
© Translational Andrology and Urology. All rights reserved.   Transl Androl Urol 2022;11(10):1399-1409 | https://dx.doi.org/10.21037/tau-22-266

Original Article

Identification of a novel peripheral blood signature diagnosing 
subclinical acute rejection after renal transplantation

Yue Xu1,2#, Hao Zhang1,2#, Di Zhang1,2, Yuxuan Wang1,2, Yicun Wang1,2, Wei Wang1,2, Xiaopeng Hu1,2

1Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China; 2Institute of Urology, Capital Medical University, 

Beijing, China

Contributions: (I) Conception and design: X Hu, Y Xu, H Zhang; (II) Administrative support: X Hu, Y Xu, D Zhang, W Wang; (III) Provision of 

study materials or patients: Y Xu, H Zhang; (IV) Collection and assembly of data: H Zhang; (V) Data analysis and interpretation: Y Xu, H Zhang, Y 

Wang, Y Wang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.
#These authors contributed equally to this work.

Correspondence to: Xiaopeng Hu. Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti South Road, 

Beijing, China. Email: xiaopeng_hu@sina.com.

Background: Subclinical acute rejection (subAR) can only be diagnosed by protocol biopsy and is 
correlated with worse graft outcomes. However, noninvasive biomarkers of subAR are lacked for kidney 
transplantation recipients in clinic. This study aims to utilize to construct a peripheral blood-based gene 
signature for subAR diagnosis after kidney transplantation. 
Methods: After systematically screening databases, two cohorts of high quality with 3-month blood profiles 
and biopsy-proven graft status from the Gene Expression Omnibus databases were employed as training 
and validation cohorts. Then, the support vector machine recursive feature elimination (SVM-RFE) and 
the least absolute shrinkage and selection operator (LASSO) logistic regression were used to identify key 
biomarkers for subAR. Subsequently, the stepwise logistic regression method was applied to construct a gene 
signature for subAR in the training cohort. Patients were divided into high-risk and low-risk groups based 
on the cutoff point identified by the receiver operating characteristic (ROC) curve. Then, the signature was 
validated in a validation cohort with fixed formula. The single-sample gene set enrichment analysis was used 
to estimate immune cells in the blood.
Results: Fifty key biomarkers were filtered out with the machine learning algorithms. Then, a novel six-
gene signature was constructed using the LASSO and stepwise logistic regression method. The signature had 
high accuracy in both training [area under the curve (AUC) =0.923] and validation cohort (AUC =0.855). 
Additionally, these six genes were found to have significant and consistent relationships with blood immune 
cells in both cohorts, especially for T cells subtypes. 
Conclusions: We developed and validated a novel noninvasive six-gene signature based on peripheral 
blood to diagnose subAR, which offered a potential tool for clinical practice. The six-gene signature offered 
a potential method to monitor patients following transplantation and make a timely intervention.
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Introduction

Subclinical  acute rejection (subAR) is  defined by 
histologically acute rejection without renal dysfunction and 
correlated with poor graft outcomes, including subsequent 
acute rejection, de novo donor-specific antibody (dnDSA) 
production, and graft fibrosis (1-5). The subAR occurs 
in 29% and 17% of patients with kidney transplantation 
individually in the 1–2 and 2–3 months (1). Although true 
randomized, prospective large trials are still lacking, several 
studies indicated that treatment of subAR was beneficial 
and led to improved short (6) and long-term renal function 
(5,7). Therefore, early diagnosis and treatment of subAR 
is particularly important for preserving renal function and 
improving the consequences of kidney recipients beyond 
the early period. 

At present, the gold standard for subAR diagnosis 
remains invasive surveillance biopsies. It is one method 
to detect subAR patients with stable renal function by 
performing routine protocol biopsies (1). However, it is 
constrained by infection risk, sampling error, assessment 
variability, and other factors (8). To avoid these issues, some 
studies have tested non-invasive profiles of urinary proteins 
and blood transcriptomic signatures, but the results have 
been inconsistent so far (2,9-13). Therefore, there is a clear 
need for the development of a non-invasive, simple, and 
accurate biomarker for subAR diagnosis. 

The support  vector  machine recurs ive  feature 
elimination (SVM-RFE), a feature elimination strategy, 
is used to screen differentially important features along 
with high classification accuracies compared with the 
SVM-RFE (14). In this study, we applied SVM-RFE, 
least absolute shrinkage and selection operator (LASSO) 
logistic regression to identify candidate genes for subAR 
diagnosis in peripheral blood RNA-sequencing (RNA-seq) 
and microarray datasets of subAR patients from the Gene 
Expression Omnibus (GEO) database. Then, the stepwise 
logistic regression method was utilized to construct a 
diagnostic model that might be potentially implemented in 
clinical application. Although the fact that prior research 
has established gene signatures for subAR diagnosis, these 
signatures were constituted of dozens of genes, making 
them difficult to translate into clinical practice, and 
their diagnostic power was significantly reduced in other 
independent datasets (2,3). Thus, we sought to develop a 
new peripheral diagnostic model of subAR with an optimal 
number of genes and reliable performance. The diagnostic 
model may prove to be a useful tool in clinical practice 

in the future. Furthermore, we used gene set enrichment 
analysis (GSEA) and immune cell analysis to investigate 
the mechanisms underlying the disease in subAR patients. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://tau.
amegroups.com/article/view/10.21037/tau-22-266/rc).

Methods

The collection and pretreatment of data

Datasets that met the criteria were included: (I) the size of 
samples for gene expression profiles is greater than fifty; 
(II) whole blood specimens with genomic data and biopsy-
proven graft status; (III) whole blood samples collected at 
the same time; (IV) focusing on subAR. Then, two cohorts 
with gene expression profiles of whole blood cells derived 
from matched renal transplant patients with unambiguous 
biopsy-proven subAR or non-subAR were utilized for 
deeper investigation (Figure 1). The GSE120396 (n=88) 
RNA-seq dataset contained 66 non-subAR and 22 subAR 
specimens, and the GSE120397 (n=65) microarray dataset 
contained 53 non-subAR and 12 subAR specimens (3). The 
gene expression profiles were normalized using the “limma” 
R package (15).

GEO data access regulations were strictly followed 
during data collection and preparation. All analyses were 
carried out under applicable laws and regulations.

The study was conducted in according to the Declaration 
of Helsinki (as revised in 2013).

Study design

The process of our study was illustrated in Figure 2. In the 
data collection stage, the GSE120396 (n=88) RNA-seq 
dataset and the GSE120397 (n=65) microarray dataset were 
screened. GSE120396 was utilized to identify differentially 
expressed genes (DEGs) with the threshold of P<0.005 
using the “limma” package, followed by SVM-RFE and 
LASSO logistic regression to select candidate biomarkers 
for the diagnostic model. The stepwise logistic regression 
method was applied to screen candidate biomarkers and 
build a diagnostic signature with low heterogeneity and 
high consistency. Besides, the performance of the model was 
validated with the GSE120397 microarray dataset. GSEA 
and immune-cell analysis were applied in the GSE120396 
and GSE120397 datasets to acquire a robust correlation 
between the model, pathway analysis, and immune-cell 

https://tau.amegroups.com/article/view/10.21037/tau-22-266/rc
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Figure 1 Flowchart of GEO datasets identification. After systematic selection of the GEO database, two datasets with gene profiles of 
more than 50 samples were selected for further analysis. GSE, GEO series; GEO, Gene Expression Omnibus; RNA-seq, RNA-sequencing; 
subAR, subclinical acute rejection. 

analysis in kidney transplant samples.

Gene selection process

The SVM-RFE, a feature elimination strategy, is used to 
screen differentially important features along with high 
classification accuracies compared with the SVM-RFE. 
To list the ranking weights for all genes and arrange genes 
according to their weight vectors, the SVM-RFE and 
t-statistics are used in this algorithm. The weights of genes 
are calculated using the difference between compared 
groups, which is represented by the expression. After the 
iteration process, the functionality is removed backward. 
The dataset is iterated until only one characteristic remain. 
This study uses the R package “sigFeature” for SVM-
RFE (14). The LASSO logistic regression was applied to 
narrow down the list of top-ranked genes using SVM-
RFE. During the LASSO logistic regression procedure, 
the penalty regularization parameter lambda was selected 
by a ten-fold cross-validated condition using the “glmnet” 
R package (16). When binomial deviance reached a 
minimum through the cross-validation, the genes with 
non-zero coefficients were chosen. These genes were 
selected for further analysis using the stepwise logistic 
regression method.  

Generation and validation of the six-gene signature

To identify the candidate genes, the stepwise logistic 
regression method based on the Akaike Information 
Criterion (AIC) was utilized to build a model. When the 
lowest AIC was set, the candidate genes were selected and 
constructed the six-gene signature. The receiver operating 
characteristic (ROC) curve was engaged to evaluate the 
diagnostic capacity and the optimal ROC cutoff point 
(Youden index) was calculated by the “pROC” R package, 
which corresponds to the point on the ROC curve where 
the Youden index reached the highest. Besides, external 
validation was performed using GSE120397 and its optimal 
ROC cutoff point. All patients were categorized into high-
risk and low-risk groups with their optimal cutoff values 
respectively.

Function enrichment analysis

Metascape (https://metascape.org/gp/index.html#/main/
step1) is an analytical tool for gene function that integrates 
reputable data repositories (17). Metascape was employed 
to investigate the possible signaling pathways involved in 
the subAR using DEGs screened between subAR and non-
subAR patients. At least three genes must overlap and 
enrichment scores of at least 1.5 were required to meet the 

https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
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Figure 2 Flowchart of the study design. The training cohort GSE120396 was utilized to develop a diagnostic model. The diagnostic ability 
of the model was validated in the testing cohort (GSE120397). GSEA and immune cell analysis were performed to detect the potential 
mechanism of the model. SVM-RFE, support vector machine-recursive feature elimination; LASSO, least absolute shrinkage and selection 
operator; GSEA, gene set enrichment analysis; GEO, Gene Expression Omnibus; subAR, subclinical acute rejection.

cutoff, which was determined by a P value cutoff of adjusted 
0.01. At least three genes must overlap and enrichment 
scores of at least 1.5 were required to meet the threshold 
(adjusted P value <0.01).

GSEA and evaluation of immune cells

By utilizing the “clusterProfiler” R package and a gene set 
file annotated with the quotation gene set file (c5.go.bp.
v7.4.symbols.gmt) we were able to identify biological 
processes that may be more prevalent in the high-risk 
patients (18). 

The single-sample GSEA with the “GSVA” R package 
was used to compute the amounts of 28 immune cells (19). 
Twenty-eight immune cells from two types of immunity 
(innate and adaptive) were enrolled to explore the 
relationship between levels of immune cells and risk scores 

calculated by the diagnostic model.

Statistical analysis 

The Pearson correlation test was conducted when the 
data passed the normality test. The Spearman correlation 
test was applied for the immune cell analysis. Statistical 
significance was established at the five percent crucial point 
(P<0.05) for all data, with the exception of DEG analysis 
(P<0.005).

Results

The collection and pretreatment of data and study design

We screened the whole blood datasets of subAR from the 
GEO database to obtain qualified datasets. A more detailed 
selection process can be detected in the Methods section 



Translational Andrology and Urology, Vol 11, No 10 October 2022 1403

© Translational Andrology and Urology. All rights reserved.   Transl Androl Urol 2022;11(10):1399-1409 | https://dx.doi.org/10.21037/tau-22-266

Figure 3 Diagnostic biomarkers screening for subAR. (A) The DEGs between subAR and non-subAR peripheral blood specimens are 
depicted on the volcano plot. Down-regulated genes are shown by blue dots, and genes that are up-regulated are represented by red dots. (B) 
The network comprised of top 20 enriched processes, where nodes show statistically significant terms and terms with similarity of greater 
than 0.3 are linked by lines. (C) Selection of the genes in LASSO logistic regression analysis. (D) LASSO coefficient profiles, where each 
curve represents a gene. Thirteen genes were screened in the optimal lambda for further analysis. (E) The bar plot illustrated coefficients 
of six genes in the diagnostic signature by stepwise logistic regression. DEGs, differentially expressed genes; FC, fold change; LASSO, least 
absolute shrinkage and selection operator; subAR, subclinical acute rejection.

(Figure 1). There is the flowchart of our study, including 
training, validation, and further investigation parts (Figure 2). 
The baseline demographic and clinical characteristics of the 
subAR and non-subAR groups showed similar graft function 
at a 3-month surveillance biopsy (3). 

Identification of DEGs and functional enrichment analysis

Following the data selection, the genes in GSE120396 and 
GSE120397 were intersected to obtain the intersection 
genes (9,750 genes). Then, the intersection genes were 
performed differential expression analysis between subAR 
and non-subAR groups in GSE120396. As a consequence, 
174 DEGs (55 of which were upregulated and 119 of which 
were downregulated) were met the criteria (P<0.05) and 
detected for further investigation (Figure 3A).

The top 20 biological process clusters, as determined by 
Metascape, were revealed (Figure 3B). Carbon metabolism, 

neutrophil degranulation, and other processes were shown 
to be enriched in the DEGs between subAR and non-
subAR patients.

Construction and validation of the diagnostic model

To recognize the subAR-specific expression patterns of 
genes, SVM-RFE was adopted. Top-ranked 50 DEGs were 
appropriate for further analysis. After further selecting 50 
DEGs with LASSO logistic regression, thirteen biomarkers 
were selected as the candidate biomarkers of the diagnostic 
model (Figure 3C,3D).

The thirteen candidate genes were input to the stepwise 
logistic regression method to build the diagnostic model. 
As a result, six genes (ANXA5, SMPD4, RHOA, TSC22D1, 
MYCBPAP, and MLC1) were used to develop a diagnostic 
signature (Figure 3E). The following formula was used to 
determine the risk score: risk score =171.553+ (−2.67148 
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* expression level of ANXA5) + (−3.70396 * expression 
level of SMPD4) + (−3.60213 * expression level of RHOA) 
+ (−1.76173 * expression level of TSC22D1) + (−2.42050 
* expression level of MYCBPAP) + (−1.75866 * expression 
level of MLC1). The heatmap expression of above six genes 
indicated that these genes have subAR-specific expression 
patterns and ROC curve suggested a high diagnostic 
performance of the model in the training cohort [area 
under the curve (AUC) =0.923] (Figure 4A,4B). Patients 
were divided into high-risk and low-risk groups based on 
the optimal cutoff value. To demonstrate the diagnostic 
power of the six-gene signature, we utilized the testing 
cohort GSE120397. According to a fixed formula with an 
optimal cutoff value determined from the testing dataset, 
patients were separated into high-risk and low-risk groups 
respectively. The heatmap and ROC curve consistently 
indicated a high degree of reliability in diagnostic power in 
the testing cohort (AUC =0.855) (Figure 4C,4D). Besides, 
the tables demonstrated high sensitivity and specificity of 
training and testing cohorts (Figure 4E,4F). These findings 
suggested that the power of the diagnostic model was still 
highly accurate. 

GSEA and immune cells analysis

GSEA was applied to identify potential signaling pathways 
between high-risk and low-risk patients. For high-risk 
patients, as illustrated in Figure 5A-5D, we observed a 
significant decreased transcription of genes involved in the 
metabolic process of reactive oxygen species (ROS) and the 
regulation of this metabolic process (Figure 5A-5D). 

By using single-sample GSEA, we were able to quantify 
28 different types of immune cells, including B cells, T cells, 
monocytes, neutrophils, and others, to better understand 
the makeup of the peripheral blood. Then, we analyzed 
the relationship between the risk scores generated by the 
diagnostic model and immune cells. Our findings revealed 
that risk scores were negatively related to virtually all innate 
immune cells and some T cells subtypes (Figure 5E-5I). A 
consistent trend was observed in the associations of risk 
scores with immune cells in both the training and testing 
datasets.

Discussion

SubAR was characterized as biopsies of acute Banff grade 1 
or more corresponding with no increased serum creatinine 
and clinical indications of rejection. Currently, surveillance 

biopsies were the only method that could diagnose subAR. 
SubAR might retreat automatically or develop into clinical 
acute rejection and then lead to the initial onset of chronic 
rejection (20). Following a thorough screening of the GEO 
datasets, we selected two datasets focused on subAR, which 
met the criteria mentioned above. By applying SVM-RFE, 
LASSO logistic regression, and stepwise logistic regression, 
we developed a six-gene signature for subAR diagnosis 
based on publicly available peripheral blood genomic 
data. The model had high accuracy in both training 
(AUC =0.923) and validation cohort (AUC =0.855). Once 
identified in the high-risk group, further tests and treatment 
were necessary because of the high possibility of subAR 
detection.

Remarkably, GSEA results indicated that downregulated 
genes in high-risk patients were associated with the 
metabolism of ROS and their regulation compared with 
low-risk patients. Infiltrating monocytes and macrophages 
themselves forcefully express xanthine oxidoreductase and 
generate ROS (21). Albrecht et al. showed that infiltrating 
macrophages seemed to generate ROS and caused the 
increased level of ROS in the interstitium of chronic kidney 
transplant failure patients (22). These studies demonstrated 
the generation of ROS by monocytes and macrophages, 
suggesting that the reduction in ROS metabolism was 
related to the decrease of macrophages and monocytes. 
The immune-cell analysis showed that macrophages and 
monocytes were negatively correlated with risk scores, 
supporting that the high-risk patients were with fewer 
macrophages and monocytes. However, the mechanism 
needed to be supported by solid evidence from other 
researches.

Correlation analysis showed that the immune cells 
(central memory CD8 T cell, Plasmacytoid dendritic cell, 
natural killer T cell, monocyte, CD56dim natural killer 
cell, and effector memory CD8 T cell) were statistically 
significant and consistent in the training and testing 
cohorts. In contrast to kidney biopsy, which reveals the 
amount of local immune cell infiltration (23), the peripheral 
blood transcription profile of kidney transplant patients 
represents their overall immunological status (24). Immune 
cell analysis showed that almost all innate immune cells 
and T cells subtypes, especially for central memory CD8 
T cell and natural killer T cell, were reduced in high-
risk samples in both training and testing cohorts. Similar 
phenomena were observed in one study, which revealed 
the decrease in T cell subtypes in whole blood of patients 
with kidney rejection (25). These findings indicated that 
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the immunological status in whole blood was complex, and 
the lack of increased transcription of immune response-
related genes may support the hypothesis that immune cells 
moved from the peripheral blood to kidney allograft (24). 
Immunological status in whole blood was complex, and the 
lack of enhanced expression of immune-related genes may 
support the hypothesis that immune cells traveled from 

the peripheral blood to the kidney tissue, evidenced by the 
previous study (24).

Among the six genes in the diagnostic model, the 
ANXA5 gene encodes the annexin family of calcium-
dependent phospholipid-binding proteins, which binds 
with nanomolar affinity to phosphatidylserines (PS) in a 
calcium-dependent manner (26,27). One study showed that 
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Figure 5 GSEA and assessment of immune cells. (A-D) GSEA plots illustrate strongly subAR-specific biological processes correlated with 
the diagnostic signature in both training and testing datasets. (E) Heatmaps of correlation between the levels of risk scores and immune status 
in both training and testing datasets. Red and blue color used in this figure represents positive correlation and negative correlation. The 
immune cells colored by blue represented statistically significant and consistent correlations in both training and testing datasets. (F-I) Scatter 
plots illustrating the correlation between risk scores and the natural killer T cell and central memory CD8 T cell in both training and testing 
datasets. P and r values from Spearman correlation analyses. *, P<0.05; **, P<0.01; ***, P<0.001. ROS,  reactive oxygen species;  GSEA, gene set 
enrichment analysis; NES, Normalized Enrichment Score; MDSC, myeloid-derived suppressor cells; subAR, subclinical acute rejection.

shielding of exposed PS by the ANXA5 protects against 
renal ischemia/reperfusion injury and has prognostic 
significance (28). SMPD4 is a protein-coding gene. SMPD4 
is neutral sphingomyelinase with poorly characterized 
enzymatic activity, which was found mutated in a specific 
form of congenital microcephaly (29). This gene is activated 
by DNA damage, cellular stress, and tumor necrosis factor, 
but it is downregulated by wild-type p53. Among its related 
pathways are sphingolipid metabolism (REACTOME) and 
metabolism from the GeneCard database (https://www.
genecards.org). RHOA is a protein-coding gene. Among its 
related pathways is toll-like receptor signaling pathways and 
DNA damage response (only ATM dependent). This gene 
encodes a member of the Rho family of small GTPases, 
which cycle between inactive GDP-bound and active GTP-

bound states and function as molecular switches in signal 
transduction cascades from the GeneCard database (https://
www.genecards.org). RHOA was shown to frequently 
regulate leukocyte-specifically expressed β2 integrins (30)  
to facilitate phagocytic uptake of pathogens (31),  
migration (32), and immunological synapse formation (33). 
TSC22D1, MYCBPAP, and MLC1 are protein-coding genes. 
The related pathways of TSC22D1 are Development_
TGF-beta receptor signaling and ectoderm differentiation. 
MYCBPAP may play a role in spermatogenesis and be 
involved in synaptic processes. The related pathways of 
MLC1 are colorectal cancer metastasis and actin dynamics 
signaling pathway from the GeneCard database (https://
www.genecards.org).

Over the last decades, noninvasive surveillance 
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techniques have become increasingly popular in recent 
decades for detecting immune-related complications such 
as subAR. Jackson et al. found that CXCL9 and CXCL10 
levels in the urine were significantly increased in recipients 
with subAR, clinical acute rejection, and BK virus infection 
but not in stable allograft recipients. Although urine 
CXCL9 and CXCL10 had higher accuracy of diagnosis 
compared with serum creatinine, these biomarkers couldn’t 
distinguish between three diagnoses, including subAR, 
clinical acute rejection, and BK virus infection (34). Tajima 
et al. analyzed 80 urinary samples from patients after kidney 
transplantation and identified human epididymis secretory 
protein 4 as a diagnostic biomarker (AUC =0.808), which 
required further verification in independent datasets (12).  
Friedewald et al. developed a 57-gene biomarker for 
diagnosing subclinical rejection using peripheral blood 
samples. However, the excessive number of genes in this 
model limited its clinical application. In two validation sets, 
positive predictive values of the 57-gene signature were 
only 51% and 47% respectively (2). Interestingly, Park  
et al. innovatively combined blood gene expression and cell-
free DNA to diagnose subAR, which performed better than 
each of assay alone (13). These findings suggested that we 
may include cell-free DNA as additional input matrices 
to enrich our gene signature and thus improving the 
diagnostic performance. Zhang et al. found that a changed 
diagnostic model composed of seventeen genes could 
accurately detect the subAR patients from the allograft 
stable patients. However, the coefficient of each gene in the 
17-gene signature constructed in the training cohort was 
not fixed in the validation cohort, suggesting that genes 
but not the model were universal in different cohorts (3). 
While, our study developed a model with only six genes 
and fixed gene coefficients, which has certain practical 
potential in clinical utility. The six-gene signature in our 
study needs prospective studies with a larger sample size to 
validate its performance in the diagnosis of subAR. Finally, 
we discussed potential clinical applications of noninvasive 
biomarkers, such as the period of time for results of testing 
and costs. The time to library preparation and sequence a 
sample on specific gene sets takes upwards of a week (35). 
To our knowledge, the cost comparison between gene 
expression biomarkers and conventional means (biopsies) 
is controversial and needed solid evidence to demonstrate. 
Costs for these techniques (including microarrays and 
next-generation sequencing technologies) have dropped 
dramatically over the last decade and are now comparable to 
other methods utilized routinely in commercial diagnostic 

laboratories based on improved workflows and analytical 
tools (36). Puttarajappa et al. raised interesting points that 
protocol biopsies are more cost-effective methods than 
noninvasive biomarkers (37). However, there are several 
concerns about the study by Grewal et al. indicate that 
analysis by Puttarajappa et al does not provide sufficient 
evidence to support their conclusion (37,38). Moreover, the 
gene expression signature for monitoring kidney recipients 
with stable renal function caused $6,509 savings per year 
gross versus using surveillance biopsies (38). Furthermore, 
development of commercial kits for a stable noninvasive 
biomarker can strengthen the feasibility of testing, shorten 
the time for library preparation and reduce costs.

Conclusions

In conclusion, a new diagnostic model for subAR with six 
genes was constructed and verified for subAR patients. 
Detecting the levels of these six genes may offer a potential 
tool for the diagnosis of subAR patients. Besides, the 
model was related to the immunological status and ROS 
metabolism of subAR patients in whole blood, providing 
insights into possible potential mechanisms of subAR. 
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