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Background: Bladder urothelial carcinoma (BLCA) is one of the most common urinary tract malignant 
tumors. Immune checkpoint blockade (ICB) therapy has significantly progressed the treatment of BLCA. 
This study aimed to investigate the role of specific genetic mutations that may serve as immune biomarkers 
for ICB therapy in BLCA. 
Methods: Mutation information and expression profiles were acquired from The Cancer Genome Atlas 
(TCGA) database. Integrated bioinformatics analysis was carried out to explore the subtypes with poor 
prognosis of BLCA. Functional enrichment analysis was also conducted. The infiltrating immune cells and 
the prediction of ICB response between different subtypes were explored using the immuCellAI algorithm. 
Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted to explore the effect of filaggrin 
(FLG) knockdown in BLCA 5637 and T24 cell lines.
Results: An overview of mutation information in BLCA patients was shown. FLG was identified to 
be strongly associated with the prognosis of BLCA patients and FLG wild-type was associated with 
poorer outcome. Prognostic FLG wild-type was divided into 2 subtypes (Sub1 and Sub2). Following an 
investigation of the subtypes, Sub2 of FLG wild-type was found to be associated with poorer outcome in 
BLCA. The differentially expressed genes (DEGs) between Sub1 and Sub2 were screened out and the 
DEGs were enriched in malignant tumor proliferation, DNA damage repair, and immune-related pathways. 
Furthermore, Sub2 of FLG wild-type was associated with infiltrated immune cells, and responded worse to 
ICB. Sub2 of FLG wild-type may be used as a biomarker to predict the prognosis of BLCA patients receiving 
ICB. The cellular experiments revealed that knockdown of FLG could suppress BLCA cell proliferation and 
promote apoptosis.
Conclusions: FLG is an oncogene that may affect the prognosis of BLCA patients through mutation. 
Sub2 of FLG wild-type is associated with poor prognosis and can be used to predict ICB response for 
BLCA treatment. This research provides a new basis and ideas for guiding the clinical application of BLCA 
immunotherapy.
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Introduction

Bladder urothelial carcinoma (BLCA) is one of the most 
common urinary tract malignant tumors and accounts 
for nearly 170,000 deaths annually worldwide (1). It is 
the ninth most incident neoplasm in China and the 10th 
most common malignant tumor worldwide (2). BLCA has 
become a serious public health problem because of its high 
incidence, high risk of recurrence, and high frequency of 
treatment failure (e.g., intravesical bacillus Calmette-Guerin 
or platinum-based chemotherapy) (3). The treatment 
for BLCA has remained conservative and the curative 
effect has not made a breakthrough (4). Due to the large 
number of recognizable antigens, BLCA might be sensitive 
to immunotherapy (5). With the rapid development of 
immunotherapy, immune checkpoint blockade (ICB) has 
become a novel treatment strategy for BLCA (6). ICB refers 
to inhibitory drugs developed for immune checkpoints, 
which can rejuvenate immune cells and kill tumor cells 
again (7). Therefore, the prediction of immune checkpoints 
is of clinical significance. 

The fi laggrin (FLG)  gene can encode a related 
protein that accumulates in the intermediate filaments of 
mammalian epidermal keratin (8). Previous studies have 
shown variability in the frequency of FLG variants (9). 
The mutation of FLG is associated with a variety of skin  
diseases (10) and cancers such as head and neck cancer, 
prostate cancer, urinary cancer, and bronchus and lung 
cancer (11). It is suggested that FLG gene mutation is one 
of the risk factors for cancer, as the associations between 
FLG loss-of-function mutations and cancer have been 
demonstrated in subgroup analyses (11). Besides, a previous 
study has shown that BLCA is a highly mutated tumor  
type (12). However, the associations between FLG mutation 
subtypes and BLCA need further investigation.

In the present study, we aimed to investigate the 
prognosis and immune checkpoint prediction role of 
FLG gene subtypes in BLCA. Mutation information 
and expression profiles were acquired from The Cancer 
Genome Atlas (TCGA) database. Integrated bioinformatics 
analysis was carried out to explore the mutation genes of 
BLCA and FLG. Following study of the subtypes of FLG 
and functional enrichment analysis, their relationships with 
prognosis and immune infiltration were also evaluated. 
Finally, we demonstrated the important role of FLG subtype 
in ICB. This research provides a new basis and ideas for 
guiding the clinical use of BLCA immunotherapy. We 
present the following article in accordance with the MDAR 

reporting checklist (available at https://tau.amegroups.com/
article/view/10.21037/tau-22-573/rc).

Methods

Data source, collection, and processing

Transcriptome data and clinical information of BLCA 
patients were downloaded from TCGA data portal (http://
cancergenome.nih.gov/). The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). The “maftools” R package was used to analyze the 
Mutation Annotation Format (MAF) file and visualize the 
somatic mutation data (13).

Identification of gene expression-based subtypes

Unsupervised clustering was performed using the R package 
“ConsensusClusterPlus” for class discovery based on the 
comparison of gene expression profiles (14), and 80% item 
resampling, 50 resamplings, and a maximum evaluated K of 
10 were selected for clustering. The cumulative distribution 
function (CDF) and consensus heat map were used to assess 
the optimal K.

Differential expression analysis

The differentially expressed mRNAs presented in a 
heat map and volcano plot were screened using the 
“GDCRNATools” package, with the criteria of |log 2[fold 
change (FC)]| >1 and false discovery rate (FDR) <0.05.

Functional enrichment analysis

To assess the function of differential genes between subtypes 
in BLCA, Gene Ontology (GO) annotation analyses were 
performed by using the “clusterProfiler” package of R 
software. P value <0.05 was set as the cut-off criterion. Gene 
set enrichment analysis (GSEA) was conducted to examine 
critical pathways represented under different conditions. 
The ridgeline plot was presented using clusterProfiler.

Immune infiltration analysis and immunotherapy 
prediction

The infiltrating immune cells and the prediction of 
ICB response between different subtype groups were 
explored using the immuCellAI algorithm. The abundance 

https://tau.amegroups.com/article/view/10.21037/tau-22-573/rc
https://tau.amegroups.com/article/view/10.21037/tau-22-573/rc
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
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differences of 18 immune cells were estimated, with P value 
<0.05 recognized as a significant difference. ICB therapy 
response was predicted by the model based on five anti-
PD-1 or CTLA4 therapy datasets (15).

Cell culture and gene knockdown

Bladder cancer cell lines 5637 and T24 were obtained from 
the American Type Culture Collection (ATCC; Manassas, 
VA, USA). Cells were supplemented with 10% fetal bovine 
serum (FBS) and 1% antibiotics (penicillin-streptomycin) 
and maintained at 37 ℃ and 5% CO2. To knockdown FLG 
expression in these 2 cell lines, transfection was performed 
using Lipofectamine RNAiMAX Reagent (Invitrogen, 
Carlsbad, CA, USA) according to the manufacturer’s 
instructions. The cells in TranswellTM-Clear well inserts 
were transfected with the respective siRNAs for 24 h before 
culturing for 7 days. The siRNAs for FLG were as follows:
	SiRNA1: sense, 5'-GCACAGUCAUCAUGAUAA 

ACA-3'; antisense, 5'-UUUAUCAUGAUGACUG 
UGCUU-3';

	SiRNA2: sense, 5'-GGAUAUUCACCUACUCAUA 
GA-3'; antisense, 5'-UAUGAGUAGGUGAAUAU 
CCUU-3';

	SiRNA3: sense, 5'-AGAAGUGCAAGCAGACAA 
ACA-3'; antisense, 5'-UUUAUCAUGAUGACUGU 
GCUU-3'.

RNA isolation and quantitative real-time polymerase 
chain reaction (qRT-PCR)

Total RNA was extracted from bladder cancer cell lines 
5637 and T24 using the TRIzol reagent (Invitrogen, 
Carlsbad, CA, USA). For first-strand cDNA synthesis, 
1 μg of total RNA was reverse-transcribed in a 20 μL 
reaction using the PrimeScript RT Reagent kit (Takara 
Bio, Kusatsu, Japan). The cDNA samples were amplified 
in triplicate via qRT-PCR using the MxPro-Mx3005P Real 
Time PCR system (Agilent Technologies, Santa Clara, CA, 
USA) and SYBR Premix ExTaq (Takara Bio) according to 
the manufacturer’s instructions. The qRT-PCR cycling 
conditions were as follows: initial denaturation at 95 ℃ for 
1 min, 95 ℃ for 35 s, and annealing at 60 ℃ for 35 s for  
40 cycles. The 2−ΔΔCT method, with GAPDH as the internal 
control, was used to determine relative mRNA expression. 
The fluorescent signals were measured after each primer-
annealing step at 60 ℃. The primer sequences for FLG and 
GAPDH were as follows:

	FLG: forward, 5'-TGAAGCCTATGACACCAC 
TGA-3'; reverse, 5'-TCCCCTACGCTTTCTTG 
TCCT-3'; 

	GAPDH: forward, 5'-GGAGCGAGATCCCTCC 
AAAAT-3'; reverse, 5'-GGCTGTTGTCATACTTC 
TCATGG-3'.

Cell Counting Kit-8 (CCK-8) assay

Cell proliferation was measured using CCK-8 (DojinDO, 
Japan) assays every 24 h for 3 days. Transfected cells  
(1×104 cells/well) were seeded into 96-well plates and 
cultured at 37 ℃ with 5% CO2. After incubation with CCK-
8 solution (10 μL) for 2 h, the absorbance was measured at 
450 nm using a spectrophotometer (Thermo Fisher, USA).

Flow cytometric assay

Cell apoptosis was assessed using the Annexin V-fluorescein 
isothiocyanate (FITC)/propidium iodide (PI) apoptosis 
detection kit (BD Biosciences, USA) according to the 
manufacturer’s instructions. In brief, 5637 and T24 cells 
were collected and washed with phosphate-buffered saline 
(PBS) after relevant treatment and transfection. Then, 
cells were suspended in 500 μL binding buffer, and 5 μL 
Annexin V-FITC and 5 μL PI were applied to stain cells at 
room temperature in the dark for 15 min. Finally, the cell 
apoptotic rate was analyzed by a FACScan® flow cytometer 
(BD Biosciences) and determined using FlowJo software 
(7.6.1; FlowJo LLC).

Statistical analysis

All bioinformatic analyses were operated on R software. 
All statistical analyses for biological experiments were 
conducted with GraphPad 8.0. All experiments were 
performed at least 3 times. Means ± standard deviations (SD) 
were used to express quantitative data. One-way analysis 
of variance (ANOVA) was applied to compare differences 
between the 2 groups. A value of P<0.05 indicated that the 
difference was statistically significant.

Results

Genetic mutation profiles in BLCA

The evolution of bladder cancer is strongly correlated with 
mutational events at the genome level, including multiple 
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tumor suppressors and oncogenes (16). To systematically 
analyze the genetic mutational landscape in BLCA, 
somatic genetic mutation data from TCGA database 
was downloaded for subsequent analysis. First, missense 
mutations accounted for the majority of all variant mutations 
(Figure 1A). Specifically, single nucleotide polymorphisms 
(SNPs) represented the largest fraction in variant type 
compared with insertions or deletions (Figure 1B).  
The most common single nucleotide variant (SNV) was 
C>T, followed by C>G and C>A (Figure 1C). The median 
of per variants samples was 148 (Figure 1D) and the variants 
classification summary is shown in Figure 1E.

We also demonstrated the top 20 hotspot mutated genes 
and their mutation frequencies in Figure 1F. Consistent with 

other cell types, the well-known tumor suppressor gene 
TP53 ranked the highest, with a mutation frequency of 47%. 
Titin (TTN) ranked second, with a mutation frequency of 
45%. The mutation status of TTN has been linked with 
chemotherapy and ICB response in lung cancer and other 
cell types (17,18). Notably, 5 histone modifiers showed higher 
mutation frequencies, such as KMT2D (29%), KDM6A 
(26%), ARID1A (24%), and KMT2C (17%), suggesting a 
genetic mutation-epigenetic disturbance in bladder cancer 
progression. Other hotspot mutation genes included MUC16 
(28%), PIK3CA (21%), SYNE1 (20%), and RB1 (18%). Other 
relative lower frequently mutated genes included RYR2 (17%), 
HMCN1 (17%), EP300 (16%), MACF1 (15%), FLG (15%), 
FAT4 (15%), FGFR3 (14%), STAG2 (14%), and ELF3 (13%).

Figure 1 Overview of mutation information in BLCA patients. (A-C) Variant classifications (A), variant types (B), and SNV classes (C) in 
BLCA samples. (D) Variants per samples. (E) Variant classification summary. (F) Waterfall plot showing the mutation information for the 
top 20 genes. Side bar plot shows log10 transformed Q-values estimated by MutSigCV. BLCA, bladder urothelial carcinoma; SNP, single 
nucleotide polymorphism; INS, insertion; DEL, deletion; SNV, single nucleotide variants.
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FLG wild-type tumors can be divided into 2 different 
prognostic groups

To further analyze the impact of hotspot gene mutation on 
survival status, we conducted a prognostic analysis of the 
above top 19 mutant genes based on gene mutation status 
(wild-type vs. mutation groups) (Figure S1). As a result, 
FLG was found to be strongly related to the prognosis 
of patients. Notably, the survival time of FLG wild-type 
patients was significantly shorter than that of FLG mutant 
patients (Figure 2A), suggesting a tumor-promoting role of 
FLG in BLCA. Consistent with the overall mutation types, 
the main mutation forms of the FLG gene were missense 
mutations (Figure 2B). The mutation forms of the other 
top 19 mutant genes are shown in Figure S2. Based on 
the above results, it was clear that the research objects in 
BLCA were FLG wild-type samples. Next, we combined 
the transcriptome data in TCGA database to explore 
whether FLG wild-type patients with high mortality rates 
have different subtypes. ConsensusClusterPlus software 
was applied and FLG wild-type patients were found to be 
divided into 2 categories, namely Sub1 and Sub2 (Figure 2C).  
Then, we compared the survival status of Sub1 and Sub2, 
and the results showed that the survival time of Sub2 
patients was significantly less than that of Sub1 patients 
(Figure 2D). At the same time, it could be seen that the 
mortality rate of Sub2 was as high as 90% (Figure 2E). The 
death rate of Sub1 was 46%, while the death rate of Sub2 
was 90%. Overall, we found that there are 2 types of FLG 
wild-type patients, and Sub2 of FLG wild-type in BLCA is 
associated with poorer outcome.

The differentially expressed genes (DEGs) between the 
subtypes of FLG wild-type are associated with malignant 
tumor proliferation and DNA damage repair

In the next step, we used transcriptome data to explore 
the biological signaling pathways of DEGs between the 
2 different subtypes. The DEGs between Sub1 and Sub2 
were analyzed (|log2FC| >1 and FDR <0.05). A total of 
778 up-regulated (e.g., GAMT, RTL5, KLHL3, UGT1A6, 
etc.) and 972 down-regulated DEGs (e.g., F8A1, KRT16, 
etc.) were identified (Figure 3A,3B). The results of Kyoto 
Encyclopedia of Genes and Genomes (KEGG) functional 
enrichment analysis based on DEGs showed that tumor 
proliferation-related pathways such as the MAPK signaling 
pathway, cell cycle, apoptosis, and tumor necrosis factor 
α (TNF-α) signaling pathway were significantly enriched 

(Figure 3C,3D). Furthermore, KEGG analysis in GSEA 
indicated that DEGs were also related to DNA damage 
repair, demonstrated by the enriched signaling pathways 
of DNA replication, nucleotide excision repair, base 
excision repair, and mismatch repair. Together, these results 
indicated that the DEGs between the subtypes of FLG wild-
type are associated with malignant tumor proliferation and 
DNA damage repair.

The DEGs between the subtypes of FLG wild-type are 
enriched in immune-related pathways

Next, we sequentially used transcriptome data to explore 
the biological significance of the 2 different subtypes of 
patients. The DEGs between Sub1 and Sub2 underwent 
GO biological process (BP) functional enrichment analysis. 
As shown in Figure 4A, pathways such as inflammation, 
chemokine production, and T cell activation were 
significantly enriched. The BP pathway was further 
analyzed by the GSEA method, and the results also showed 
that T cells play a key role in different types of tumor 
microenvironments. In addition, the results suggest that 
the pathways related to immunity and inflammation are 
significantly down-regulated, and the immune response 
involved in T cell activation is suppressed (Figure 4B).

Sub2 of FLG wild-type is associated with infiltrated 
immune cells and has a worse response to ICB

Infiltrating immune cells in tumors are a hallmark of 
immune surveillance and a necessary part of the complex 
microenvironment regulating tumor progression (19). 
It is known that T cells play a key role in mediating the 
tumor immune microenvironment, and different subtypes 
of T cells have different divisions of labor (20). Therefore, 
ImmuCellAI software was used to analyze the T cell types 
of FLG wild-type patients with different subtypes. As seen 
in Figure 5A, the results showed that CD4+ naïve T cells, 
central memory T cells (Tcm), and natural killer T (NKT) 
cells were significantly down-regulated in Sub2, while T 
helper type 1 (Th1) cells were significantly up-regulated 
in Sub2. CD4+ T cells can directly eliminate tumor cells 
through cytolysis or indirectly regulate the tumor immune 
microenvironment to target tumor cells (21). NKT cells 
are a type of T cell subgroup with specific NK cell markers 
in immune cells. After activation, they can directly act as 
anti-tumor effector cells to have a killing effect, and they 
can also activate other immune effector cells, such as NK 

https://cdn.amegroups.cn/static/public/TAU-22-573-supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-22-573-supplementary.pdf
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Figure 2 Prognostic FLG wild-type was divided into 2 subtypes. (A) Kaplan-Meier estimates of OS of FLG wild-type and FLG mutant 
groups in BLCA patients. (B) FLG gene mutation information. (C) Identifying the subtypes of FLG wild-type. ConsensusClusterPlus 
software was used to divide the samples into 2 subtypes, namely Sub1 and Sub2. (D) Kaplan-Meier estimates of OS of Sub1 and Sub2 from 
FLG wild-type in BLCA patients. (E) Overall survival time of Sub1 and Sub2 from FLG wild-type in BLCA patients. WT, wild type; HR, 
hazard ratio; CI, confidence interval; FLG, filaggrin; OS, overall survival; BLCA, bladder urothelial carcinoma.
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Figure 3 The 2 subtypes of FLG wild-type differed in biological functions. (A,B) Volcano map (A) and heat map (B) showing DEGs between 
Sub1 and Sub2. (C) Bubble chart showing the top 15 enriched KEGG signaling pathways of DEGs. (D) Ridgeline plot showing the GSEA 
results. DEGs, differentially expressed genes; FLG, filaggrin; FDR, false discovery rate; FC, fold change; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; GSEA, gene set enrichment analysis.

cells, to indirectly achieve an anti-tumor effect. NKT cells 
play an important role in anti-tumor immunity, acquired 
immune response, and immune regulation (22).

Changes in tumor microenvironment (TME), including 
the most influential T cells, are intensively related to 
the response to ICB for cancer treatment. For instance, 
CD4+FoxP3+ Treg is recognized as the suppressor of 
antitumor immune response in many types of cancer (23). 
ICB is beneficial for restoring T lymphocyte activity and 
breaking through the physical barrier of the tumor immune 
microenvironment to promote T cell homing. Therefore, 
it can activate anti-tumor immunity and improve the effect 
of immunotherapy. Based on the results of the current 
study, enhanced tumor immunogenicity predicted improved 
clinical response to ICB. Finally, we used immuCellAI to 
predict the response of ICB on FLG wild-type patients of 

different types. As shown in Figure 5B, the reaction rate of 
Sub1 was 33.7%, while the reaction rate of Sub2 was 10%. 
The results showed that Sub2 patients had a worse response 
to ICB. Altogether, the above results indicated that the 
detection of Sub2 FLG wild-type might be used in clinical 
immunotherapy.

Knockdown of FLG suppresses BLCA cell proliferation and 
promotes apoptosis

The bioinformatics analysis revealed that FLG plays an 
important role in tumor progression. Next, we performed 
cell experiments to verify the oncogenic role of FLG in 
BLCA cell lines 5637 and T24. Three kinds of siRNAs were 
used for qRT-PCR assays, and siRNA2 could significantly 
reduce the expression of FLG in both the 5637 and T24 cell 
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Figure 4 The DEGs between the subtypes of FLG wild-type were enriched in immune-related pathways. (A) Bubble chart showing the top 
15 enriched BP of DEGs. (B) Ridgeline plot showing the GSEA results. GO, Gene Ontology; BP, biological processes; DEGs, differentially 
expressed genes; FLG, filaggrin; GSEA, gene set enrichment analysis. 
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Figure 5 Sub2 of FLG wild-type was associated with infiltrated immune cells and had a worse response to ICB. (A) Associations of  
2 subtypes of FLG wild-type with infiltrated immune cells. The “1” and “2” on the abscissa represent subtype 1 and subtype 2, respectively. 
(B) Predicting immune checkpoints for 2 subtypes of FLG wild-type. ICB, immune checkpoint blockade; FLG, filaggrin; R, response; NR, 
non-response; Tc, cytotoxic T cells; Tex, exhausted T cells; Tr1, type 1 regulatory cells; nTreg, natural regulatory T cells; iTreg, induced 
regulatory T cells; Th1, type 1 T helper cells; Th2, type 2 T helper cells; Th17, type 17 T helper cells; Tfh, follicular helper T cells; Tcm, 
central memory T cells; Tem, effector memory T cells; NKT, natural killer T cells; MAIT, mucosal-associated invariant T cells; Tgd, 
gamma-delta T cells.

lines (Figure 6A). Hence, we chose siRNA2 for subsequent 
experiments. The CCK-8 assays indicated that knockdown 
of FLG could decrease the proliferation of 5637 and T24 
cell lines (Figure 6B,6C). The flow cytometry experiments 
indicated that knockdown of FLG increased the apoptosis of 
5637 and T24 cell lines (Figure 6D). These results revealed 
that FLG is an oncogene, and knockdown of FLG can 
suppress BLCA cell proliferation and promote apoptosis.

Discussion

In this study, cellular experiments revealed that FLG is an 
oncogene in BLCA and knockdown of FLG suppressed 
BLCA cell proliferation and promoted apoptosis. This is 
the first study to show that the survival time of FLG wild-

type patients was significantly less than that of FLG mutant 
patients based on BLCA gene mutation data in TCGA 
database. Furthermore, we identified 2 different types 
of FLG wild-type patients (Sub1 and Sub2). Though the 
sample size of Sub2 was 10, the prognosis of Sub2 patients 
was worse than that of Sub1 patients, and the mortality 
rate of Sub2 patients was as high as 90%. Hence, we paid 
attention to the biological functions and pathways of Sub2 
in the subsequent research. We also found that the DEGs 
between the subtypes of FLG wild-type were associated 
with malignant tumor proliferation and DNA damage 
repair. These results suggest that FLG wild-type subtypes 
play a significant role in the progression of BLCA.

Tumors are related to the accumulation of somatic 
mutations in cells as a result of carcinogens (24). Studies 
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Figure 6 Knockdown of FLG suppressed BLCA cell proliferation and promoted apoptosis. (A) The knockdown efficiency was detected by 
the qRT-PCR assay in the 5637 and T24 cell lines. (B) Analysis of cell proliferation by the CCK-8 assay was performed in the 5637 and 
T24 cell lines. (C,D) Analysis of cell apoptosis by flow cytometry was performed in the 5637 and T24 cell lines. *, P<0.05; **, P<0.01; ***, 
P<0.001. PE-A, phycoerythrin-area; FITC-A, fluorescein isothiocyanate-area; UL, upper left quadrant; LL, lower left quadrant; UR, upper 
right quadrant; LR, lower right quadrant; FLG, filaggrin; PI, propidium iodide; BLCA, bladder urothelial carcinoma; OD, optical density. 
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have shown that BLCA is a highly mutated tumor type and 
the progression of BLCA heavily depends on the extent of 
gene mutation. For example, Zhang et al. found that BLCA 
patients with higher tumor mutational burden (TMB) had 
more survival benefits (12). In the present study, patients 
who had more FLG gene mutation also had longer survival 
time. The mutations of FGFR3, HRAS, KRAS, NRAS, and 
PIK3CA in BLCA are a diagnostic companion to define 
patients for targeted therapies (25). Recognizing genetic 
mutations may allow for early genetic screenings for BLCA 
and new therapies targeting cells with these mutations (26). 
Despite other potential prognostic biomarkers such as FAGs, 
CDC20, EIF2S2, PSMA3, DNM1L, TUBA4A, UCHL1 
and PYCR1 have been discovered based on different 
criterion to classify BLCA, regardless of their mutation 
rates (27-30). The FLG gene encodes a related protein that 
accumulates in the intermediate filaments of mammalian 
epidermal keratin, and FLG has shown variability in the 
frequency variants (9). FLG gene mutation is one of the 
risk factors for cancer, as demonstrated by the associations 
between FLG loss-of-function mutations and cancer in 
subgroup analyses (11). Our study revealed that T cell 
infiltration was largely affected in patients with higher FLG 
mutation rate. In consistent with our results, previous studies 
have also shown that FLG gene mutation may exacerbate 
carcinogenesis, accompanied with higher tumor mutation 
burden and immune cell infiltration (31,32). However, the 
specific mechanisms remain to be explored in the future.

As one of the most common urinary system cancers 
worldwide,  BLCA ranges  from unaggress ive  and 
noninvasive tumors to aggressive and invasive tumors with 
high disease-specific mortality (3). However, traditional 
treatments have not shown significant improvements in its 
5-year survival rate (33). Recently, newer immunotherapies 
have generated a great deal of interest in BLCA, 
considering that a favorable immune microenvironment 
should be better at fighting against the cancer evolution (34). 
In this study, the results of functional enrichment analysis 
of differential genes showed that related pathways such as 
inflammation, chemokine production, and T cell activation 
were significantly enriched. GSEA of the BP pathways 
suggested that the pathways related to immunity and 
inflammation were significantly down-regulated in Sub2, 
and the immune response involved in T cell activation was 
suppressed. Analysis of the T cell subtypes of FLG wild-type 
patients showed that Sub2 of FLG wild-type was correlated 
with infiltrating levels of immune cells (CD4+ naïve T cells, 
Tcm, and NKT cells). These results indicated that Sub2 

was related to the immune microenvironment of BLCA. 
Investigation of the relationship and biological mechanisms 
between FLG subtypes and the immune microenvironment 
will help to better understand the role of immunotherapy in 
BLCA treatment.

Immune checkpoint inhibitors refer to inhibitory 
drugs developed for immune checkpoints, which can 
rejuvenate immune cells and kill tumor cells again (35). 
ICB is beneficial for restoring T lymphocyte activity 
and breaking through the physical barrier of the tumor 
immune microenvironment to promote T cell homing. 
The application of ICB, such as anti-programmed cell 
death ligand 1 (anti-PD-L1) and cytotoxic T lymphocyte-
associated antigen 4 (anti-CTLA-4), is emerging as a 
novel treatment strategy for BLCA (36). Therefore, the 
prediction of immune checkpoints is of great clinical 
significance for BLCA. A previous study has shown a 
correlation between specific genetic mutations and the 
efficacy of immunotherapy (37). It was reported that 
TMB, microsatellite instability, mismatch repair gene 
deficiency, inflamed T cells and interferon γ (IFN-γ) gene 
expression profiles, and DNA damage response and antigen 
presentation defects may serve as potential biomarkers for 
immune checkpoints of immunotherapy (38). Zhang et al.  
identified NTRK3 as a potential prognostic biomarker 
associated with TMB and immune infiltration in BLCA (12).  
Lin et al. found that NCOR1 mutations may be a potential 
biomarker for predicting the prognosis of ICB in patients 
with BLCA, such as the NCOR1-mutant group has 
significantly longer overall survival than the NCOR1-wild-
type group (39). Similarly, the application of neoadjuvant 
chemotherapy (NC), the standard of care for bladder cancer 
patients before radical cystectomy, only has promising 
effects in patients with certain molecular subtypes, such 
as the luminal-like subtypes in muscle-invasive bladder 
cancer (40,41). Therefore, it would be helpful to select 
or incorporate therapies including ICB and NC based 
on the gene profiles of BLCA patients. In this study, we 
predicted the immune checkpoints of FLG wild-type 
patients of different subtypes, and the results showed 
that Sub2 patients responded worse to ICB. The results 
suggest that this subtype of FLG wild-type may prove to 
be a novel biomarker and contribute to the development of 
immunotherapy for BLCA.

Conclusions

In conclusion, this study revealed that FLG  is  an 
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oncogene, and knockdown of FLG can suppress BLCA cell 
proliferation and promote apoptosis. We also found that 
FLG wild-type is associated with poorer outcome in BLCA 
patients, and prognostic FLG wild-type was divided into  
2 subtypes (Sub1 and Sub2). The DEGs between Sub1 and 
Sub2 were enriched in malignant tumor proliferation, DNA 
damage repair, and immune-related pathways. Furthermore, 
Sub2 of FLG wild-type was associated with infiltrated 
immune cells, and these patients responded worse to ICB. 
Accordingly, Sub2 of FLG wild-type may prove to be a 
novel diagnosis method and contribute to the development 
of immunotherapy for BLCA. Further experiments in vivo 
are needed for clinical validation and to investigate the 
underlying mechanism.
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Supplementary

Figure S1 The prognostic analysis of the top 19 mutant genes. v/s, versus; WT, wild type; HR, hazard ratio.
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Figure S2 The mutation forms of other top 19 mutant genes. v/s, versus; WT, wild type; HR, hazard ratio.


