tissue at 5-year follow-up. Bolli et al. (35),  
Chugh et al. (36) and Makkar et al. (37) independently 
suggested that the application of cardiac derived stem cells 
may improve left ventricle ejection fraction, viable left 
ventricle mass, improve quality of life, reduce scar mass 
and improve regional contractility. Stem cell and vascular 
growth factor technology may become exciting future 
contributors to CAD treatment once the exact mechanisms 
of action, the ideal stem cell source, the optimal route of 
administration and long term safety are better defined. 

Advances in transcatheter coronary artery interventions 
technology

PCI is recognised as one of the ten most significant 
medical breakthroughs of our century (43), with current 3rd 
generation polymer-based biodegradable drug eluting stents 
(DES) consisting of cylindrical hollow struts that improved 
deliverability, flexibility, radial force, radio-opacity, and 
structural integrity. The incorporation of nano-particle 
coatings into the connecting elements improve consistent 
release of antiproliferative- or immunosuppressive drugs 
compared to previous generations (44-50). Latest 4th 
generation bioresorbable DES, which are fabricated 
from magnesium-, iron- and zinc alloys (51,52), are 
designed to progressively degrade with the intention of 
decreasing vessel size mismatch, chronic inflammation and 
subsequent late stage thrombosis and restenosis observed 
with previous generation metallic stent platforms (53). 
These stents will preserve the options of future surgical 
or PCI re-revascularization and decrease the risk of late 
stent thrombosis (54). However, challenging deliverability, 
increased platelet deposition, increased scaffold fracture 
risk and rheological disturbances, are amongst 4th 
generation DES short-term concerns (49). DES are 
currently manufactured by laser cutting, electrode discharge 

machining, waterjet cutting, photochemical etching and 
braiding and knitting techniques, but advanced in AR, 3D 
printing, and deep learning are already applied to provide 
lesion specific data that will facilitate patient-specific 
device design (49,50). This technology will enable the 
manufacturing of customized stents according to patient-, 
target vessel- and lesion characteristics (49,53), which 
will attempt to address the challenges of the unfavourable 
inflammatory- and subsequent fibrosis-, immunogenicity-, 
degradation- and cytotoxic processes.  Innovative 
biocompatible smart DES (56) can measure blood flow 
using wireless miniaturized ultrasonic transducers that 
transmit and receive information and may potentially 
prevent restenosis while simultaneously monitoring post-
implantation outcomes in real time. The recently reported 
ISAR-TEST4 trial (57) compared the 10-year clinical 
outcomes of three generations of limus-eluting stents 
with different polymer coatings in 2,603 CAD patients, 
who were randomized to treatment with biodegradable 
polymer-based sirolimus-eluting Yucon Choice PC™ 
(n=1,299, Translumina, New Delhi, India), permanent 
polymer-based everolimus eluting Xience™ (n=652, 
Abbott, Ilinois, USA) and 1st generation permanent 
polymer based sirolimus eluting Cypher™ (n=652, Cordis 
Corporation, California, USA) stents respectively. The 
10-year incidence for MACE were 47.7%, 46.0% and 
54.9% for Yukon Choice PC™, Xience™ and Cypher™ 
respectively (P=0.003), with mortality reported to be 
31.8%, 30.3% and 37.2% respectively (P=0.02). Stent 
thrombosis occurred in 1.1% of Yukon Choice PC™, 
0.8% of Xience™ and 2.4%™ of Cypher patients (P=0.03). 
The authors concluded that biodegradable polymer based 
and 2nd generation permanent polymer-based provided 
comparable clinical outcomes at 10 years, which were 
significantly superior to 1st generation DES. 

AR technology in catheterization laboratories

The much-anticipated application of virtual reality and 
AR technology in modern catheterisation laboratories 
facilitate live procedural ultrasound, imaging datasets, 3-D 
anatomy, angiograms and holograms (Figure 1) in a virtual 
mid-air environment through wearable visors (58-61). 
In conjunction with robotic catheter navigation systems, 
these systems allow controlled catheter manipulation and 
micro-movements without constant operator exposure to 
the routine radiation field. The Corindus-CorPath system 
obtained FDA approval and was recently acquired by 
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Siemens Healthineers (Berlin, Germany), who reported the 
first neuro-cooling for a cerebral aneurysm in November 
2019 using integrated robotic and AR technology. 
Robotcath (Robocath, Rouen, France) introduced their 
R-One™ integrated technology in Europe after obtaining 
European CE mark approval in 2019 and reported their 
100% technical procedural success and without MACE in 
the R-EVOLUTION trial, which was a prospective, multi-
centre, single arm pre-clinical study in 62 patients with 
64 coronary lesions undergoing elective PCI (62). The 
integration of AR and robotic technology also facilitate 
virtual fractional flow reserve (FFR) assessments through 
computational fluid dynamic algorithms that create virtual 
mid-air 3-D coronary imaging with FFR measurements for 
all the vessel segments and allow operators to determine a 
post-PCI FFR if a vessel was re-expanded to native lumen 
size by virtually stenting. 

Advances in coronary artery revascularization 
evidence

Contemporary international registries (113,114) confirm 

that coronary revascularization by PCI and surgery remain 
the most commonly performed cardiac procedures. 
CABG accounts for more than 50% of all cardiac surgical 
procedures in our current era. The undisputed excellent 
outcomes of conventional CABG utilizing internal thoracic 
artery (ITA) to the left anterior descending artery (LAD) 
and total arterial revascularization of other target vessels 
within various clinical scenarios and contemporary PCI 
technology have recently been reconfirmed (86-106). 
Van den Eynde and colleagues (86) recently performed a 
Bayesian network meta-analysis of 119 studies to compare 
early and late outcomes of contemporary coronary 
interventions in the setting of multi-vessel disease (MVD). 
They analysed 700,458 patients who underwent PCI 
(n=213,536), on-pump-CABG (P-CABG, n=438,443), 
off-pump-CABG (OPCABG, n=44,980) and hybrid 
coronary revascularization (HCR, n=3,199) with a median 
follow-up of 2.8 years (interquartile range, 1–5 years).  
Left mainstem pathology was present in a mean of 7.9% 
(range, 2.3–23.5%), 19.3% (range, 14.1–25.8%) and 
0.1% (range, 0–55.3%) of P-CABG, OPCABG and PCI 
patients respectively. The EUROSCORE risk profiles 
were significantly higher (P<0.05) in the surgical groups 
(range, 3.2–7.4%) compared to those in PCI (range, 
1.8–3.1%) and HCR (range, 1.5–1.9%). They observed 
that the mean number of vessels treated were 3.2 (2.9–3.4), 
2.8 (2.5–3.1) and 2.9 (2.8–3.0) for P-CABG, OPCABG 
and PCI interventions respectively, without any difference 
in early TVR, MACE or major adverse cardiac and 
cerebrovascular events (MACCE). However, analysis of 
long-term outcomes identified an increased PCI risk for 
MACE and MACCE (range, 59% to 79%) compared 
with the surgical interventions, with PCI presenting 
increased TVR risk of 203%, 156% and 127% compared 
to ONCABG, OPCABG and HCR respectively. The 
authors concluded that surgical revascularization remain 
superior to PCI after 12 months in patients with MVD for 
mortality, myocardial infarction, TVR, MACE, MACCE 
and supported the 2018 combined ESC/EACTS guidelines 
that advocated surgical revascularization as the preferred 
strategy in MVD with or without diabetes mellitus. Their 
findings also concur with meta-analyses of 6 randomised 
controlled trials (n=6,055) by Sipahi and colleagues (97), 
who demonstrated a 27% reduction in mortality, 42% 
reduction in myocardial infarction and 71% reduction in 
TVR with surgical revascularization compared to PCI. A 
recent collaborative individual patient pooled analysis of 11 
randomized controlled trials involving 11,518 patients by 

Figure 1 Virtual reality technology facilitates live procedural 
anatomy, angiograms, and holograms in a virtual mid-air 
environment through wearable visors. The Philips Azurion image-
guided therapy platform (Phillips, Amsterdam, Netherlands), 
combined with Microsoft HoloLens 2 mixed reality computing 
platform (Microsoft, Washington, USA) are under development 
as a concept for the operating room of the future. The use of this 
image was approved by the manufacturer (Philips, Amsterdam, the 
Netherlands) and was not previously published in this format. 
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Head (102) concluded that the 5-year all-cause mortality 
associated with PCI was 11.2%; compared to 9.2% with 
surgical revascularization. Although these reports suggest 
that surgery is superior to PCI in MVD, the authors 
demonstrated that PCI and surgery were comparable in 
lower SYNTAX scores, which is also appropriately reflected 
in current revascularization guidelines (81,82). The 
extended 10-year follow-up of the PRECOMBAT trial (103)  
concurred with the results of other trials (80,81) and 
reconfirmed higher repeat TVR with PCI (16.1 vs. 8.0%, 
P<0.05) compared to CABG for left mainstem disease. The 
composite of death, MI, stroke or ischaemia-driven re-
intervention were 29.8% after PCI and 24.7% after CABG 
(HR 1.25, 95% CI: 0.93–1.69). A secondary analysis of the 
SYNTAX database with an external validation cohort was 
performed to validate an updated SYNTAX score II, which 
compares the relative merits of PCI and CABG over a  
10-year period (106). The 2020 SYNTAX score II considers 
eight prognostic factors and two effect modifiers (three-
vessel disease vs. left mainstem disease only and anatomical 
SYNTAX score) to predict both the 5-year risk of MACE 
(defined as all-cause death, non-fatal stroke or non-fatal 
MI) and the 10-year mortality risk in patients receiving 
either PCI or CABG. The implementation of this score in 
clinical practice will play a key supportive role to compare 
treatment options based on individual risk estimates.

New developments in minimally invasive surgical 
coronary artery revascularization

The current paradigm shift towards less invasive coronary 
interventions are paralleled by innovative MISCAR 
procedural and technological advances that comply 

with traditional CABG principles, graft patency, clinical 
outcomes and patient satisfaction (63-80). Various 
institutions and collaborative reports now describe 
innovative variations in robotic- and non-robotic MISCAR 
techniques, with reports that outline risk reduction 
strategies for safe implementation of MISCAR programs 
also emerging (115-121). Harvesting of the left ITA under 
direct vision (Figure 2A) or bilateral ITA using endoscopic 
(Figure 2B) or robotic technology (Figure 2C) followed 
by the construction of ITA to LAD and other target 
vessel anastomosis under direct vision through a mini-
thoracotomy (Figure 3) or total endoscopically, with or 
without the use of cardiopulmonary bypass, are regarded 
as fundamental components to contemporary MISCAR 
strategies. 

MISCAR healthcare economics compared to conventional 
CABG and PCI

The extensive initial capital investment in acquiring hybrid 
MISCAR operating facilities, robotic- and endoscopic 
technology (122,123), special retractors and other equipment 
potentially limit its application, especially in developing 
countries. Leyvi and colleagues (123) reported no increase in 
hospitalization or 30-day morbidity-mortality costs between 
robotic MISCAR and conventional CABG by sternotomy 
access at their institution. However, same admission 
hybrid PCI revascularization significantly increased index 
hospitalization costs (P=0.02). Cohen and colleagues (124)  
observed that the mean initial procedural- and total 
hospitalisation costs for MVD or left mainstem CABG by 
sternotomy access were $3,415 less and $10,036 more per 
patient respectively compared to PCI. However, over the 

Figure 2 Harvesting of the ITA under direct vision (A) or by utilizing endoscopic (B) or robotic technology (C). ITA, internal thoracic artery. 

A B C
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subsequent 5 years, higher PCI re-admission rates, TVR 
and medication cost resulted in significantly higher PCI 
follow-up costs compared to surgery. With the continuous 
expansion of complex PCI indications and referral patterns 
that favour PCI, Jacobson and colleagues (125) utilised linear 
modelling to estimate the costs of 1,071 elective-, urgent- and 
emergency PCI complications. The authors observed that 
the mean unadjusted total costs were $27,865± $39,424 and 
concluded that PCI complication costs present a significant 
economic burden. Investigations that compare MISCAR 
economics with the total peri-interventional and long-term 
costs of protected PCI-procedures using expensive assist 
device support with its associated complications, chronic 
total occlusion PCI procedures and technology and the 
utilisation of costly AR technology as part of routine PCI 
practice, will provide valuable insight into complex PCI and 
MISCAR healthcare economics. Non-robotic MISCAR 
approaches as described by Babliak et al. (80,126) and 
Çaynak et al. (127) that utilise re-usable retractor systems 
gained favour in developing countries despite the lack of 
favourable cost evidence and are rapidly evolving into the 
preferred MISCAR approaches in countries with economic 
restraints. 

The application of MISCAR in multi-vessel disease

Various innovative MISCAR programs recently reported 
the extended application of MISCAR to achieve complete 

surgical coronary revascularization within the context of 
MVD. Babliak and colleagues (80,126) described their 
technique of total coronary revascularization through a 
left mini-thoracotomy and reported their outcomes in 229 
consecutive patients with MVD, of which 20.5% underwent 
total arterial revascularization. Their multi-vessel grafting 
technique through a 6–8 cm skin incision and 4th intercostal 
space anterior mini-thoracotomy includes the use of ITA 
and /or radial arteries, cardiopulmonary bypass, manoeuvres 
to optimize the operative field, antegrade cardioplegia 
delivery and aortic cross-clamping. Previous publications 
from this group reported mean of 3.1±0.7 anastomosis 
without peri-operative mortalities, myocardial infarctions 
or sternotomy conversions. Left ITA, right ITA, radial 
artery and saphenous vein conduits were utilised in 93.5%, 
2.4%, 14.7% and 87.0% of patients respectively. Their total 
procedural-, cardiopulmonary bypass- and cross-clamp 
times were 258.8±43.9, 135.8±26.6, 71.2±19.4 minutes 
respectively, with a mean hospitalization of 6.3±1.3 days. 
Çaynak and colleagues (127) reported their series of 184 
consecutive patients with MVD using a similar MISCAR 
approach. The left ITA was used in all procedures with a 
mean of 3.3±0.5 distal anastomosis performed with a mean 
hospitalization of 5.1±1.2 days. Both authors concluded that 
MISCAR is safe, feasible and is now considered the routine 
approach for MVD in their respective institutions without 
any exclusion criteria. Balkhy et al. (72,73,75,77), Bonatti 
et al. (41,65,69,79), Halkos et al. (67) and other pioneers 

Figure 3 Construction of a multi-vessel anastomosis under direct vision through a mini-thoracotomy (A) and off-pump single vessel 
anastomosis without rib-spreading (B).

A B
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of robotic MISCAR reported their extensive experience in 
total arterial revascularization, but the cost constraints limit 
its generalised application at present.

The role of MISCAR in hybrid coronary revascularization

MISCAR provides an excellent platform for HCR (109-112),  
where the well-established survival benefits of ITA to 
LAD (71,87,88) are combined with contemporary PCI 
technology that outperform venous conduits for multi-vessel 
revascularization of non-LAD lesions. Hybrid coronary 
revascularization is usually performed within 3 to 5 days 
following MISCAR, but is also applicable to previous PCI 
to non-LAD lesions. Experienced centres offer MISCAR 
using bilateral ITA for total arterial revascularization of the 
left coronary system combined with PCI of remaining right 
coronary artery lesions. The MISCAR conduit patency 
and quality can be assessed during the subsequent PCI 
procedure and may potentially offer the additional reported 
benefits of decreased blood transfusion requirements, 
shorter hospitalization and rapid regain of preoperative 
functional status. Hage and colleagues (109) performed 
a propensity matched comparative analysis between 216 
and 147 patients who underwent multi-vessel OPCABG 
and HCR respectively and noticed no difference in peri-
operative stroke, myocardial infarction, re-exploration 
for bleeding, blood transfusion requirements, in-hospital 
mortality or length of intensive care admission between 
the groups. Peri-operative re-intervention rate was lower 
with OPCABG (0% vs. 3.4%; P=0.03), while HCR was 
associated with decreased prolonged ventilation rates (0.7% 
vs. 4.0%, P=0.02) and length of hospitalization (4.5±2.1 
vs. 8.1±5.8 days, P<0.001). HCR was also associated with 
improved long-term survival (96% vs. 85%, P=0.054) 
and freedom from angina (90% vs. 73%, P<0.001) with 
similar freedom from reintervention between HCR and 
OPCABG (92% vs. 91%, P=0.80) after a mean follow-up of 
81 months (range, 48–113 months) and 96 months (range,  
53–115 months) for OPCABG and HCR respectively. 
The authors concluded that HCR provides faster peri-
operative recovery rates and comparable short- and long-
term outcomes to OPCABG. A propensity matched 
analysis by Giambruno (110) of 682 and 147 patients who 
underwent multi-vessel P-CABG and HCR respectively, 
reported similar conclusions. Reynolds and colleagues (111)  
concluded from an HCR and conventional CABG 
comparative meta-analysis that included 25 studies that the 
potential benefits of HCR are paralleled by significantly 

increased in-hospital costs compared to CABG. Ganyukov 
and colleagues (112) randomized 155 consecutive multi-
vessel CAD patients to CABG, HCR or multi-vessel 
PCI and concluded that residual angina and MACCE 
were similar at 12-month follow-up, with multi-vessel 
PCI providing shortest hospitalization and return to 
work duration. The authors did not identify any midterm 
indication of HCR value compared to CABG or PCI 
in isolation and encouraged longer follow-up. Whether 
HCR will impact patient preference, referral patterns 
and health resource utilization will be determined further 
investigations.

Extended application of MISCAR in refractory coronary 
ischemia

MISCAR may also facilitate the creation of trans-myocardial 
channel revascularization by laser technology in patients with 
complex patterns of diffuse CAD with no options of non-
surgical or surgical revascularization (128-132). Multiple 
randomized controlled trials, augmented by recently available 
long-term results, have validated the safety, effectiveness, 
and substantially improved health outcomes through the 
application of this technology used in isolation (129) or as 
an adjunctive therapy (130,131) to achieve more complete 
revascularization in selected patients with severe residual 
angina resulting from diffuse disease progression. Bridges 
and colleagues (132) formulated recommendations for the 
appropriate therapeutic application of TMR following the 
format of the American Heart Association and American 
College of Cardiology guidelines and identified class I 
indications for TMR as sole therapy and IIA for as an 
adjunct to CABG with various levels of evidence. They 
concluded that TMR may be an acceptable form of therapy 
for selected patients with refractory angina or when 
complete revascularization cannot be achieved surgically 
and has subsequently been endorsed by the Society of 
Thoracic Surgeons in the USA. 

Robotic- vs. non-robotic MISCAR outcome reporting

Comparative outcomes between MISCAR and CABG by 
sternotomy access are well described (133-135) and current 
research is now directed at comparing the outcomes of 
the various MISCAR approaches (136-138). Non-robotic 
MISCAR approaches utilise special retractor systems or 
endoscopic camera technology for ITA harvesting under 
direct vision or under endoscopic guidance respectively. 
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Direct vision MISCAR often require larger skin incisions to 
facilitate both ITA harvesting and multi-vessel anastomosis 
through as single working port, which may result in costal-
cartilage dislocation, fractures, limited ITA visualization 
and potential shorted ITA lengths (136) compared to the 
full-length ITA visualization achieved with multi-port 
endoscopic and robotic MISCAR approaches. Gofus and 
colleagues (137) performed a retrospective propensity 
matches comparison of 735 patients who underwent 
MISCAR by direct vision (n=603) and by robotic assistance 
(n=132) and identified no difference in peri-operative 
complications or all-cause mortality (mean follow-up 
5.6 years). However, they observed that post-operative 
blood loss (300 vs. 450 mL, P=0.002), artificial ventilation 
time (6 vs. 7 hours, P=0.018) and hospitalization (6 vs.  
7 days, P=0.001) favoured robotic MISCAR and concluded 
that robotic technology provided attractive advantages over 
non-robotic MISCAR approaches. 

Future perspectives in minimally invasive 
surgical coronary revascularization

Various expert centres currently perform MISCAR without 
exclusion criteria as a routine for all isolated surgical 
coronary revascularization and encouraged upcoming 
programs to partner with experienced institutions to 
overcome the well described learning curves while ensuring 
uncompromising quality control and maintaining excellent 
clinical governance (115-120). However, various studies 
question the validity of MISCAR as a new “gold-standard” 
revascularization alternative to conventional OPCAB by 
sternotomy access (133-135). Rogers and colleagues (134)  
randomized 93 patients to OPCAB and 91 patients to 
MISCAR at 2 institutions and observed that MISCAR 
was associated with longer mean operative times (4.1 vs. 
3.3 hours), fewer 3-vessel revascularization (2% vs. 17%), 
shorter mean intubation time of 65 minutes (P=0.017), 
higher analgesia requirement, poorer lung function at 
discharge and a 10% higher average cost compared to 
OPCAB by sternotomy access. Florisson and colleagues (135)  
emphasised the potential increased risk of incomplete 
revascularization (29% vs. 0%) and re-admission within  
3 months (20.0% vs. 2.0%) observed with MISCAR 
compared to OPCAB and concluded that MISCAR is 
associated with increased morbidity compared to OPCAB 
without mid-term mortality difference. Progressive 
robotic- and non-robotic MISCAR skills development, 
cadaveric and simulation training, team visits to established 

MISCAR providers, familiarity with risk reduction strategies 
and careful patient selection, are regarded as important 
components of initiating a safe and sustainable MISCAR 
program. Pettinari and colleagues (107) reported a rapid 
increase in robotic MISCAR programs in Europe and 
recommended active participation in robotic MISCAR 
registries (138). There is no doubt that the application 
of MISCAR will continue to develop as a preferred 
revascularization alternative or as an adjunct to PCI. 
The learning curves associated with MISCAR (115-120), 
complex PCI (139,140) and the reported correlation 
between high procedure volume and favourable clinical 
outcomes that safely maintain these programs (141,142) are 
well described. As both surgical and transcatheter coronary 
artery interventions are progressively becoming less invasive 
and increasingly complex within the context of an aging 
and higher risk patient profile, suggestion by experienced 
cardiovascular interventionists to redesign training of future 
coronary operators as a sub-speciality or “hybrid coronary 
surgeon-interventionists” in the extensive knowledge 
and technical surgical/interventional skills required, may 
potentially be justified (143). The future of coronary artery 
revascularization is exciting and will most likely be shaped 
by a collaborative MISCAR-PCI partnership.

Strengths and limitations

This manuscript provides a comprehensive and in-depth 
overview of contemporary advances in the treatment of 
CAD with special emphasis on the rapid expansion and 
future application of MISCAR approaches. No meta-
analyses checklist systems were utilised and the risk of bias 
for each included reference were not subjected to PRISMA 
2020 analysis.

Conclusions

We are currently witnessing rapid advances in CAD 
treatment technology and techniques that will incorporate 
MISCAR, PCI, nano, stem cell and pharmacotherapeutics 
in combination or as isolated interventions as new evidence 
emerge. The renewed interest in the re-established benefits 
of CABG over PCI and the introduction of MISCAR into 
routine clinical practice, suggest a continuous favourable 
evolution and future for surgical revascularization. 
Significant multidisciplinary collaborative efforts will 
continue to develop multi-faceted and novel CAD 
treatment strategies at reduced costs and with sustained 
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continued efforts, the future for MISCAR as a fundamental 
component in CAD therapeutics is promising.
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