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Background: Clear cell renal cell carcinoma (ccRCC) is a highly heterogeneous tumor and is the most 
common subtype of renal cell carcinoma (RCC). Surgery is used to cure most early ccRCC, but the 
5-year overall survival (OS) of ccRCC patients is far from satisfactory. Thus, new prognostic features 
and therapeutic targets for ccRCC need to be identified. Since complement factors can influence tumor 
development, we aimed to develop a model to predict the prognosis of ccRCC through complement-related 
genes.
Methods: Differentially expressed genes were screened from an International Cancer Genome Consortium 
(ICGC) data set, and the genes associated with prognosis were screened by univariate regression and least 
absolute shrinkage and selection operator-Cox regression, and column line plots were generated using the 
rms R package to predict OS. The C-index was used to show the accuracy of the survival prediction and 
the prediction effects were verified using a data set from The Cancer Genome Atlas (TCGA). An immuno-
infiltration analysis was performed with CIBERSORT analysis, and a drug sensitivity analysis was performed 
using the Gene Set Cancer Analysis (GSCA) (http://bioinfo.life.hust.edu.cn/GSCA/#/) database.
Results: We identified 5 complement-related genes (i.e., A2M, APOBEC3G, COL4A2, DOCK4, and 
NOTCH4) for risk-score modeling to predict OS at 1, 2, 3, and 5 years, and the C-index of the prediction 
mode was 0.795. In addition, the model was successfully validated in TCGA data set. The CIBERSORT 
analysis showed that M1 macrophages were downregulated in the high-risk group. The GSCA database 
analysis showed that DOCK4, COL4A2, and A2M were positively correlated with the half maximal inhibitory 
concentration (IC50) of 10 drugs and small molecules, and COL4A2, NOTCH4, A2M, and APOBEC3G were 
negatively correlated with the IC50 of dozens of different drugs and small molecules.
Conclusions: We developed and validated a survival prognostic model based on 5 complement-related 
genes for ccRCC. We also elucidated the relationship with tumor immune status and developed a new 
predictive tool for clinical purposes. In addition, our results showed that A2M, APOBEC3G, COL4A2, 
DOCK4, and NOTCH4 may be potential targets for the treatment of ccRCC in the future.
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Introduction

Kidney cancer is the third most common malignancy of the 
genitourinary system worldwide (1). In 2020, more than 
400,000 new cases of kidney cancer were diagnosed, and 
there were more than 175,000 kidney cancer-related deaths 
worldwide (1). Renal cell carcinoma (RCC) accounts for 
approximately 80% of all kidney cancers, and clear cell renal 
cell carcinoma (ccRCC) comprises 75% of all diagnosed 
RCC cases (2). CcRCC is the most common and aggressive 
subtype of RCC, and easily metastasizes to the lungs, liver, 
and bones via hematologic transport (2-4). The standard 
treatment for patients with surgically resectable RCC (i.e., 
those with stages T1, T2, and locally advanced disease) 
remains partial or radical nephrectomy, with a curative 
intention. Conversely, patients with inoperable or metastatic 
RCC usually receive systemic therapy with targeted agents 
and immune checkpoint inhibitors (ICIs). The 2 primary 
targeted therapies employed include vascular endothelial 
growth factor (VEGF)-targeted agents and mammalian 

target of rapamycin inhibitors (5-7). Currently, combination 
therapies based on ICIs (e.g., ICI-ICI, or ICI with VEGF-
tyrosine kinase inhibitor) have shown remarkable efficacy as 
first-line therapies for metastatic RCC; however, some RCC 
patients develop resistance to such therapies (8-10). Thus, 
the identification of new prognostic features and additional 
therapeutic targets has important clinical implications for 
the prognosis and treatment of RCC patients.

In recent years, an increasing number of studies have 
confirmed that the tumor microenvironment (TME), which 
partially consists of complement proteins expressed by the 
cancer, stromal, and immune cells, affects the fate of cancer 
cells, thereby playing a central role in the development of 
cancer (11). Plasma proteins, cell surface receptors, and 
intracellular proteins, which are a part of the complement 
system (i.e., the complement cascade), also play key roles 
in the TME (12,13). In response to various stimuli, these 
proteins and regulatory factors are synthesized and secreted 
by a variety of cells, released into circulation, and then act in 
concert with receptors, which are expressed on different types 
of cell membranes, to play a key role in the innate immune 
defense of the body against pathogens and the maintenance 
of homeostasis in the host (12,14,15). When produced 
intracellularly, these complement effectors have atypical 
functions, are independent of the complement cascade 
and lead to locally occurring complement activation (16).  
Notably, parts of the complement system interact with the 
pathways and cells of both the innate and adaptive immune 
systems. The 3 complement activation pathways (i.e., 
the classical, lectin, and alternative pathways) respond to 
different stimuli, produce C3 (Complement C3) and C5 
(Complement C5) convertases, resulting in the cleavage 
of C3 and C5, respectively, and eventually lead to the 
formation of the membrane attack complex. The cleavage 
products of complement proteins have regulatory effects, 
are biologically active, and induce allergic responses, 
chemotaxis, and phagocytosis (16). Complement system 
is likely to play opposite roles in various cancers, with 
both activation and deficiency of the complement system 
affecting tumor growth (16). According to our analysis, 
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we found that a single clinical factor cannot accurately 
predict the prognosis of patients with ccRCC. Therefore, 
the combination of clinical factors and complement-related 
genes can improve the accuracy of prediction.

In this study, we identified 5 complement-related genes 
(i.e., A2M, APOBEC3G, COL4A2, DOCK4, and NOTCH4) 
by conducting a comprehensive analysis of messenger RNA 
expression data from the International Cancer Genome 
Consortium (ICGC) database and established a risk-score 
model and systematically evaluated its predictive ability 
for ccRCC patients. The predictive accuracy of the model 
was also externally validated using data from The Cancer 
Genome Atlas (TCGA). The correlation of the risk-score 
model with tumor-infiltrating immune cells and the genes 
in the risk-score model with drug sensitivity may provide 
new insights for personalized immunotherapy. We present 
the following article in accordance with the TRIPOD 
reporting checklist (available at https://tau.amegroups.com/
article/view/10.21037/tau-23-187/rc).

Methods

Collection and analysis of publicly available data

Transcriptomic data and the corresponding clinical data 
were downloaded from the ICGC and TCGA databases. 
The ICGC data set comprised the data for 91 patients, and 
TCGA data set comprised the data for 531 patients. Among 
them, any patients with an overall survival (OS) of <30 days 
and for whom survival status information was missing were 
removed. Ultimately, the intact clinical data of 90 patients 
from the ICGC data set were used as the training group, 
and the data of 513 patients from TCGA data set were 
used as the validation group. A total of 317 complement-
related genes were identified from the Molecular Signature 
Database (MSigDB) (https://www.gsea-msigdb.org/gsea/
msigdb/index.jsp), and these genes were subsequently 
verified against the total genes contained in the ICGC and 
TCGA data sets, which resulted in 309 genes being retained 
for the downstream analyses. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

Construction of the risk-score model

A univariate Cox regression analysis was used to identify the 
genes that were significantly associated with OS (P<0.05) 
in the training and validation groups. After taking the 

intersection of the 2 genomes, a least absolute shrinkage 
and selection operator (LASSO)-Cox regression analysis 
was performed of the eligible complement-related genes in 
the training set to construct a prognostic risk signature. The 
risk score was calculated for each patient as follows:

Risk score exprA2M λA2M exprAPOBEC3G λAPOBEC3G
exprCOL4A2 λCOL4A2 exprDOCK4 γDOCK4
exprNOTCH4 λNOTCH4

= × + ×
+ × + ×
+ ×

 [1]

where exprGENE is the expression level of the gene, and 
λGENE is the corresponding lambda value.

The patients were divided into high-risk and low-risk 
groups according to the designated median. A Kaplan-
Meier (K-M) survival analysis was conducted to analyze the 
OS rates of the training and validation groups.

Differential expression analysis

The expression of the identified genes was compared 
between the 91 tumor samples and 45 normal adjacent tissues 
in the training group and then also compared between the 
531 tumor samples and 72 normal adjacent tissues in the 
validation group. The genes with an adjusted P<0.05 and a 
|log fold change (FC)| <0.5 were identified as downregulated 
genes. The differential analysis results were illustrated 
using the “pheatmap” R package. The volcano maps were 
constructed using the “ggplot2” R package. The Wilcox test 
was used to compare the expression of the 5 complement-
related genes (i.e., A2M, APOBEC3G, COL4A2, DOCK4, and 
NOTCH4) between the tumor and normal adjacent tissues.

Enrichment analysis

A Gene Ontology (GO) (17) functional enrichment 
analysis, which includes the biological processes (BPs), 
molecular functions (MFs), and cellular components 
(CCs), is commonly conducted in large-scale functional 
enrichment analyses. The Kyoto Encyclopedia of Genes 
and Genomes (KEGG) (18) database stores information 
about the genomic and biological pathways. We performed 
a GO functional enrichment analysis and a KEGG pathway 
enrichment analysis using the DAVID portal (https://david.
ncifcrf.gov/summary.jsp) after identifying the genes most 
associated with the risk scores. A false discovery rate (FDR) 
<0.05 was considered statistically significant.

Nomogram construction

To facilitate the clinical application of the complement-

https://tau.amegroups.com/article/view/10.21037/tau-23-187/rc
https://tau.amegroups.com/article/view/10.21037/tau-23-187/rc
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https://david.ncifcrf.gov/summary.jsp
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related prognostic prediction models, we constructed 
individualized prediction models using data from the 
training group. The analysis was performed using the 
“rms package” in R. In the multiple regression model, the 
nomogram was used to characterize multiple variables, 
and the probability of an event occurring was predicted by 
calculating the total score. The region above the line served 
as the scoring system, while the region below the line served 
as the prediction system. We incorporated the risk score 
and tumor stage into the individualized prediction model. 
The actual results were also evaluated using the actual and 
predicted probabilities of the model in a calibration graph. 
The 1-, 2-, 3-, and 5-year survival of the ccRCC patients 
was able to be accurately predicted by the sum of the factor 
scores. Calibration curves and concordance index (C-index) 
values were used to show the accuracy of the survival 
prediction.

Single-cell data set analysis

Tumor Immune Single-cell Hub 2 (TISCH2) (http://tisch.
comp-genomics.org/) is a single-cell RNA-sequencing 
(scRNA-seq) database that focuses on the TME. We 
searched the Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/) using key words, such 
as “real cell carcinoma” and “Homo sapiens” and found 
the GSE159115 gene set, which is scRNA-seq analysis of 
~30,000 cells dissociated from benign human kidney and 
renal tumor specimens. We used the GSE159115 gene set 
from the TISCH2 website (at http://tisch.comp-genomics.
org/), a single-cell sequencing data set, to analyze the 
expression of the 5 different complement-related genes in 
different cells.

Immune-infiltration analysis

The TME is an integrated system consisting mainly of 
tumor cells, surrounding immune and inflammatory cells, 
mesenchymal cells, and various cytokines and chemokines (19).  
According to previous study, analyses of immune cell 
infiltration in tumor tissues are important for understanding 
the pathogenesis of a disease and predicting patient 
prognosis (20).

In the present study, we predicted the proportion of 
22 infiltrating immune cell types from the training and 
validation groups using CIBERSORT analysis. For each 
sample, the sum of all the evaluated immune cell type scores 
was equal to 1. The effect of our model on immune cell 

infiltration was verified by analyzing the expression of the 
genes in the immune cells in the immune microenvironment.

Drug sensitivity analysis

Gene Set Cancer Analysis (GSCA) (http://bioinfo.life.hust.
edu.cn/GSCA/#/) is a comprehensive platform for genomic, 
pharmacogenomic and immunogenomic cancer analyses. A 
genomic drug resistance analysis was carried out using the 
half maximal inhibitory concentration (IC50) values found 
in the Genomics of Drug Sensitivity in Cancer (GDSC) 
database. A Spearman correlation analysis was performed 
to determine the correlation between gene expression 
and drug sensitivity. A positive correlation and high gene 
expression indicated resistance to a drug, and vice versa.

Statistical analysis

The statistical analysis was performed using R (https://www.
r-project.org/, v3.5.0) and GraphPad Prism (version 8.0, 
La Jolla, CA, USA). K-M and Cox analyses were conducted 
to identify the prognostic-related genes. The enrichment 
analysis was performed using the DAVID portal. The 
differential expression analysis was performed using the 
Wilcox test. C-index >0.71 was considered to be good 
accuracy and P value <0.05 was considered significant.

Results

Identification of the 5 complement-related genes for 
predicting the OS of ccRCC patients

We compared 91 samples of tumor tissues and 45 samples 
of normal tissues in the training group and detected 125 
differentially expressed genes, of which 93 were upregulated 
and 32 were downregulated (Figure 1A). We also compared 
531 tumor tissue samples and 72 normal tissue samples 
in the validation group and detected 113 differentially 
expressed genes, of which 94 were upregulated and 19 were 
downregulated. Next, a univariate Cox regression analysis 
was conducted and 35 genes were screened in the training 
group, and 92 genes were screened in the validation 
group (P<0.05). Additionally, 13 genes were obtained by 
intersecting the results of the 2 cohorts (Figure 1B). Finally, 
a LASSO-Cox regression analysis was performed of these 
13 genes to obtain the optimal results, and 5 complement-
related genes were identified; that is, A2M, APOBEC3G, 
COL4A2,  DOCK4 ,  and NOTCH4 .  Based on their 

http://tisch.comp-genomics.org/
http://tisch.comp-genomics.org/
https://www.ncbi.nlm.nih.gov/geo/
http://tisch.comp-genomics.org/
http://tisch.comp-genomics.org/
http://bioinfo.life.hust.edu.cn/GSCA/#/
http://bioinfo.life.hust.edu.cn/GSCA/#/
https://www.r-project.org/, v3.5.0
https://www.r-project.org/, v3.5.0
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Figure 1 Identification of the 5 complement-related genes for predicting the OS of ccRCC patients. (A) Volcano plot showing the 
differentially expressed genes in the training cohort. (B) Venn diagram identifying the 13 overlapping genes. (C) A LASSO-Cox analysis 
was performed to identify the 5 most representative complement-related genes. The expression of the 5 complement-related genes and 
the association of the risk scores with the clinical characteristics and survival. (D) The expression of the 5 complement-related genes in the 
training group. (E) The expression of the 5 complement-related genes in the validation group. (F) Heat map showing the clinicopathological 
factors and risk scores of each patient in both cohorts in ascending order for the 5 genes. (G) The Kaplan-Meier analysis of both the training 
and validation groups showed that the patients in the high-risk group had shorter OS than those in the low-risk group. ICGC, International 
Cancer Genome Consortium; TCGA, The Cancer Genome Atlas; COL, color; OS, overall survival; RCC, renal cell carcinoma; ccRCC, 
clear cell renal cell carcinoma; LASSO, least absolute shrinkage and selection operator.
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corresponding λ values, the OS risk score was calculated for 
each ccRCC patient (Figure 1C).

Clinicopathological characteristics of the 5 complement-
related genes

By analyzing the expression of the genes in the tumors and 
adjacent tissues, we found that A2M, APOBEC3G, COL4A2, 
DOCK4, and NOTCH4 were significantly more highly 
expressed in the tumor tissues than the normal tissues in 
both the training and validation groups (Figure 1D,1E). 
To examine the relationship between gene expression and 
the prognosis of ccRCC patients, based on the risk score, 
the median survival time was used to divide the patients 
into a low-risk group and a high-risk group, and we found 
that the ccRCC patients in the different risk groups had 
different clinicopathological characteristics. In both the 
training and validation groups, as the risk score increased, 
the OS of the patients decreased, and the expression of the 5 
complement-related genes was also downregulated (Figure 1F). 
To further validate the prognostic significance of the risk 
score calculated based on the 5 complement-related genes, 
we performed a K-M analysis. As expected, in the training 
group, the prognosis of patients in the high-risk group 
was significantly worse than that of patients in the low-risk 
group (P<0.05), and similar results were obtained in the 
validation group (P<0.05) (Figure 1G).

Expression of the 5 complement-related genes

We next performed a single-cell sequencing analysis of 
the GSE159115 gene set (Figure 2A) on the TISCH 
website. The results showed that these genes were highly 
expressed in various types of immune cells. Among them, 
A2M and COL4A2 were highly expressed in endothelial 
cells, erythroblasts, and pericytes; APOBEC3G was highly 
expressed in CD8+T cells; while DOCK4 and NOTCH4 
were highly expressed in endothelial cells (Figure 2B). These 
results suggested that our model was associated with tumor-
infiltrating immune cells.

Gene-function enrichment analysis

We investigated the potential mechanism of the risk score in 
RCC progression. GO and KEGG functional enrichment 
analyses were performed to explore the biological functions 
and pathways associated with the risk scores. The GO 
functional enrichment analysis examined the BPs, MFs, and 

CCs. After identifying the genes most associated with the 
risk scores, GO and KEGG analyses were performed on 
these genes.

In the training group, the BPs most associated with the 
risk scores included the positive regulation of cell migration, 
angiogenesis, the regulation of small GTPase-mediated 
signal transduction, actin cytoskeleton organization, the 
positive regulation of transcription from RNA polymerase 
II promoter, and the positive regulation of DNA-templated 
transcription. In addition, the most relevant CCs associated 
with the risk scores were the cytosol and cytoplasm. Finally, 
the most relevant MFs associated with the risk scores were 
protein binding, guanyl-nucleotide exchange factor activity, 
and protein-kinase binding (Figure 3A). The BPs, CCs, 
and MFs associated with the risk scores in the validation 
group were basically consistent with those in the training 
group (Figure 3B). The most relevant signaling pathways 
in the KEGG analysis in the training and validation groups 
included focal adhesion, pathways in cancer, and the Rap1 
signaling pathway (Figure 3C,3D). The results of these 
enrichment analyses further revealed a strong relationship 
between the risk scores and tumor progression, such as 
cell migration, including the positive regulation of cell 
migration, angiogenesis, and the positive regulation of 
transcription. The genetic correlation analysis between the 
training and validation groups revealed positive correlations 
between the 5 complement-related genes (Figure 3E,3F).

Construction and verification of the nomogram

To facilitate the clinical application of the prognostic and 
predictive models, we constructed individualized prediction 
models to predict the 1-, 2-, 3-, and 5-year OS of ccRCC 
patients (Figure 4A). We incorporated the risk score and 
tumor stage into the individualized prediction model. To 
confirm the predictive effect of the nomogram, we plotted 
a calibration curve. The calibration curve and the actual 
observations in the nomogram showed satisfactory overlap in 
both the training and validation group databases (Figure 4B). 
In addition, the C-index of the prediction mode was 0.795, 
while the C-index of tumor stage was 0.727, and the risk 
score was 0.713. The prediction model clearly had a higher 
prediction accuracy than the other items. Thus, we showed 
the validity of the prognostic nomogram in several ways.

Immune cell infiltration analysis

The results of previous studies suggest that marker genes 
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Figure 2 Expression of the 5 complement-related genes in the single-cell data set GSE159115. (A,B) Expression of the 5 model genes in 
different immune cells. 
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are closely associated with immune cells. Many studies have 
shown a close relationship between complement factors and 
the immune microenvironment (11). To further examine 
the landscape of the TME, we performed an immune cell 
infiltration analysis using the training and validation groups 

and found that M1-type macrophages were more reduced in 
the high-risk group than the low-risk group in both cohorts 
(Figure 5A,5B). In addition, the results of the Pearson 
correlation analysis showed that A2M, APOBEC3G, 
COL4A2, and NOTCH4 were positively correlated with 
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Figure 3 Functional enrichment analysis and correlation analysis of the 5 complement-related genes. (A-D) The GO and KEGG analyses 
revealed the biological processes and pathways associated with the risk scores in the training and validation groups. (E,F) Correlation matrix 
plots showing the correlation features between the 5 genes in the 2 cohorts. BP, biological process; CC, cellular component; MF, molecular 
function; KEGG, Kyoto Encyclopedia of Genes and Genomes; ICGC, International Cancer Genome Consortium; TCGA, The Cancer 
Genome Atlas; GO, Gene Ontology.
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M1-type macrophages in the training group, and A2M, 
APOBEC3G, DOCK4, and NOTCH4 were positively 
correlated with M1-type macrophages in the validation 

group (Figure 5C,5D).
Immune cell infiltration is a common feature of most 

cancers, and tumor-associated macrophages have been 
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Figure 4 Construction and validation of the individualized prediction model for OS. (A) Development of a prognostic nomogram to predict 
1-, 2-, 3-, and 5-year OS for patients in the training group. (B) Calibration plots comparing the predicted OS and the actual OS for the 1-, 2-, 
3-, and 5-year survival probabilities in the 2 cohorts. OS, overall survival.
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found to be an important element of the TME in RCC 
(20,21). Macrophages in the TME usually exhibit M2-type 
features (22). M1-type macrophages are known as tumor 
cell killing and antigen presenting macrophages, while M2-
type macrophages are involved in the promotion of cancer 
cell growth, invasion, angiogenesis, and the suppression of 
effective T-cell responses (23,24). TAM infiltration has been 
identified as a poor prognostic factor in a variety of cancers 
(25,26). The findings of these previous studies coupled 
with our analysis suggest that changes in the immune 
microenvironment of ccRCC patients may be complement 

factors related.

Drug sensitivity analysis

The drug sensitivity analysis of the GSCA data revealed 
that the high expression of DOCK4, COL4A2, and A2M 
simultaneously produced resistance to 10 drugs and 
small molecules. Among them, EKB-569 (pelitinib) 
and 5-fluorouraci are common anti-tumor drugs, while 
others, such as AICAR, CP466722, ispinesib mesylate, 
methotrexate, and NPK76-II-72, are molecular inhibitors. 
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Figure 5 Immune cell infiltration analysis. (A,B) Boxplots for the proportion of 22 immune infiltrating cells in the training and validation 
groups. (C,D) Correlation analysis of the 5 genes with each immune cell in the 2 cohorts. *, P<0.05; **, P<0.01; ***, P<0.001; -, no 
significant. ICGC, International Cancer Genome Consortium; TCGA, The Cancer Genome Atlas; NK, natural killer.
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COL4A2, NOTCH4, A2M, and APOBEC3G were sensitive 
to some drugs and small molecules. Among them, COL4A2 
was sensitive to TGX221, A2M was sensitive to AZ628, 

SB590885, Dabrafenib, and PLX4720, and APOBEC3G was 
sensitive to CP466722, ispinesib mesylate, methotrexate, 
and other molecular inhibitors. These results are consistent 
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with our previous analysis. These genes may serve as 
potential biomarkers for drug screenings (Figure 6).

Discussion

The complement system is an important component 
of the TME and based on its involvement in immune 
surveillance and microbial defense, the complement 
system has long been considered to have an active and 
beneficial role in the fight against malignant cells (13,27). 
For example, the discovery of regulatory proteins and 
effectors on the surface of various tumor cells suggests that 
the complement system is heavily activated in the TME. 
Complement-dependent cytotoxicity acts synergistically 
with tumor-targeted antibody therapy (16,27). However, a 
growing number of studies have shown the contradictory 
role of the complement system in tumors, with both 
complement system activation and complement system 
deficiency promoting tumor growth (13,28). For example, 
complement system activation has been shown to exert 
tumor-promoting effects through sustained local T-cell 
immunosuppression and chronic inflammation, ultimately 
promoting tumor immune escape, growth, and distant 
metastasis (29-31); however, in hematologic malignancies, 
complement-dependent cytotoxicity has been shown to 
promote tumor cell apoptosis (32). Indeed, the complement 

system is involved in a variety of processes, such as synaptic 
maturation, immune complex clearance, angiogenesis, 
hematopoietic stem/progenitor cell mobilization, tissue 
regeneration and lipid metabolism, as well as the clearance 
of microorganisms (27). Most of these studies focused 
on animal models and in vitro studies, which has led to 
different and sometimes conflicting conclusions. Various 
studies have shown that complement system activation in 
different TME settings has diverse effects on tumor and 
clinical prognosis, ranging from anti-tumor defense to 
tumor promotion (33,34). Such findings are important for 
the design of effective therapeutic strategies that target 
complement components and their signaling pathways. 
Thus, we believe that the most appropriate therapeutic 
approach for activating or neutralizing the complement 
system will depend on the TME.

RCC includes a heterogeneous group of malignancies 
with increasingly well-defined genomic and clinical 
features. The exploration of potential biomarkers for 
tumors and their microenvironments will be the beginning 
of a continued push for new diagnostic and therapeutic 
approaches. Large-scale genome sequencing efforts have 
also led to advances in the accurate prediction of RCC (35), 
and there is an urgent need for predictive biomarkers to be 
identified to guide clinical decision making. Over the past 
few years, risk models have been continuously developed 
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by integrating genomic data, but such models have not yet 
been routinely implemented in clinical decision making. 
Predictive tools that integrate biomarker data may help 
clinicians to develop personalized treatment plans based on 
different biological characteristics (36).

Previous studies have found that the accurate prediction 
of prognosis by classifying patients into high-risk and low-
risk groups based on reliable predictive features can improve 
clinicians’ ability to implement personalized treatment 
decisions (37,38). In this study, we comprehensively and 
systematically analyzed patient characteristics based on the 
5 complement-related genes, and further examined their 
practical clinical significance. First, we retrieved a total of 
317 complement-related genes and identified the prevalent 
expression differences among these genes in both cohorts. 
We then conducted a univariate Cox analysis to identify the 
genes significantly associated with OS. Next, 13 genes were 
identified after intersecting the 2 data sets and conducting 
a LASSO-Cox analysis of the training cohort. Ultimately, 
5 complement-related genes (i.e., A2M, APOBEC3G, 
COL4A2, DOCK4, and NOTCH4) were identified and used 
to construct a risk-score model. Our K-M survival analysis 
revealed that the model had good prediction accuracy. The 
prognosis of patients in the high-risk group was significantly 
lower than that of patients in the low-risk group, and the 
model was validated in both the training and validation 
groups. In addition, the nomogram was validated using the 
calibration curve and C-index, and satisfactory results were 
obtained, which also showed that our model could improve 
the prediction of overall survival time in the clinic. We 
found that M1-type macrophages were more reduced in 
the high-risk group than in the low-risk group by immune 
cell infiltration analysis. We also analyzed the biological 
functions and drug sensitivity of these 5 genes. Our findings 
will provide strong support for the exploration of new target 
genes and drug screenings.

In various tumor tissues, these five complement-related 
genes were produced by different cells and ultimately affect 
tumor progression. For example, the overexpression of 
DOCK4 has been shown to promote migration and invasion 
in prostate cancer cells (39), APOBEC3G has been shown 
to promote colorectal liver cancer metastasis by suppressing 
mir-29-mediated matrix metalloproteinase-2 inhibition (40),  
ADAMTS1 and A2M downregulation has been shown 
that activating epithelial-mesenchymal transition and 
altering the immune microenvironment to promote lung 
adenocarcinoma metastasis (41), NOTCH4 has been 
shown to have pro-proliferative, anti-apoptotic, and pro-

migratory effects on lung adenocarcinoma cells (42), and 
COL4A2 has been shown to activate the RhoA/ROCK 
pathway to promote the invasion and migration of chicken 
hepatocellular carcinoma cell line (LMH) cells (43). These 
previous studies validate the reliability of our established 
model to some extent.

This study is the first to analyze the prognosis of ccRCC 
by complement-related genes, and to establish a prognosis 
model associated with OS by fewer genes. However, 
our findings had some limitations. First, the complex 
mechanisms of each immune cell and treatment resistance 
need to be explored further. Second, while the model can 
be used to predict OS, it needs further validation in clinical 
patients.

Conclusions

In summary, we developed and validated a prognostic 
survival model based on 5 complement-related genes in 
ccRCC and verified the predictive accuracy of the model. 
We further explored the biological function and the 
relationship with the TME and performed a drug sensitivity 
analysis. In brief, our study has developed a new predictive 
tool for use in clinical settings.
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