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Development and validation of a novel defined mutation classifier 
based on Lasso logistic regression for predicting the overall 
survival of immune checkpoint inhibitor therapy in renal cell 
carcinoma
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Background: Currently, immune checkpoint inhibitor (ICI)-based therapy has become the first-line 
treatment for advanced renal cell carcinoma (RCC). However, few biomarkers have been identified to 
predict the response to ICI therapy in RCC patients. Herein, our research aimed to build a gene mutation 
prognostic indicator for ICI therapy.
Methods: This multi-cohort study explored the mutation patterns in 2 publicly available advanced RCC 
ICI therapy cohorts, the Memorial Sloan Kettering Cancer Center (MSKCC) advanced RCC ICI therapy 
cohort and the CheckMate ICI therapy cohort. A total of 261 patients in the CheckMate ICI therapy cohort 
were randomly assigned to either the training or validation set. Least absolute shrinkage and selection 
operator (Lasso) logistic regression analysis was subsequently used to develop a mutation classifier utilizing 
the training set. The classifier was then validated internally in the validation set and externally in 2 ICI 
therapy cohorts and 2 non-ICI therapy cohorts. Survival analysis, receiver operator characteristic curves and 
Harrell’s concordance index were performed to assess the prognostic value of the classifier. Function and 
immune microenvironment analysis in each subgroup defined by the classifier were performed.
Results: A 10-gene mutation classifier was constructed based on the CheckMate ICI therapy cohort to 
separate patients into 2 risk groups, with patients in the high-risk group showing significantly lower overall 
survival probability than those in the low-risk group [the training set (HR: 1.791; 95% CI: 1.207–2.657; 
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Introduction

Advanced tumor treatment has entered the era of 
immunotherapy, and immune checkpoint inhibitors (ICIs) 
represented by anti-programmed cell death protein 1/
programmed cell death 1 ligand 1 (PD-1/PD-L1) therapy 
have been widely used in various solid tumors (1-3). 
According to the 2020 European Association of Urology 
(EAU) guidelines and the 2021 National Comprehensive 
Cancer Network (NCCN) guidelines (4,5), ICI therapy for 
advanced renal cancer has been recommended as the first-
line treatment. In the process of advanced renal cancer 

therapy, ICI drugs have demonstrated their significant 
survival benefits, whether used alone or in combination 
with targeted drugs (6-8). However, the application of 
ICIs yields varying degrees of response rates in different 
solid tumors, and there is still a subset of patients with 
advanced renal cancer that cannot benefits from ICIs. 
In CheckMate 025, a phase 3 trial of nivolumab (a PD-1 
inhibitor), the objective response rate (ORR) was 25% (6). 
Similar results were observed in CheckMate 214, a phase 
3 trial with patients receiving nivolumab plus ipilimumab 
(a CTLA-4 inhibitor), with ORR confirmed as 42% (7). 
In another multicenter phase 3 study, pembrolizumab (a 
PD-1 inhibitor) in combination with axitinib [a unique 
vascular endothelial growth factor receptor (VEGFR) 
tyrosine kinase inhibitor] reached an ORR of 60% (8). 
Therefore, how to screen out patients with advanced 
renal cell carcinoma (RCC) who may benefit from ICIs 
has become a top priority in clinical research. Tumoral 
mutation burden (TMB) and microsatellite instability 
(MSI) emerged as positive predictive biomarkers for ICI 
therapy (9,10). Higher levels of TMB are derived from a 
higher frequency of gene mutations, and MSI associated 
with mismatch repair (MMR) machinery mutations may 
lead to the accumulation of neoantigens and stimulate 
antitumor immunity, thus predicting a favorable response to 
ICI therapy. However, controversy remains concerning the 
ability of TMB and MSI to predict ICI therapy efficacy in 
RCC (11-13). The expression of immune checkpoints such 
as PD-1 and PD-L1, have not been convincingly proved 
to predict response to ICIs in RCC (14,15). Meanwhile, 
clinicopathological characteristics have been demonstrated 
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as potential indicators that enable the prediction of clinical 
response to ICI, such as human endogenous lentivirus virus 
expression and defective antigen presentation, may indicate 
poor response to ICI in RCC patients (15). However, there 
are still few prognostic factors available.

Gene mutation signatures have gradually been confirmed 
to predict the outcome of ICI therapy across multiple 
cancer types (16). And nonsynonymous gene mutation 
results in more neo-antigens, thus increasing chances for T 
cell recognition, and indicating better ICI outcomes (17).  
Unfortunately, few biomarkers or mutation signatures 
have been identified to predict the response to ICI therapy 
in RCC patients. Sun et al. refined a subgroup of TFE3-
translocation RCC (TFE3-tRCC) patients who may benefit 
from ICI therapy (18). Moreover, Miao et al. reported 
that patients with clear cell renal cell carcinoma (ccRCC) 
harboring PBRM1 loss-of-function mutation seemed to be 
more responsive to immunotherapy with nivolumab (3).  
Hagiwara et al. also found that lower expression of 
PARP1 in patients with ccRCC and the PBRM1 mutation 
enjoyed a better prognosis after nivolumab treatment (19). 
Nevertheless, large-scale validation in multiple centers 
still needs to be performed to further verify these findings. 
Meanwhile, prognostic models established by multiple 
mutations remain lacking in RCC.

In this study, we determined the mutation profile 
landscape of patients with advanced RCC and subsequently 
developed a polygenic mutation classifier that could 
precisely predict the efficacy of ICI therapy. Furthermore, 
the mutation classifier was verified in independent 
validation sets. Ultimately, we conducted comprehensive 
bioinformatics analyses to evaluate the effect of the 
mutation classifier on the predictive value of ICI treatment 
response. We present the following article in accordance 
with the TRIPOD reporting checklist (available at https://
tau.amegroups.com/article/view/10.21037/tau-23-21/rc).

Methods

Patients and samples

The somatic mutation data and clinical data of patients from 
the Memorial Sloan Kettering Cancer Center (MSKCC) 
pan-cancer ICI therapy cohort [n=1,610 (1,003 (62.3%) 
men; mean (SD) age, 61.6 (13.6) years)], with patients 
with advanced RCC included [n=143; 104 (72.7%) men; 
mean (SD) age, 60.2 (10.2) years] (9), were downloaded 
from cBioPortal (20). The data from the CheckMate ICI 

therapy cohort [n=261; 185 (70.9%) men; mean (SD) age,  
60.5 (10.6) years; nivolumab treatment] and CheckMate 
non-ICI therapy cohort [n=193; 136 (70.5%) men, mean 
(SD) age, 61.1 (9.4) years; everolimus treatment] were 
obtained from the work of Braun et al. (21), with The 
Cancer Genome Atlas (TCGA) cohort (n=451; 293 (65.0%) 
men; mean (SD) age, 60.5 (12.1) years] downloaded from 
TCGA data portal (https://portal.gdc.cancer.gov/repository). 
Patients from the above cohorts were distinguished by the 
patient ID and other clinical characteristics to avoid any 
overlap of cases. Gene expression data in log2-transformed 
upper quartile-normalized transcripts per kilobase of exon 
model per million mapped reads (TPM) for the CheckMate 
ICI and non-ICI therapy cohort were also obtained from 
Braun et al. (21). TPM and high-throughput sequence 
counts data (HTSeq-Counts) for TCGA cohort were 
available and also downloaded from the TCGA data portal. 
All the patients from the MSKCC ICI therapy cohort and 
the CheckMate ICI therapy cohort received at least 1 dose 
of ICI therapy. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

TMB assessment

We collected and analyzed the TMB data from the MSKCC 
ICI therapy cohort and the CheckMate ICI therapy cohort. 
TMB data from the MSKCC ICI therapy cohort were 
generated from the Memorial Sloan Kettering Integrated 
Mutation Profiling of Actionable Cancer Targets (MSK-
IMPACT). TMB data from the CheckMate ICI therapy 
cohort were calculated as the sum of all nonsynonymous 
mutations in a sample according to Braun et al. (21). TMB 
in the 2 cohorts was further stratified by the R package 
“survminer” (version 0.4.8; The R Foundation for Statistical 
Computing) as low-TMB and high-TMB.

Oncoplot and summarized information of gene mutation

Publicly available Mutation Annotation Format (MAF) files 
of the MSKCC advanced RCC ICI therapy cohort and 
the CheckMate ICI therapy cohort were used for further 
visualization.

R package “maftools” (version 2.12.0) was then used to 
graph the oncoplot and summarized information (22). 

Protein–protein interaction network construction

A protein–protein interaction (PPI) network functional 
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enrichment analysis was conducted on the Search Tool for 
the Retrieval of Interacting Genes/Proteins (STRING) 
website (https://string-db.org) and reconstructed using 
Cytoscape software version 3.9.1 (23).

Construction of the mutation classifier

A total of 261 patients with advanced RCC in the 
CheckMate ICI therapy cohort were randomly assigned to 
either a training set or a validation set in a nearly 3:2 ratio 
through “createDataPartition” function in R package “caret” 
(version 6.0). To conduct further analysis, 41 frequently 
mutated genes in the CheckMate and MSKCC advanced 
RCC cohorts were identified. Then, in the training set, 
the least absolute shrinkage and selection operator (Lasso) 
logistic regression model (R package “glmnet”, version 
4.1) was used to narrow down the candidate genes and 
develop the mutation classifier. Ultimately, 10 genes and 
their coefficients were retained, with the penalty parameter 
(λ) decided by the minimum criteria. The risk score was 
calculated using the following formula: risk score = (beta1× 
mutation status of Gene1) + (beta2×mutation status of Gene2) 
+ … + (betan× mutation status of Gene10). A gene with 
mutated status was coded as 1, while a wild-type gene was 
coded as 0. The Lasso logistic regression analysis generated 
beta as the regression coefficient. Patients in the training 
set were divided into a low-risk group and a high-risk 
group based on the optimal cutoff point of the risk score as 
calculated with the “surv_cutpoint” function in “survminer” 
package in R. The overall survival (OS) between the low- 
and high-risk groups was compared by Kaplan-Meier 
analysis. The receiver operating characteristic (ROC) 
curve analysis was conducted using R package “pROC” 
(version 1.18.0) to test the prognostic role of the risk score 
based on OS. After taking adjustment of other clinical 
covariates (gender, age, metastasis status, sarcoma-like 
status, rhabdomyoma-like status, TMB) using multivariate 
Cox regression, further evaluation of the prediction effect 
of the risk score was conducted by Harrell’s concordance 
index (C-index). The multivariate Cox regression was 
implemented using R package “rms” (version 6.2).

Internal and external validation of the mutation classifier

The risk score of patients in the CheckMate ICI validation 
set and the whole CheckMate ICI therapy cohort was 
calculated according to the same formula as that of the 
training set. Then, patients were divided into the low- and 

high-risk groups based on the “survminer” package in R. 
Kaplan-Meier analysis was performed to compare the OS 
between the low- and high-risk groups in the CheckMate 
ICI validation set and the whole CheckMate ICI therapy 
cohort for internal validation of the mutation classifier. We 
subsequently extracted the clinical information (gender, age, 
metastasis status, sarcoma-like property, rhabdomyoma-like 
property) of patients in the CheckMate ICI therapy cohort. 
These variables were analyzed in combination with TMB 
and the risk score in our Lasso regression model. Univariate 
and multivariate Cox regression models were employed for 
the independent prognostic analysis. ROC curve analysis 
and C-index calculation were implemented the same way in 
the training set.

Patients from each of the MSKCC advanced RCC ICI 
therapy cohort, MSKCC pan-cancer ICI therapy cohort, 
CheckMate non-ICI therapy cohort, and TCGA cohort 
were stratified into low- and high-risk groups using the 
same strategy as that used for CheckMate ICI therapy 
cohort in external validation. Kaplan-Meier analysis in 
the MSKCC advanced RCC and pan-cancer ICI therapy 
cohorts was undertaken to verify the genericity of the 
classifier, while it was also used on the CheckMate non-
ICI therapy cohort and TCGA cohort to demonstrate the 
specificity of the mutation classifier in the prediction of 
ICI-treatment outcome. ROC curve analysis and C-index 
calculation were also conducted in 2 MSKCC ICI therapy 
cohorts with clinical information that we could collect 
(gender, age, TMB) for further testing the prognostic role 
of the classifier based on OS.

Single-sample gene set enrichment analysis (ssGSEA)

We conducted the ssGSEA to determine the activation 
levels of various pathways using the transcriptome data 
in the CheckMate ICI therapy cohort (n=123 in common 
with mutation data). The implementation of ssGSEA was 
performed with the R package “GSVA” (version 1.44.2) (24).

Gene set and functional enrichment analysis

The differentially expressed genes (DEGs) between the 
low- and high-risk groups in TCGA cohort (n=448 in 
common with mutation data) were screened with the 
|log2 fold change (FC)| ≥1 and false discovery rate (FDR) 
<0.05 using the R package “edgeR” (version 3.38.1) (25). 
Gene Ontology (GO) analysis and GSEA analysis based 
on the DEG analysis were conducted to investigate the 
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differentially enriched pathways between the patients in the 
2 risk groups with the R package “clusterProfiler” (version 
4.4.4) (26).

Tumor-infiltrating immune cells analysis

The CIBERSORT algorithm was applied to calculate the 
immune cell composition of RCC tissues via an LM22 gene 
signature matrix (containing 547 genes that distinguish 
22 human hematopoietic cell phenotypes) (27). The 
transcriptome profiles from the CheckMate ICI therapy 
cohort (n=123) and the TCGA cohort (n=448) were 
uploaded to the CIBERSORT website (http://cibersort.
stanford.edu) as mixture files. The LM22 signature matrix 
file was used to run CIBERSORTx, with 1000 permutations 
and quantile normalization disabled on RNA sequencing 
(RNA-seq) data. CIBERSORT completed deconvolution 
with Monte Carlo sampling and derived an empirical P 
value. In the CheckMate ICI therapy cohort, 109 out of 123 
samples had P values <0.05, while in the TCGA cohort, 258 
out of 448 samples had P values <0.05. Only samples with 
a P value less than 0.05 were included in the subsequent 
analysis. 

Statistical analysis

R software (version 4.2.0) was used to conduct statistical 
analyses in this study. Fisher exact test was performed to 
compare the differences in clinical features. Kaplan-Meier 
survival curves were generated and compared using the 
log-rank test. ROC curve analysis and C-index were used 
to test the prognostic role of the classifier. Univariate and 
multivariate Cox regression analyses were conducted to 
identify prognostic indicators of OS. A 2-tailed unpaired 
t-test and Wilcoxon rank-sum test were used to determine 
the differences between low- and high-risk groups 
with or without normal distribution, respectively. The 
Spearman correlation coefficient was applied to estimate 
the correlations among risk scores and expression levels 
of immune checkpoint molecules. Statistical significance 
indicated with a P value <0.05 in a 2-tailed test.

Results

Landscape and clinical significance of the mutation profile 
in advanced RCC patients

Somatic mutation data of 597 patients with advanced 

RCC were first collected, including 143 patients from the 
MSKCC ICI therapy cohort [104 (72.7%) men; mean (SD) 
age, 60.2 (10.2) years], 261 patients from the CheckMate 
ICI therapy cohort [185 (70.9%) men; mean (SD) age,  
60.5 (10.6) years], and 193 patients from the CheckMate 
non-ICI therapy cohort [136 (70.5%) men; mean (SD) age, 
61.1 (9.4) years]. We also collected somatic mutation data 
of 451 patients with RCC from TCGA cohort [293 (65.0%) 
men; mean (SD) age, 60.5 (12.1) years] and 1,610 pan-
cancer patients from the MSKCC ICI therapy cohort [1,003 
(62.3%) men; mean (SD) age, 61.6 (13.6) years] (Figure S1). 
The most predominant variant classification in advanced 
RCC was found to be missense mutation, while the most 
common variant type was single-nucleotide polymorphism 
(SNP) in advanced RCC (Figure S2A,S2B). The oncoplot 
of the MSKCC advanced RCC ICI therapy cohort revealed 
the top 45 frequently mutated genes, in which the mutation 
frequency of 42 genes was more than 2% (mutated in at 
least 2 patients) (Figure S3). When we constructed the 
mutation profile of these 42 genes in the CheckMate (ICI 
and non-ICI therapy) cohort, only 41 genes were mutated 
in patients with advanced RCC (Figure 1A). 

To better elucidate the functional relationship between 
these mutated genes, we used the 41 genes to construct a 
PPI network via the STRING database, and subsequently 
searched for hub genes using Cytoscape based on the PPI 
network (Figure 1B). ARID1A (NCBI Entrez 8289), TP53 
(NCBI Entrez 7157), SMARCA4 (NCBI Entrez 6597), 
and SMARCB1 (NCBI Entrez 6598) were found to have 
more complex interactions (brighter colors) and were 
more centrally located in the PPI network, indicating the 
important role of these genes in regulating the progression 
of advanced RCC.

Construction of a prognostic mutation classifier in patients 
from the CheckMate ICI therapy cohort

To investigate the mutation-derived signatures that can 
predict the prognosis of ICI treatment, a total of 261 patients  
from the CheckMate ICI therapy cohort were randomly 
assigned to either a training set (n=157) or a validation 
set (n=104) in a nearly 3:2 ratio, with each patient having 
undergone PD-1 inhibitor therapy. The clinical features of 
all patients are shown in detail in Table 1. No statistically 
significant differences in clinical features were found 
between patients in the training set and validation set. We 
subsequently conducted Lasso logistic regression analysis on 
the mutation status of the 41 mutated genes in the training 

https://cdn.amegroups.cn/static/public/TAU-23-21-supplementary.pdf
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Figure 1 Mutation landscape and hub mutated genes in patients with advanced RCC from the CheckMate ICI therapy cohort. (A) Oncoplot 
for the mutated genes of 454 patients with advanced RCC from the CheckMate ICI therapy cohort. (B) PPI network of the mutated genes 
sorted by mutation frequencies in advanced RCC. The brighter color represented more interactions with adjacent genes. TMB, tumoral 
mutation burden; RCC, renal cell carcinoma; ICI, immune checkpoint inhibitor; PPI, protein–protein interaction.

set and chose the model with the optimal area under the 
ROC curve (AUC) for predicting the OS status of patients 
receiving ICI therapy (Figure 2A,2B). Ultimately, 10 genes, 
CUL3, SF3B1, TET2, ARID1B, PBRM1, NOTCH2, PIK3CA, 
VHL, EZH2, and KMT2C, were identified to construct the 
mutation classifier. The prognostic mutation classifier was 
established based on the following formula:

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

Risk score 1.1321 0.8267

0.6414 0.6319

0.4434 0.2795

0.0656 0.0515

0.0442 0.0503 1.1617

CUL3 SF3B1

TET 2 ARID1B

PBRM 1 NOTCH 2

PIK3CA VHL

EZH 2 KMT 2C

= − × + − ×

+ − × + − ×

+ − × + − ×

+ − × + − ×

+ − × + × +

 
[1]

In the formula, a mutated gene was regarded as 1, and 
a wild-type gene was regarded as 0. The risk scores of the 
157 patients in the training set ranged from –0.8485 to 
1.2120, with –0.6206 to 1.1617 in the validation set of the 
CheckMate ICI therapy cohort. 

We used the “survminer” package in R software to 
determine the optimal cutoff point and classify patients into 
low- and high-risk groups in the training and validation set, 
respectively. We then evaluated the risk score distributions 
and OS status of patients receiving ICI therapy in the 
training set, and patients with higher risk scores generally 
showed worse OS to ICI therapy compared with those with 
lower risk scores (Figure 2C). The result of the Kaplan-
Meier analysis in the training set suggested that patients 
in the high-risk group had shorter median OS (low-risk 
group: median OS 35.6 months; high-risk group: median 
OS 20.3 months; P<0.01) (Figure 2D). Consistent with 
the training set, advanced RCC patients receiving ICI 
therapy with higher risk scores in the validation set tended 
to die earlier (Figure 2E). The result of the Kaplan-Meier 
analysis showed that patients in the high-risk group had a 
significantly poorer prognosis (low-risk group: median OS 
36.4 months; high-risk group: median OS 20.9 months; 
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P<0.05) (Figure 2F). The ROC curve analysis was used to 
test the prognostic role of the risk score based on OS. After 
taking adjustment of other clinical covariates (gender, age, 
metastasis status, sarcoma-like status, rhabdomyoma-like 
status, TMB) using multivariate Cox regression, further 
evaluation of the OS prediction effect of the risk score 
was conducted by Harrell’s concordance index (C-index). 
the C-index and AUC were 0.589 (95% CI: 0.522–0.656; 
P=0.009) and 0.711 (P<0.001) for OS prediction in the 
training set, respectively (Figure S4A). In the validation set, 
the C-index and AUC were 0.622 (95% CI: 0.551–0.693; 
P<0.001) and 0.642 (P=0.015), respectively (Figure S4B). 

The mutation classifier vs. TMB as an independent 
prognostic factor for ICI therapy in advanced RCC patients

Univariate and multivariate Cox regression analysis were 
conducted to investigate the independent prognostic value 
of the mutation classifier for patients with advanced RCC 
from the entire CheckMate ICI therapy cohort. As shown 
in Figure 3A, the risk score calculated by our mutation 
classifier was a prognostic indicator for OS in univariate Cox 
regression analysis [hazard ratio (HR): 2.89; 95% CI: 1.69–
4.96; P<0.001]. After adjustment for potential confounders, 
including TMB, in multivariate Cox regression analysis, 

Table 1 Characteristics of the patients from the CheckMate ICI therapy cohort

Variable Total (N=261)
Data sets

Training (N=157) Validation (N=104) P values

Gender 0.890

Female 76 (29.1%) 45 (28.7%) 31 (29.8%)

Male 185 (70.9%) 112 (71.3%) 73 (70.2%)

Age (years) 0.409

≤60 122 (46.7%) 75 (47.8%) 47 (45.2%)

>60 133 (51.0%) 80 (51.0%) 53 (51.0%)

Unknown 6 (2.3%) 2 (1.3%) 4 (3.8%)

Metastasis 0.587

No 191 (73.2%) 112 (71.3%) 79 (76.0%)

Yes 68 (26.1%) 44 (28.0%) 24 (23.1%)

Unknown 2 (0.8%) 1 (0.6%) 1 (1.0%)

Sarcoma-like 0.230

No 195 (74.7%) 118 (75.2%) 77 (74.0%)

Yes 26 (10.0%) 12 (7.6%) 14 (13.5%)

Unknown 40 (15.3%) 27 (17.2%) 13 (12.5%)

Rhabdomyoma-like 0.558

No 205 (78.5%) 120 (76.4%) 85 (81.7%)

Yes 16 (6.1%) 10 (6.4%) 6 (5.8%)

Unknown 40 (15.3%) 27 (17.2%) 13 (12.5%)

OS status 0.785

Living 80 (30.7%) 47 (29.9%) 33 (31.7%)

Dead 181 (69.3%) 110 (70.1%) 71 (68.3%)

OS, overall survival; ICI, immune checkpoint inhibitor.

https://cdn.amegroups.cn/static/public/TAU-23-21-supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-23-21-supplementary.pdf
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Figure 2 Construction of the mutation classifier and internal validation in the CheckMate ICI therapy cohort. (A) Cross-validation for 
tuning the parameter selection in the Lasso logistic regression. (B) Lasso logistic regression of the 41 mutated genes. (C) The distribution of 
the risk scores and OS status in the training set. (D) Kaplan-Meier curves show the difference in OS between the low- and high-risk groups 
in the training set. (E) The distribution of the risk scores and OS status in the validation set. (F) Kaplan-Meier curves show the difference in 
OS between the low- and high-risk groups in the validation set. ICI, immune checkpoint inhibitor; AUC, area under the receiver operating 
characteristic curve; Lasso, least absolute shrinkage and selection operator; OS, overall survival; HR, hazard ratio.

the risk score remained an independent predictor of OS 
(HR: 2.20; 95% CI: 1.25–3.86; P<0.01) (Figure 3B). RCC 
with a sarcoma-like appearance was another variable that 
showed significance in the univariate and multivariate Cox 

regression analysis, while TMB showed no prognostic value 
for predicting OS of patients with advanced RCC receiving 
ICI therapy (Figure 3A,3B). The C-index and AUC were 
0.577 (95% CI: 0.527–0.627; P=0.003) and 0.683 (P<0.001) 
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Figure 3 The mutation classifier as opposed to TMB as an independent prognostic factor for ICI therapy in patients with advanced RCC. 
(A,B) Univariate and multivariate Cox regression analyses of OS were performed in the CheckMate ICI therapy cohort. (C) The distribution 
of the risk scores and OS status in the CheckMate ICI therapy cohort. (D) Kaplan-Meier curves show the difference in OS between the low- 
and high-risk groups in the CheckMate ICI therapy cohort. (E) Kaplan-Meier curves of OS in the CheckMate ICI therapy cohort according 
to TMB. (F,G) Kaplan-Meier curves of OS in patients from the high- and low-TMB groups in the CheckMate ICI therapy cohort. TMB, 
tumoral mutation burden; RCC, renal cell carcinoma; ICI, immune checkpoint inhibitor; HR, hazard ratio; OS, overall survival.
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for OS prediction respectively with the same clinical factors 
as in the training and validation sets (Figure S4C).

Subsequently, the R package “survminer” was used to 
examine the applicability of our mutation classifier in the 
entire CheckMate ICI therapy cohort: patients receiving 
ICI therapy with higher risk scores still received less benefit 
and shorter OS according Kaplan-Meier analysis (low-
risk group: median OS 35.6 months; high-risk group: 
median OS 20.6 months; P<0.001) (Figure 3C,3D), which 
was consistent with the results of training or validation set 
alone. Patients were further divided into low-TMB and 
high-TMB groups based on the same method, and there 
was no difference in OS between the 2 groups (P=0.422) 
(Figure 3E). Meanwhile, when stratified by the TMB status, 
our mutation classifier remained a steady prognostic factor, 
with the low-risk group demonstrating longer OS than the 
high-risk group in low-TMB (low-risk group: median OS 
41.5 months; high-risk group: median OS 20.6 months, 
P<0.05) and high-TMB (low-risk group: median OS  
31.3 months; high-risk group: 20.3 months; P<0.05)  
(Figure 3F,3G). Notably, when the patients were classified by 
ORR into a complete response (CR)/partial response (PR) 
group, a stable disease (SD) group, and progressive disease 
(PD) group, the CR/PR group contained a higher proportion 
of patients in the low-risk group, although these differences 
did not reach statistical significance (Figure S4D).

External validation of the mutation classifier in the ICI 
therapy and non-ICI therapy cohorts

To explore the generalizability of our model across different 
ICI-treated populations and simultaneously validate its 
specificity in predicting the prognosis of ICI-treated as 
opposed to non–ICI-treated patients, we tested the classifier 
in the MSKCC advanced RCC ICI therapy cohort (n=143), 
MSKCC pan-cancer ICI therapy cohort (n=1,610), as well 
as in the CheckMate non-ICI therapy cohort (n=193) and 
TCGA cohort (n=451). As expected, patients in the low-
risk group showed better OS both in the MSKCC advanced 
RCC ICI therapy cohort (low-risk group: median OS 
50.0 months; high-risk group: median OS 11.0 months; 
P<0.001) and MSKCC pan-cancer ICI therapy cohort 
(low-risk group: median OS 30.0 months; high-risk group: 
median OS 15.0 months; P<0.001) (Figure 4A,4B). When 
utilizing the same ROC curve and C-index analysis method 
as in the ChecakMate cohort with available clinical factors 
(gender, age, TMB), the C-index and AUC were 0.568 
(95% CI: 0.484–0.651; P=0.112) and 0.556 (P=0.296) for 

OS prediction in the MSKCC advanced RCC ICI therapy 
cohort, respectively (Figure S4E). In the MSKCC pan-
cancer ICI therapy cohort, the C-index and AUC were 
0.579 (95% CI: 0.558–0.601; P<0.001) and 0.584 (P<0.001) 
respectively (Figure S4F), indicating that our classifier 
also had a certain value in predicting the prognosis of 
ICI-treatments on the pan-cancer level. When extending 
our classifier to patients with RCC from the CheckMate 
non-ICI therapy cohort, we did not find any significant 
differences in OS between the 2 risk groups (P=0.535) 
(Figure 4C). Similar results were identified in patients with 
RCC from TCGA cohort (P=0.144) (Figure 4D). These 
results demonstrated the generalizability and specificity of 
the predictive value of our mutation classifier in patients 
with RCC responding to ICI therapy.

In accordance with the result of the CheckMate ICI 
therapy cohort, TMB had little value in predicting the 
OS in the MSKCC advanced RCC ICI therapy cohort 
(P=0.630) (Figure 4E). After TMB stratification, although 
no significant differences were observed between the 2 risk 
groups in patients with high TMB (P=0.700) (Figure 4F),  
patients with lower risk scores still obtained greater 
therapeutic benefit from ICI therapy than did patients with 
higher risk scores in the low-TMB group (low-risk group: 
median OS 68.0 months; high-risk group: median OS  
11.0 months; P<0.001) (Figure 4G). 

Pathway enrichment and gene function analyses based on 
the mutation classifier

To further elucidate the differences in the pathway 
enrichment and gene function between the subgroups 
categorized by the mutation classifier and to understand the 
mechanism of response to ICI therapy underlying the risk 
scores, we used the RNA-seq data from the CheckMate ICI 
therapy cohort and TCGA cohort. Based on the ssGSEA 
algorithm, pathway enrichment scores of different gene 
sets [hallmark gene sets, Kyoto Encyclopedia of Genes 
and Genomes (KEGG) gene sets, Reactome gene sets] 
were quantified in the CheckMate ICI therapy cohort. A 
heatmap was graphed to better demonstrate the function 
enrichment landscape between the 2 risk groups according 
to the mutation classifier (Figure 5A). By showing some of 
the pathways that were up- or downregulated between the 
2 risk groups (Wilcoxon rank-sum P<0.05), we found that 
cell cycle-related pathways, such as the cell cycle pathway 
(P=0.005) from KEGG, the E2F targets pathway (P=0.014), 
and the G2M checkpoint pathway (P=0.047) from hallmark, 

https://cdn.amegroups.cn/static/public/TAU-23-21-supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-23-21-supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-23-21-supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-23-21-supplementary.pdf
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Figure 4 External validation of the mutation classifier in the ICI therapy and non-ICI therapy cohorts. Kaplan-Meier curves show the 
differences in OS between the low- and high-risk groups in the (A) MSKCC advanced RCC ICI therapy cohort, (B) MSKCC pan-cancer 
ICI therapy cohort, (C) CheckMate non-ICI therapy cohort, and (D) TCGA cohort. (E) Kaplan-Meier curves of OS in the MSKCC 
advanced RCC ICI therapy cohort according to TMB. (F,G) Kaplan-Meier curves of OS in patients from the high- and low-TMB groups 
in the MSKCC advanced RCC ICI therapy cohort. OS, overall survival; RCC, renal cell carcinoma; ICI, immune checkpoint inhibitor; HR, 
hazard ratio; MSKCC, Memorial Sloan Kettering Cancer Center; TCGA, The Cancer Genome Atlas; TMB, tumoral mutation burden.
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Figure 5 Pathway enrichment and gene function analyses between the low- and high-risk groups. (A) Heatmap for ssGSEA comparing 
the enrichment scores of different pathways between the 2 risk groups in the CheckMate ICI therapy cohort. Only pathways with P<0.05 
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were enriched in the high-risk group. The same situation 
was revealed for DNA repair–related pathways, including 
the DNA repair pathway (P=0.018) from hallmark and 
the homologous recombination pathway (P=0.021) from 
KEGG. Variation in these pathways may disturb the 
genomic stability status, thus leading to higher MSI, which 
may sensitize patients with advanced RCC to ICI therapy.

GO enrichment analysis and GSEA were then performed 
based on the DEG analysis between the 2 risk groups in 
TCGA cohort. Intriguingly, the GO results came to the 
conclusion that the DEGs were strongly correlated with the 
immune response (Figure 5B). The GSEA was performed to 
appraise the H sets (hallmark gene sets) and C2_KEGG sets 
(KEGG gene sets). In the hallmark gene sets, 17 pathways 
were significantly enriched in the high-risk group (FDR 
<0.25), including epithelial–mesenchymal transition (FDR 
<0.001) and Tyrosine-protein kinase-Signal transducer 
and activator of transcription 3 (JAK-STAT3) (FDR 
=0.030), with no pathway enrichment in the low-risk group  
(Figure 5C). Altered pathways from the KEGG gene sets 
included 42 enriched in the high-risk group and 2 in the 
low-risk group (FDR <0.25). Remarkably, the transforming 
growth factor beta (TGF-β) (FDR =0.047), Hedgehog (FDR 
=0.048), and WNT (FDR =0.140) signaling pathways were 
found to be significant in the high-risk group (Figure 5D). 
As previously reported, TGF-β plays a vital role in tumor 
immune evasion and is associated with poor responses to 
cancer immunotherapy (28), Hedgehog and WNT signaling 
cascades are crucial for cancer stem cell homeostasis and 
function (29). Patients with higher risk scores are more 
likely to be less responsive to immunotherapy. 

RCC immune microenvironment analysis with the 
mutation classifier

According to the results shown above, RNA-seq data from 
the CheckMate ICI therapy cohort and TCGA cohort 
were used for further analysis to assess the relationship 
between immune status and the risk score as calculated by 
our mutation classifier. First, we used the CIBERSORT 
algorithm to estimate the fraction of 22 tumor-infiltrating 
immune cells (LM22) in the low- and high-risk groups. 
In the CheckMate ICI therapy cohort, the fractions of 
CD8+ T cells, M1 macrophages, and eosinophils were 
higher in the high-risk group, whereas the low-risk group 
had higher infiltration levels of M2 macrophages and 
neutrophils (Figure 6A,6B). Higher infiltration of regulatory 
T cells (Tregs), lower infiltration of resting natural killer 

(NK) cells and monocytes were also observed in the high-
risk group in TCGA cohort (Figure S5A,S5B). We were 
surprised to find that patients in the high-risk group with 
a poorer OS on ICI therapy had a greater infiltration of 
CD8+ T cells within the tumor, in which situation the 
immune response of activated CD8+ T cells was thought to 
contribute to the therapeutic effect of ICI therapy. Kaplan-
Meier analysis in the CheckMate ICI therapy cohort 
confirmed our conclusion that patients with advanced RCC 
with greater CD8+ T cell infiltration in the tumor have 
worse OS (low-infiltration group: median OS 25.9 months; 
high- infiltration group: median OS 16.7 months; P<0.01)  
(Figure 6C), which is also consistent with previous studies 
(30-32). Recent studies using single-cell RNA-seq technology 
have attempted to partly explain this phenomenon (15,33-35),  
suggesting that cases with a diversity of pre-existing CD8+ 
T cell clones undergo expansion and reprogramming 
during ICI therapy. Some of the CD8+ T cells subgroups 
like 4-1BBlow or CXCL13+ populations are critical for 
eliciting the favorable response within patients with ICI-
treated advanced RCC. Other populations such as those 
with a higher expression level of immune checkpoints 
(PD-1, CTLA4, TIGIT, TIM-3, LAG3) and with a lower 
production of effective molecules (IFN-γ, TNF-α), referred 
to as highly exhausted CD8+ T cells, make no contribution 
or even play a counterproductive role to ICI therapy. To 
verify these suppositions, we subsequently investigated the 
correlation between the expressions of 16 previously reported 
common immune checkpoint genes and the risk score in the 
CheckMate ICI therapy cohort (Figure 6D). Interestingly, the 
risk score was positively correlated with LAG3 (R2=0.172; 
P=0.037) and was negatively correlated with CD40 (R2=–
0.216; P=0.016) and CD70 (R2=–0.194; P=0.032). LAG3 
participates in the inhibition of T-cell function, while 
CD40 and CD70 exert an opposite effect. Additionally, in 
TCGA cohort, the higher expression of PD-1 (P=0.045) and 
LAG3 (P=0.022), along with the lower expression of CD40 
(P=0.014), was observed in the high-risk group compared 
with the low-risk group (Figure 6E). The expression levels of 
other immune checkpoint genes between the two risk groups 
can be seen in the supplementary materials (Figure S6).

Discussion

ICI therapy has thus far been shown to have a powerful 
therapeutic efficacy in patients with advanced cancers. 
However, there is still a subset of patients who do not 
respond, with the innate and adaptive resistance to ICI 

https://cdn.amegroups.cn/static/public/TAU-23-21-supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-23-21-supplementary.pdf
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therapy undetermined. Thus, novel biomarkers for 
predicting the ICI therapeutic response and the application 
of better-individualized treatments are urgently needed. 
In this study, we sought to explore the mutation patterns 
in advanced RCC and established a 10-gene mutation 
classifier using the CheckMate ICI therapy cohort. The 
efficacy of the classifier was then confirmed in the MSKCC 
advanced RCC ICI therapy cohort and additionally in the 
MSKCC pan-cancer ICI therapy cohort to further extend 
the applicability of the classifier. The risk scoring system 
based on the mutation classifier could effectively stratify 
patients into low- and high-risk groups, and it could be 
therefore concluded that patients with advanced RCC with 
a lower risk score had a longer OS. Moreover, functional 
enrichment analysis and immune infiltration analysis in the 
CheckMate ICI therapy cohort and TCGA cohort were 
conducted to clarify the potential biological mechanisms 
underlying the mutation classifier. Findings obtained from 
this study suggested that the 10-gene mutation classifier 
might be a potential indicator for assessing ICI efficacy in 
patients with advanced RCC.

Accumulation of somatic mutations throughout life 
can alter key cellular functions and lead to cancer (36). 
Additionally, the expression of nonsynonymous mutations 
can activate immune response by producing tumor-specific 
antigens called neoantigens (37). TMB is defined as the 
total number of somatic mutations per megabase, including 
single-nucleotide variants as well as frameshift mutations 
generated by insertion and deletions (indels). TMB 
mainly involves nonsynonymous mutations in the coding 
region, and the more mutations a tumor has, the higher 
probability that the amino acids, polypeptides, and proteins 
the mutated genes produce become neoantigens (38);  
this is the theoretical basis for explaining how TMB can 
predict the efficacy of ICI therapy. Since its conceptual 
establishment, TMB has become a useful biomarker for 
the identification of patients that would most benefit from 
ICIs across many cancer types (9). However, TMB is not a 
perfect biomarker. First, the levels of TMB vary in different 
types of tumors, and tumors originating from the kidney 
possess much lower levels of TMB (39). The thresholds for 
stratifying patients into low- and high-TMB groups differ 
and have not been thoroughly investigated across different 
tumors. Second, only a minority of mutations generate 
neoantigens that are properly processed and loaded onto 
Major histocompatibility complex (MHC), and even fewer 
can be recognized by T cells (40). Considering the high 
sensitivity of RCC to ICI therapy even with low levels of 

TMB, biomarkers derived from mutation information for 
predicting ICI therapy efficacy in RCC require further 
investigation.

In our study, TMB had little value in predicting the 
OS of ICI treatment in patients with advanced RCC. 
Nevertheless, some genetic mutations have been shown 
to affect the function of tumor immune-related pathways 
and reshape the tumor immune microenvironment, thus 
affecting ICI response. As reported previously, JAK1- and 
JAK2-truncating mutations led to a lack of response to 
interferon-γ, and the B2M-truncating mutation resulted in 
MHC-I expression loss in melanoma (41). In another study, 
the STAT5A mutation was found to elevate the sensitivity 
of PD-L1 expression and promoted the immune evasion 
of lymphoma (42). Moreover, different somatic alteration 
profiles have been shown capable of stratify patients with 
advanced RCC into different subtypes with distinctive 
transcriptomic signatures associated with ICI-treatment 
outcomes (43), indicating that mutations in RCC do have 
the potential to predict the efficacy of ICI therapy. Of 
the 10 genes included in our mutation classifier, VHL is 
the most commonly mutated gene, followed by PBRM1 
in ccRCC, which accounts for approximately 70% of the 
pathological types of RCC (44). In addition to the critical 
role in promoting the initiation of ccRCC, VHL loss-
of-function mutations were reported to upregulate the 
expression of PD-L1 through hypoxia-inducible factor-2 
alpha (HIF-2α) in ccRCC (45). 

The  prognos t i c  va lue  o f  PBRM1  muta t ion  i s 
controversial. Miao et al. reported that patients with RCC 
and PBRM1 loss had amplified transcriptional outputs of 
HIF1 and STAT3, which are involved in hypoxia response 
and JAK-STAT signaling respectively. Furthermore, 
patients with PBRM1 loss experienced prolonged OS 
compared to patients without PBRM1 loss of function (3). 
However, Liu et al. reported that PBRM1 deficiency led 
to the inactivation of IFNγ-STAT1 signaling, resulting 
in a nonimmunogenic tumor microenvironment (TME) 
associated with reduced benefit from ICIs (46). In our 
classifier, however, the PBRM1 mutation was found to be 
a protective factor. PIK3CA is the third most frequently 
mutated gene in the classifier, with a mutation rate of 3% 
in the CheckMate cohort and 5% in the MSKCC advanced 
RCC cohort. Ugai et al. reported that PIK3CA mutation 
promoted PD-L1 expression through the PI3K signaling 
pathway in colorectal carcinoma (47), indicating that 
PIK3CA mutations may augment response to ICI therapy.

The biological mechanisms of the 10-gene mutation 
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classifier relating to the predictive value for ICI therapy 
response were revealed by functional analysis. According 
to GSEA, we found enriched signaling pathways closely 
related to tumor immunity in the high-risk group. The 
IL-6–JAK–STAT3 signaling pathway plays a critical role in 
the formation of a immune-suppressive microenvironment, 
and coinhibition of PD-L1 with IL-6 was proven to be 
more effective in murine models of pancreatic cancer (48).  
Consistent with what we have discussed above, the 
TGF-β signaling pathway may mediate immune tolerance 
by reducing the activity of tumor-specific cytotoxic T 
lymphocytes (CTLs) in RCC (49). In ssGSEA analysis, 
given that the high-risk group was significantly enriched in 
DNA repair–related pathways, the innate immune-related 
pathways including cyclic GMP–AMP synthase (cGAS)-
stimulator of interferon genes (STING) pathway would be 
less activated due to lower DNA replication stress in the 
high-risk group. Whereas, the innate immune system has 
been indicated recently to take part in recruiting immune 
cells to tumors and in arousing T-cell responses (50). 

In immune infiltration analysis, we found greater 
infiltration of CD8+ T cells in the high-risk group and worse 
OS. Except for some subgroups of the CD8+ T cells with 
highly exhausted phenotypes we have discussed previously, 
we observed a higher expression of Tregs that may 
contribute to the immunosuppressive TME in the high-risk 
group. In particular, LAG3, a molecule that is expressed 
on multiple cell types (CD4+ T cells, CD8+ T cells, Tregs) 
to regulate T cells homeostasis, was identified to have a 
higher expression in the high-risk group. Furthermore, in 
cancer including RCC with persistent antigen-stimulation, 
elevated levels of chronic LAG3 expression can lead to 
T-cell exhaustion and subsequent impairment of T-cell 
function (51), thus providing further explanation for the 
immunosuppressive status in the high-risk group. Recently, 
the US Food and Drug Administration (FDA) approved the 
fixed-dose combination of relatlimab, a LAG3 inhibitor, 
plus nivolumab (Opdualag) in the treatment of melanoma. 
LAG3 is the third immune checkpoint molecule that has 
been approved for clinical application after CTLA-4 and 
PD-1/PD-L1. Our mutation classifier might provide some 
predictive information for determining when Opdualag 
therapy can be applied to the treatment of RCC.

Despite the consistent performance observed for 
predicting the OS of patients with advanced RCC receiving 
ICIs, our study had several limitations. First, our findings 
were based on a retrospective analysis using publicly 

available online data. Restriction in the number of available 
cases examined from a limited number of centers might 
have resulted in outcome bias during data analysis. The 
mutation classifier should be validated in prospective studies 
with larger cohorts from multiple centers in the future. 
Second, immune infiltration analysis was conducted through 
CIBERSORT, a bioinformatics algorithm using the bulk 
RNA-seq data of signature genes to estimate the relative 
infiltration levels of certain types of immune cells in samples. 
The results did not take the heterogeneity in tumor samples 
into consideration and ignored the phenotypic plasticity of 
immune cells in different tumors with different pathological 
states. More accurate methods, such as spatial transcriptome 
sequencing, can be used to further confirm the immune 
infiltration status in RCC. Third, clinicopathological 
characteristics such as exacerbation in proteinuria after 
ICI therapy (52), may also influence the prognosis of RCC 
patients, more adverse events post ICI treatment should 
be considered in future studies. Fourth, the mechanisms 
to stratify advanced patients with RCC into groups with 
different OS times underlying the 10-gene mutation 
classifier remain unclear. Further investigation through in 
vivo and in vitro experiments should be conducted to fully 
elucidate the impact of the 10-gene mutation classifier.

Conclusions

We constructed a mutation classifier with the ability to 
predict the OS of patients with advanced RCC to ICI 
therapy. This mutation classifier is expected to replace 
TMB in guiding clinical decision-making.
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Supplementary

Figure S1 Data sources.
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Figure S2 Mutation pattern and frequencies in patients with RCC from the MSKCC advanced RCC ICI therapy cohort (n=143) and the 
CheckMate ICI therapy cohort (n=261). (A) MSKCC advanced RCC ICI therapy cohort (n=143). (B) CheckMate ICI therapy cohort (n=261). 
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Figure S3 Oncoplot of the top 45 most frequently mutated genes in the MSKCC advanced RCC ICI therapy cohort (n=143).
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Figure S4 (A-C) Comparison of the risk score with other available clinical factors using ROC analyses based on OS in the CheckMate ICI 
therapy cohort: (A) training set, (B) validation set, (C) the whole set. (D) Counts and proportion of patients in the CheckMate ICI therapy 
cohort identified with the 10-gene mutation classifier and stratified by ORR. Patients were stratified by ORR into complete response (CR)/
partial response (PR), stable disease (SD), and progressive disease (PD) subgroups. NS, no significance. (E) ROC curve analysis based on OS 
in the MSKCC advanced RCC ICI therapy cohort. (F) ROC curve analysis based on OS in the MSKCC pan-cancer ICI therapy cohort. 
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Figure S5 Fraction of 22 tumor-infiltrating immune cells (LM22) in patients in TCGA cohort identified with the 10-gene mutation 
classifier. (A) The risk groups and proportions of 22 tumor-infiltrating immune cells in the TCGA cohort. (B) Barplot showed the different 
proportions of 22 tumor-infiltrating immune cells between the low- and high-risk groups in the TCGA cohort. 
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Figure S6 Expression levels of immune checkpoint molecules in patients in TCGA cohort identified with the 10-gene mutation classifier. 


