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Background: Germline pathogenic variants are estimated to affect 3–5% of patients with renal cell 
carcinoma (RCC). The identification of patients with hereditary RCC is important for cancer screening and 
treatment guidance.
Methods: Whole-exome sequencing (WES) (n=69) or gene panel sequencing containing 139 genes (n=54) 
related to germline cancer predisposition was used to analyze germline mutations in 123 patients with 
RCC admitted to Department of Urology, The Third Medical Center of Chinese PLA General Hospital. 
Chi-square test (χ2) was used to analyze relationship between clinicopathologic parameters and germline 
mutations.
Results: A total of 13 (10.57%) patients carried pathogenic or likely pathogenic germline mutations in 
10 cancer predisposition genes, including VHL, FH, FLCN, SDHB, MUTYH, RAD51C, NBN, RAD50, 
FANCI, and FANCM. A total of 6 of these 10 cancer predisposition genes were associated with maintenance 
of genomic stability and DNA repair. Patients harboring pathogenic germline mutations tended to have 
an earlier RCC onset. The prevalence of deleterious mutations was higher in patients with bilateral or 
multifocal RCC compared to patients without bilateral or multifocal RCC. Patients with non-clear cell RCC 
(nccRCC) were significantly more likely to have RCC-associated gene mutations.
Conclusions: To our knowledge, this is the first report of pathogenic germline mutations in the FANCI 
and FANCM genes and heterozygous germline missense mutation in exon 5 of the FH gene c.563A>T:p.
N188I in RCC. Young RCC patients, patients with bilateral or multifocal RCC, or patients with nccRCC 
are more likely to have pathogenic/potentially pathogenic germline mutations.
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Introduction

Renal cell carcinoma (RCC) is the ninth most frequently 
diagnosed cancer in men (1). RCC comprises several 
subtypes, including clear cell RCC (ccRCC), papillary 

RCC type 1 (pRCC T1), pRCC T2, mixed oncocytoma or 

chromophobe RCC (chRCC), and other rare subtypes (2). 

Tumors that do not meet the criteria for any established 

subtype are categorized as unclassified (3). Loss of function 
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of the von Hippel-Lindau (VHL) protein, mutations 
in MET, FH, and FLCN have been considered major 
mutations in ccRCC, pRCC T1, and pRCC T2, and 
mixed oncocytoma or chRCC, respectively (2). Germline 
mutations, one of genetic alterations, exist in all cells in 
body and can be inherited (4,5). Germline mutations are 
associated with generation of various tumors and drug 
resistance (6-8). A recent American study found that 
16.1% of RCC patients carried germline mutations in a 
RCC predisposition gene, and some cases of early-onset 
aggressive RCC without defined pathogenic germline 
mutations have been observed (9). It seems highly probable 
that underlying causative germline mutations exist in RCC. 
Thus, further investigations need to be explored in different 
patient populations with special molecular and clinical 
characteristics.

A previous report suggested that patients with renal 
cancer affected by hereditary factors account for 3–5% of 
all RCC patients (10), which is likely underestimated (11). 
Studies have shown that germline mutations in 14 genes 
(VHL, FH, SDHB, SDHC, SDHD, MET, FLCN, PTEN, 
TSC1, TSC2, MITF, BAP1, PBRM1, and CDKN2B) can 
increase the risk of RCC (12-15). It is particularly relevant 
to identify Chinese patients with inherited RCC because 
their clinical implications can differ from those of patients 
with sporadic RCC (16,17). However, the genetic basis of 

some inherited renal cancers has not been clearly elucidated.
To explore the genetic basis of inherited renal cancers, 

we conducted a comprehensive germline analysis of 
multiple renal cancer predisposition genes in a cohort of 
Chinese patients. Among the patients in our cohort, 10.57% 
carried pathogenic/likely pathogenic germline mutations. 
Most (6/10) of the mutated genes were associated with 
maintenance of genomic stability and DNA repair. Young 
RCC patients, patients with bilateral or multifocal RCC, or 
patients with non-clear cell RCC (nccRCC) are more likely 
to have pathogenic/likely pathogenic germline mutations. 
Importantly, this is the first study to report that identical 
germline mutations of the FANCI gene c.158-2A>G and 
FANCM gene c.4515+1G>C exist in patients with RCC and 
is the first article to show heterozygous germline missense 
mutation in exon 5 of the FH gene c.563A>T:p.N188I in 
RCC. We present the following article in accordance with 
the MDAR reporting checklist (available at https://tau.
amegroups.com/article/view/10.21037/tau-23-32/rc).

Methods

Patients

Peripheral blood was obtained from 123 patients with 
RCC in the Department of Urology, The Third Medical 
Center, Chinese PLA General Hospital between 1 August 
2017 and 31 December 2020. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). The study was approved by the Ethics Committee 
of the Chinese PLA General Hospital (No. S2013-065-01) 
and informed consent was taken from all the patients.

Genomic sequencing

In our cohort, whole-exome sequencing (WES) (n=69) or 
gene panel sequencing containing 139 genes (n=54) related 
to germline cancer predisposition was performed to evaluate 
the pathogenic/likely pathogenic germline mutation rate 
and identify de novo pathogenic/likely pathogenic germline 
mutations in patients with RCC (Table S1). Germline DNA 
was obtained from peripheral white blood. Polymerase 
chain reaction (PCR) was performed to amplify DNA. 
The enriched DNA, which was converted to sequencing 
libraries, was sequenced and analyzed using the Illumina 
Novoseq platform (Illumina, San Diego, CA, USA), as 
previously described (18).

Highlight box

Key findings
•	 Pathogenic germline mutations in FANCI and FANCM in RCC; 

heterozygous germline missense mutation in exon 5 of the FH 
gene c.563A>T:p.N188I in RCC.

What is known and what is new?
•	 Previous research found that germline mutations in VHL, FH, 

SDHB, SDHC, SDHD, MET, FLCN, PTEN, TSC1, TSC2, MITF, 
BAP1, PBRM1, and CDKN2B can increase the risk of RCC.

•	 We found that germline mutations of the FANCI gene c.158-
2A>G and FANCM gene c.4515+1G>C exist in patients with RCC; 
heterozygous germline missense mutation in exon 5 of the FH 
gene c.563A>T:p.N188I in RCC.

What is the implication, and what should change now?
•	 FANCI and FANCM pathogenic germline mutations might play 

an important role in tumorigenesis and tumor progression in RCC. 
Young RCC patients, patients with bilateral or multifocal RCC, or 
patients with nccRCC should be offered genetic testing for more 
precise clinical implications.
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Table 1 Demographic characteristics

Characteristics N %

Total 123 100.0

Age at diagnosis (years)

Median 54

Range 19 to 85

Age 46 or younger 41 33.3

Age 47 or older 82 66.7

Sex

Female 30 24.4

Male 93 75.6

Race or ethnic background

Chinese 123 100.0

Family history of RCC

First-degree relative 1 0.8

First, second, or third-degree relative 2 1.6

More than 1 relative 2 1.6

Family history of malignancy

First-degree relative 34 27.6

First, second or third-degree relative 39 31.7

More than 1 relative 11 8.9

Tumor histologic subtype

Clear cell 95 77.2

Papillary 9 7.3

Chromophobe 6 4.9

Translocation-associated 6 4.9

Unclassified 4 3.3

Others 3 2.4

Patient history of prior malignancy

Yes 7 5.7

No 116 94.3

Bilateral or multifocal RCC at diagnosis

Yes 16 13.0

No 107 87.0

More than one germline mutation

Yes 2 1.6

No 121 98.4

Nephrectomy

Yes 121 98.4

No 2 1.6

Table 1 (continued)

Table 1 (continued)

Characteristics N %

Stage at diagnosis

Stage I 52 42.3

Stage II 5 4.1

Stage III 41 33.3

Stage IV 23 18.7

Unknown 2 1.6

Grade at diagnosis

Grade I 7 5.7

Grade II 52 42.3

Grade III 34 27.6

Grade IV 5 4.1

Unknown 25 20.3

RCC, renal cell carcinoma.

Statistics

Clinical and pathologic characteristics were compared using 
chi-square test (χ2) and P values <0.05 were considered 
significant. Statistical analyses were performed using SPSS 
24.0 software (IBM Corp., Armonk, NY, USA).

Results

Patient characteristics

The characteristics and clinical features of the 123 patients 
are summarized in Table 1. In our study, the age at diagnosis 
varied from 19 to 85 years (median, 54 years). Among the 
123 patients, 95 had ccRCC (77.2%) and 28 had nccRCC 
(22.8%). Overall, 7 patients (5.7%) with a history of a 
second malignant tumor were identified. Of the 7 patients 
with secondary malignant tumors, 2 were diagnosed with 
breast cancer (data not shown). A total of 16 (13.0%) 
patients with bilateral or multifocal disease were reported 
and only 2 (1.6%) patients had a family history of RCC (data 
not shown).

Germline mutations

A total of 13 patients (10.6%) harbored pathogenic or 
likely pathogenic germline variants in 10 different cancer 
predisposition genes (Figure 1A). Mutations in RCC-
associated genes were identified in 9 (7.3%) patients, and 
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mutations in genes not clearly associated with RCC were 
identified in 6 (4.9%) patients (Figure 1B). A total of 6 of 95 
(6.3%) ccRCC patients had pathogenic/likely pathogenic 
germline mutations, and 7 of 28 (25.0%) nccRCC patients 
had pathogenic/likely pathogenic germline mutations 
(Figure 1C, Table 2). Among the 95 ccRCC patients, 4 (4.2%) 
patients harbored pathogenic/likely pathogenic germline 
mutations in RCC-associated genes (Figure 1D). Among the 
28 patients with nccRCC, 5 (17.9%) harbored pathogenic/
likely pathogenic germline mutations in RCC-associated 
genes (Figure 1D). For RCC-associated genes (Figure 1B, 
Table S2), 4 deleterious VHL mutations were detected 
in 4 individuals (3.3%), including 75.0% (n=3) known 
deleterious missense mutations and 25.0% (n=1) nonsense 

mutations. We detected 2 deleterious FLCN mutations 
in 2 participants (1.6%), including 1 frameshift in/del 
mutation and 1 deleterious missense mutation. We detected 
2 deleterious FH mutations in 2 participants (1.6%), both of 
which were deleterious missense mutations. We also found 
1 SDHB deleterious missense mutation in 1 participant 
(0.8%). For other cancer-associated genes (Figure 1B,  
Table S2), 1 MUTYH deleterious missense mutation, 1 
RAD51C deleterious missense mutation, 1 NBN likely 
pathogenic missense mutation, 1 RAD50 frameshift 
mutation, 1 FANCI deleterious missense mutation, and 1 
FANCM deleterious missense mutation were identified. 
The VHL, FH, FLCN, SDHB, MUTYH, NBN ,  and 
RAD51C pathogenic or likely pathogenic mutations in 
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Figure 1 Frequency of germline variants in the cohort of 123 patients with RCC. (A) Percentage of patients with germline variants in RCC 
predisposition genes including VHL, FH, FLCN, SDHB, MUTYH, RAD51C, NBN, RAD50, FANCI, and FANCM. One patient harbored 
VHL and FANCM mutations simultaneously, and another patient harbored VHL and RAD51C mutations simultaneously. (B) Number of 
pathogenic mutations by histologic subtype. (C,D) Percentage of germline mutations in ccRCC and nccRCC. ccRCC, clear cell renal cell 
carcinoma; nccRCC, non-clear cell renal cell carcinoma; RCC, renal cell carcinoma.
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RCC have been reported before, whereas the FANCI and 
FANCM pathogenic germline mutations in RCC were 
reported for the first time in this study. Interestingly, 2 
patients in our cohort had simultaneous occurrences of 2 
causative mutations (Table S2). Patients harboring VHL and 
FANCM mutations (nonsense and missense, respectively) 
simultaneously experienced stage I ccRCC at 29 years of 
age, without a family history of malignant diseases. Similar 
characteristics were observed in a patient harboring VHL 
and RAD51C mutations (deletions and missense mutations, 
respectively). He was diagnosed with stage I ccRCC at 44 
years of age, with a family history of malignant cancers. 
Compared with the phenotypes of patients with only 1 
mutation in VHL, no apparent phenotypic differences were 
found between these 2 patients. The only difference was 
that patients with only VHL mutations had a single lesion, 
whereas the patients with both VHL and FANCM/RAD51C 
mutations had multifocal RCC. In these 2 cases, it seemed 
that additional FANCM or RAD51C mutations did not affect 

the age of RCC onset. Thus, to draw a decisive conclusion, 
further investigations are required to demonstrate the 
precise role of FANCM and RAD51C in tumorigenesis and 
tumor progression of RCC.

Clinical characteristics associated with germline mutations

Our cohort comprised 6 patients with ccRCC, 2 patients 
with pRCC, 2 with chRCC, 1 with microphthalmia 
(MiT) family translocation RCC, and 2 with unclassified 
RCC who carried pathogenic/likely pathogenic germline 
mutations (Figure 2, Table S2). The proposed renal cancer 
predisposition gene FH pathogenic germline mutations 
were identified in the 2 patients with pRCC. There 
were 2 patients with chRCC who harbored mutations in 
either FLCN or SDHB. The mean age of onset of RCC 
in germline mutation carriers was 37.2 years. Of these 13 
patients, 2 (15.4%) experienced metastasis. A positive family 
history of cancer was reported in 6 patients (Table S2). The 

Table 2 Clinicopathologic parameters associated with germline mutations

Clinicopathologic parameters With germline mutations Without germline mutations P value

Age at diagnosis, n <0.001

≤46 years 11 30

>46 years 2 80

Subtype, n 0.005

Clear cell 6 89

Non-clear cell 7 21

Stage, n 0.396

Stage I & stage II 8 53

Stage III & stage IV 5 55

Grade 0.678

Grade 1 & grade 2 6 53

Grade 3 & grade 4 3 36

Family history of malignancy, n 0.369

Yes 6 39

No 7 77

Bilateral or multifocal RCC, n 0.004

Yes 5 11

No 8 99

RCC, renal cell carcinoma.
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prevalence of deleterious germline mutations is associated 
with the age at diagnosis. The probability of germline 
mutations occurring in patients aged 46 years or younger 
remained higher than that in patients older than 46 years 
[11 (26.8%) of 41 vs. 2 (2.4%) of 82, P<0.001] (Table 2). 
We also found that the prevalence of germline mutations 
was associated with the histologic subtype. Patients with 
nccRCC were more likely to carry germline mutations [7 
(25%) of 28 vs. 6 (6.3%) of 95, P=0.005] (Figure 1C, Table 2).  
Furthermore, we also found that patients with nccRCC 
were more likely to have RCC-associated gene mutations 
[5 (17.9%) of 28 vs. 4 (4.2%) of 95, P=0.015] (Figure 1D). 
Compared to patients without bilateral or multifocal RCC, 
those with bilateral or multifocal RCC were more likely to 
harbor deleterious mutations [5 (38.5%) of 13 vs. 11 (10.0%) 
of 110, P=0.004] (Table 2). However, a family history of 
cancer was not associated with more mutations (Table 2). 
Additionally, a higher stage or grade was not associated with 

more deleterious pathogenic germline mutations in our 
study.

Genes involved in the maintenance of genomic stability or 
DNA repair were frequently mutated

In our cohort, 13 (13/123, 10.6%) patients harbored 
deleterious germline mutations in cancer predisposition 
genes. Some 6 of 10 cancer predisposition genes were 
associated with maintenance of genomic stability and 
DNA repair (Figure 3). Deleterious germline mutations of 
3 Fanconi anemia (FA)-related genes (FANCI, FANCM, and 
RAD51C) were detected. The protein products of these genes 
function cooperatively with other proteins associated with 
DNA repair processes to maintain genome homeostasis, and 
loss of function of these genes leads to FA (19). In addition, 
deleterious germline mutations in RAD50 and NBN have 
been detected: RAD50 and NBN, members of the MRE11/
RAD50/NBN double-strand break repair complex, are 
thought to repair DNA double-strand breaks and activate 
DNA damage-induced checkpoints (20,21). Loss of 
function of these genes is associated with rare chromosomal 
instability disorders (20,21). Additionally, a deleterious 
germline mutation in MUTYH was detected. MUTYH, a 
gene encoding a DNA glycosylase, plays an important role 
in oxidative DNA damage repair. Inactivation of MUTYH 
leads to G:C>T:A transversion, which increases the risk of 
colorectal cancer (22).

Novel pathogenic germline mutation in RCC

In this study, FANCI and FANCM pathogenic/likely 
pathogenic germline mutations in patients with RCC were 
reported for the first time. Patient RCC88 diagnosed with 
ccRCC carried a FANCM germline mutation annotated as 
pathogenic in ClinVar (23). This revealed a heterozygous 
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NM_020937:c.4515+1G>C germline FANCM missense 
mutation, resulting in inactivation of FANCM (Table S3). 
This intronic variant is a nucleotide substitution located 1 
nucleotide downstream of coding exon 17. Interestingly, 
patient RCC88 simultaneously harbored a pathogenic 
VHL germline mutation. Subsequent Sanger sequencing of 
DNA samples collected from the blood of patient RCC88 
confirmed the presence of FANCM and VHL germline 
mutations (Figure 4A,4B). Interestingly, genetic testing of 
DNA samples collected from the proband’s parents and 

brother revealed that none of them were carriers of FANCM 
or VHL mutations (Figure S1), suggesting that the de novo 
germline mutation occurs during formation of the sperm or 
egg from an unaffected parent. In addition, patient RCC88 
did not have a family history of cancer. Patient RCC63, 
diagnosed with unclarified RCC, carried a heterozygous 
NM_001113378: c.158-2A>G germline FANCI missense 
mutation, which is predicted to inactivate the FANCI 
gene (Table S3). This intronic variant is a nucleotide 
substitution located 2 nucleotides upstream of coding exon 4. 

FANCM c.4515+1G>C
170 180 190 200

VHL c.246G>A; p.W88*
240 250 260 270

FANCI c.158-2A>G
270 280 290

FH c.563A>T:p.N188I
140 150 160

RAD50  c.2165dupA:p.E723fs
170 180 190

A

B

C

D

E

Figure 4 Variants of FANCM, VHL, FANCI, FH, and RAD50 in patients with RCC. Sanger sequencing chromatograms for FANCM-
positive, VHL-positive, FANCI-positive, FH-positive, and RAD50-positive cases. Genetic testing of peripheral blood collected from patient 
RCC88 identified (A) a FANCM germline mutation (c.4515+1G>C) and (B) a VHL germline mutation (c.264G>A; p.W88*). Genetic testing 
of peripheral blood collected from patient RCC63, RCC121, and RCC93 identified (C) a FANCI germline mutation (c.158-2A>G), (D) an 
FH germline mutation (c.563A>T:p.N188I), and (E) a RAD50 germline mutation (c.2165dupA; p. E723fs), respectively. RCC, renal cell 
carcinoma.
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Subsequent Sanger sequencing of DNA samples collected 
from the blood of patient RCC63 confirmed FANCI 
germline mutations (Figure 4C). Annotated as pathogenic 
in ClinVar, the FANCI variant was considered pathogenic 
according to the American College of Medical Genetics 
and Genomics (ACMG) criteria (24). The patient’s father 
was diagnosed with gastric cancer. In addition, we report 
a case of aggressive hereditary leiomyomatosis and RCC 
(HLRCC) in a 32-year-old woman who presented with a 
novel heterozygous germline missense mutation in exon 
5 of FH (c.563A>T:p.N188I) (Figure 4D, Table S3). The 
patient’s mother was diagnosed with endometrial carcinoma. 
Consistent with a recent study, we also found a pathogenic 
RAD50 germline mutation (c.2165dupA; p.E723fs) in a 
24-year-old RCC patient with no family history of cancer 
(Figure 4E, Table S3) (25).

Discussion

Patients with renal cancer affected by hereditary factors 
account for 3–5% of all RCC patients. Pathogenic germline 
mutations in cancer predisposition genes are associated 
with tumorigenesis and development of RCC (26). VHL 
disease is an autosomal dominant disorder caused by 
germline mutations in the VHL gene. Patients with VHL 
disease are particularly prone to renal tumors when a 
stochastic secondary inactivation of the other VHL allele 
occurs (27). Similar to those with VHL disease, patients 
with TSC1/2, FH and SDHB/C/D germline mutations 
are more likely to have RCC (28-30). Germline mutation 
in MET can promote hereditary pRCC initiation and 
progression (31,32). The identification of RCC patients 
with certain pathogenic germline mutations has important 
clinical implications, guiding systemic therapy and clinical 
trial eligibility (16,17,33). Although most studies have 
investigated the prevalence of germline mutations among 
patients with RCC and some cancer-predisposition genes 
involved in the tumorigenesis and tumor progression of 
RCC have been identified (9,25,34), the genetic basis 
of some inherited renal cancers has not been clearly 
elucidated. Here, we conducted a study using WES or gene 
panel sequencing of 139 genes to evaluate the pathogenic/
likely pathogenic germline mutation rate and identify de 
novo pathogenic/likely pathogenic germline mutations in 
patients with RCC.

Patients with nccRCC or multifocal RCC, multifocal 
disease at diagnosis, are at higher risk for inherited 
syndromes and are significantly more likely to have 

pathogenic germline mutations (9). Similarly, we showed 
that patients with bilateral or multifocal nccRCC are 
more likely to have pathogenic/likely pathogenic germline 
mutations. Early-onset cancer is a hallmark of an inherited 
cancer predisposition (35,36), and studies have shown 
that patients with mutations in RCC-associated genes, 
such as VHL, FH, FLCN, and SDHB, are at risk for the 
development of early-onset RCC (37-39). Loss of function 
of MUTYH accounts for 3% of early-onset CRC (40,41). 
Mutations in MRE11-RAD50-NBS1 (MRN) complex 
components, FANCM, or FANCI are associated with early-
onset cancers (42-44). We also found that patients with early 
onset are more likely to carry pathogenic mutations (Table 2). 
However, Carlo et al. suggested that age at diagnosis was not 
related to the possibility of germline mutations in patients 
with advanced RCC (9). These seemingly contradictory 
findings may be due to Carlo et al. only including patients 
with advanced tumor stages in their study.

Genome instability is a hallmark of cancer cells and can 
be accelerated by defects in cellular responses to DNA 
damage (45,46). In our study, we found that 6 of 10 cancer 
predisposition genes were associated with maintenance of 
genomic stability and DNA repair (Figure 3). Deleterious 
germline mutations of 3 FA-related genes were reported. 
FA is considered a genetic disease associated with a 
predisposition to non-hematological and hematological 
malignancies (47,48). The proteins encoded by these genes 
comprise the DNA damage response (DDR) system and play 
vital roles in various cellular processes. Increasing evidence 
suggests that the defective function of these proteins can be 
associated with genomic instability, increasing cancer risk (49).  
Thus, further studies are required to elucidate the role of 
each component in tumorigenesis and tumor progression 
in RCC. RAD50 and NBN are components of the MRN 
complex and are involved in the repair of DNA double-
strand breaks. As one of the first sensors and responders to 
DNA damage, the MRN complex plays a vital role in DDR 
(45,50). Mutations in the MRN complex are also associated 
with an increased risk of cancer, suggesting that the 
complex functions as a tumor suppressor (51-54). However, 
some studies have shown that the complete knockout of 
any component of the murine MRN complex can impair 
early embryonic development (55-57), suggesting that some 
functions of the MRN complex must be preserved in human 
disease-associated alleles.

In our study, we found that 2 patients with RCC 
harbored FANCI and FANCM pathogenic germline 
mutations. To our knowledge, this is the first report of 
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germline mutations in these pathogenic genes in RCC. As 
highly conserved DNA remodeling enzymes (58-60), FANCI 
and FANCM can activate the FA DNA repair pathway to 
maintain genomic stability. Patients with FA, characterized 
by the clinically and genetically heterogeneous syndrome of 
bone marrow failure, are predisposed with a predisposition 
to cancers (61-64). Studies have shown that the loss of 
function of some FA genes (such as BRCA1 and BRCA2) 
by germline inactivation can result in familial breast cancer 
predisposition syndromes (65-70). In addition, pathogenic FA 
germline mutations can occur in colorectal cancer, pancreatic 
cancer, and leukemia (71-73). As members of the FA 
complementation group, FANCI and FANCM play important 
roles in the initiation of various cancers. Wang et al. found 
FANCM mutation in a patient with four primary cancer 
including renal cancer (74). Mutations in these two genes 
are associated with renal ectopia malformations or dysplasia 
(19,75) Thus, we suspected that FANCI and FANCM 
pathogenic germline mutations might play an important 
role in tumorigenesis and tumor progression in RCC and 
further studies are needed to confirm this hypothesis.

There were some limitations in our study. Larger 
cohorts will need to be studied to confirm the frequency 
of FANCI and FANCM pathogenic germline mutations in 
RCC and basic experiments are required to validate the 
biological role of FANCI and FANCM pathogenic germline 
mutations in RCC.

Conclusions

Considering our results  and the evidence in the 
literature, the proportion of patients with RCC in our 
study who carried pathogenic germline mutations may 
be underestimated. Genetic testing of all patients with 
nccRCC, patients with bilateral or multifocal RCC, 
especially those aged 46 years or younger might help 
identify individual patients for whom targeted therapies are 
indicated. Patients with FANCI and FANCM pathogenic 
germline mutations may play an important role in 
tumorigenesis and tumor progression in RCC.
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Supplementary

Figure S1 Sanger sequencing chromatograms of FANCM and VHL for patient RCC88’s parents and brother. Genetic testing of DNA 
samples collected from RCC88’s father (A,B), mother (C,D), and brother (E,F) revealed that none of them harbored FANCM or VHL 
mutations. RCC, renal cell carcinoma.
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Table S1 Genes related to germline cancer predisposition

AKT1 BRIP1 CYLD FANCC HRAS MTAP PMS2 SDHAF2 TEK

AKT2 BTK DDR2 FANCG IDH1 MUTYH PRKAR1A SDHB TERC

ALK CBL DICER1 FANCI IDH2 MYC PTCH1 SDHC TERT

APC CDC73 DNMT3A FANCL JAK1 MYD88 PTEN SDHD TP53

AR CDH1 EGFR FANCM JAK2 NBN PTPN11 SF3B1 TSC1

ARAF CDK4 EP300 FAS KIT NF1 RAD50 SH2D1A TSC2

ATM CDKN1B EPCAM FBXW7 KRAS NF2 RAD51 SHOC2 U2AF1

AXIN2 CDKN2A ERBB2 FGFR1 MAP2K1 NOTCH2 RAD51C SLX4 VHL

B2M CEBPA ERBB3 FH MAP2K2 NPM1 RAF1 SMAD4 WT1

BAP1 CFTR ERCC2 FLCN MEN1 NRAS RB1 SMARCA4 XIAP

BCL10 CHEK2 ERCC3 FLT3 MET NSD1 RECQL4 SMARCB1 XPO1

BLM CREBBP ERCC4 FLT4 MLH1 NTHL1 RET SMO

BMPR1A CSF3R ERCC5 GATA2 MRE11 PALB2 RIT1 SOS1

BRAF CTLA4 ETV6 GNAS MSH2 PHOX2B RTEL1 STAT3

BRCA1 CTNNB1 EZH2 H3F3A MSH3 PIK3CA RUNX1 STK11

BRCA2 CXCR4 FANCA HNF1A MSH6 PLCG2 SDHA SUFU

Table S2 Clinical characteristics of patients with RCC and pathogenic mutations

Patient ID Sex
Age at diagnosis 

(years)
Mutation gene Histology Family history

Recurrence or 
metastasis

RCC15 Male 21 VHL ccRCC Maternal aunt: VHL 0

RCC16 Male 44 VHL ccRCC 0 0

RCC19 Male 44 VHL, RAD51C ccRCC Mother: glioma 0

RCC40 Male 36 MUTYH ccRCC 0 0

RCC63 Male 39 FANCI Unclassified Father: gastric cancer 0

RCC68 Male 56 FLCN Unclassified Father: gastric cancer 0

RCC88 Male 29 VHL, FANCM ccRCC 0 1: metastasis

RCC93 Male 24 RAD50 MiT family 
translocation RCC

0 0

RCC96 Female 36 FLCN chRCC 0 0

RCC109 Male 62 NBN ccRCC 0 0

RCC115 Male 37 SDHB chRCC 0 0

RCC121 Female 32 FH pRCC Mother: endometrial carcinoma 1: metastasis

RCC122 Male 24 FH pRCC Father: RCC 0

RCC, renal cell carcinoma; ccRCC, clear cell renal cell carcinoma; VHL, von Hippel-Lindau; MiT, microphthalmia; chRCC, chromophobe 
renal cell carcinoma; pRCC, papillary renal cell carcinoma.
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Table S3 Detail on pathogenic mutations

Study ID Gene 1 Variant 1 Protein 1 Transcript NM_#S Pathogenicity

RCC15 VHL c.340G>C p.Gly114Arg NM_000551 P

RCC16 VHL c.345C>G p.His115Gln NM_000551 P

RCC19 VHL c.517_527delGAGAATTACAG p.Glu173fs NM_000551 P

RCC19 RAD51C c.904+2T>C # NM_058216 P

RCC40 MUTYH c.1214C>T p.Pro405Leu NM_001128425 P

RCC63 FANCI c.158-2A>G # NM_001113378 P

RCC68 FLCN c.1379_1380delTC p.Leu460fs NM_001353229 P

RCC88 VHL c.264G>A p.W88* NM_000551 P

RCC88 FANCM c.4515+1G>C # NM_020937 LP

RCC93 RAD50 c.2165dupA p.E723fs NM_005732 P

RCC96 FLCN c.1285dupC p.H429fs NM_001353229 P

RCC109 NBN c.235-1G>C # NM_002485 LP

RCC115 SDHB c.725G>A p.R242H NM_003000 P

RCC121 FH c.A563T p.N188I NM_000143 P

RCC122 FH c.191dupA p.N64fs NM_000143 P

#, frameshift mutation; *, nonsense mutation; RCC, renal cell carcinoma; P, pathogenic; LP, likely pathogenic.


