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Renal cell carcinoma (RCC) constitutes 80 to 85 percent 
of primary renal neoplasms in adults (1). Although surgical 
resection can be curative in localized disease, many patients 
eventually recur. Patients with locally advanced or metastatic 
disease have a poor prognosis, with a 5-year survival rate 
of less than 15%. Because RCC is highly resistant to both 
chemotherapy and radiation therapy (2), immunotherapy might 
have the highest potential as a novel treatment for RCC (3). 
Accumulating evidence indeed shows that effector cells of the 
immune system play an important role in the recognition and 
elimination of neoplastic cells. Particularly in RCC, experimental 
data suggest that the immune system might be extremely 
important in controlling the disease in situ (4). For example, in 
RCC, major T cell infiltrates can be demonstrated in the 
tumor. The presence of antigen-specific T cell clones has 
been shown in both primary lesions and draining lymph 
nodes, and these clones are able to lyse renal carcinoma cells 
in vitro (5,6). Unfortunately, in the long term, the immune 
response against RCC fails to limit disease progression. 

To date, several immunotherapeutic approaches have 
been proposed to treat RCC (3,7), particularly since 
different RCC-related tumor antigens have been identified 
that can be targeted, processed and presented by immune 
effector cells (8). It is well known that of these immune 
effector cells, dendritic cells (DCs) play an orchestrating 
role in regulating T cell responses, partly due to their potent 
antigen-presenting capacity (9). The attractive concept of 
autologous monocyte-derived DC-based tumor vaccination 
resulted in an increasing number of phase I/II trials with 
different approaches regarding the vaccine composition, 

including the nature of the antigen(s) (7). Synthetic peptides 
are commonly used to load DCs in DC-based vaccination 
trials, but are mostly HLA-A*0201-restricted which limits 
their clinical use. The use of tumor lysate circumvents this 
restriction and has the advantage of inducing a polyclonal 
immune response. Similarly, the use of total renal tumor 
RNA-transfected DCs has proven to induce T cell activities 
directed against a broad set of renal tumor-associated 
antigens (10). In the AGS-003 strategy, autologous DCs co-
electroporated with the patients’ amplified tumor mRNA 
and synthetic CD40L RNA are employed (11). Although 
encouraging results are reported upon administration of this 
vaccine with regard to immune response as well as survival (12), 
results from the phase III trial have not been published yet 
(http://clinicaltrials.gov/ct2/show/NCT01582672). 

Recently, the first autologous DC-based therapy was 
approved by the Food and Drug Administration (FDA) 
for treatment of patients with asymptomatic or minimally 
symptomatic metastatic castration-resistant prostate 
cancer (mCRPC). Sipuleucel-T (known by the trade name, 
“Provenge”) is a cellular vaccine which is created upon 
collection of patient’s white blood cells and subsequent in 
vitro incubation of these cells with a fusion protein that 
combines prostate acid phosphatase (PAP) with recombinant 
granulocyte-macrophage colony-stimulating factor (GM-
CSF). Upon re-infusion of this cell product into the 
patient, sipuleucel-T stimulates the patient’s own immune 
system to specifically recognize and combat his cancer. As 
was published in the New England Journal of Medicine, 
sipuleucel-T prolonged median survival by 4.1 months 
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compared with results in placebo-treated patients (13). In 
summary, the advantage of DC-based immunotherapeutic 
strategies is good tolerability and observed survival benefit. 
Unfortunately, these patient-tailored therapeutics are very 
time-consuming and costly. As an alternative, targeting DCs 
in vivo may be more attractive from a cost-effectiveness 
perspective, since this approach would omit tailor-made 
ex vivo culturing. Indeed, such off-the-shelf therapeutic 
vaccines have shown preliminary evidence of efficacy (13), 
providing hope that improvements in patient outcomes 
with this modality may lead to therapeutic options that are 
less resource-intense. Walter et al. (14) developed IMA901, 
a peptide vaccine for RCC, consisting of nine HLA-A*02-
restricted tumor-associated peptides (TUMAPs) and 
one HLA-DR-restricted TUMAP in combination with 
administration of GM-CSF. GM-CSF is used to stimulate 
antigen-presenting cells (APCs), including DCs (15), in vivo. 
Subsequently, TUMAPs bind to major histocompatibility 
complex (MHC) molecules on the cell surface of APCs, and 
in turn the activated APCs facilitate in vivo priming of T 
cells. Hence, the designated purpose of IMA901 is to elicit 
a therapeutic immune response to antigens expressed by 
cancer cells. The authors report stabilization of the disease 
or a partial response to therapy in 43% of the 28 patients 
that received eight intradermal IMA901 vaccinations. In 
the remainder 57% of subjects, RCC progressed (14). 
Furthermore, subjects that responded to multiple TUMAPs 
were significantly more likely to experience disease control 
than subjects that responded to only one TUMAP or 
showed no response (14), indicating that the enhancement 
of the breadth of immune responses targeted to antigens 
introduced by the vaccine is of great consequence. 

Strong and broad T cell responses will prevent immune 
escape by certain cancer cells that have altered their cell 
surface expression of certain HLA molecule(s). Although 
Walter et al. have not addressed the added value of 
inclusion of the HLA-DR-restricted TUMAP, others have 
demonstrated the importance of CD4+ T cell help in the 
stimulation of such strong and effective cellular immune 
responses. CD4+ T helper cells deliver help for CD8+ 
cytotoxic T cells by fully activating DCs through the CD40-
CD40 ligand signaling pathway as well as by the secretion 
of interleukin-2 (16). Pan HLA-DR epitope (PADRE) 
peptides, that are capable of binding to different MHC 
class II molecules with high-affinity (17), have been used in 
conjunction with other forms of vaccines to enhance vaccine 
potency in preclinical models (18,19) and they have also been 
used in clinical trials with minimal toxicity (20). Alternatively, 

CD4+ T cell help can be achieved by using synthetic long 
peptides (SLPs) (21). Following in vivo uptake by DCs, a 
proportion of the SLPs is processed and loaded into MHC 
class II molecules, allowing fragment presentation to CD4+ 
T helper cells. Another part of the ingested SLPs is digested 
by the proteasome in the cytosol and the endoplasmatic 
reticulum. This is followed by loading of 8-10 amino acid-
long peptides into MHC class I molecules, which allows 
fragment presentation to CD8+ cytotoxic T cells (22). 

Nevertheless, the increase in median overall survival 
in the patients treated with IMA901 was not associated 
with standard measures of efficacy, including changes in 
size and volume of measurable lesions. This uncoupling 
effect on survival and disease progression appears to be a 
common property of immunotherapy, and is designated 
as a delayed treatment effect. Indeed, biological effects of 
cancer vaccines are not related to their pharmacokinetics, 
and effectiveness may take weeks or months to become 
apparent (23). Hence, effectiveness as measured by tumor 
regression at traditionally early time points may fail to 
demonstrate any measurable potentially beneficial effect. 
For this, studies are intensified to develop new, non-invasive 
diagnostic tests, e.g., biomarkers, to carefully monitor 
the effect of the vaccination strategy on the tumor. The 
feasibility and value of a comprehensive biomarker program 
has been underscored by Walter et al., as indicated by the 
identification of two biomarkers, APOA1 and CCL17, that 
are potentially predictive for vaccine-induced immunity and 
overall survival.

Fur thermore ,  s tud ie s  tha t  improve  or  r e f ine 
immunotherapeutic outcomes in the clinic are warranted. 
Simple methods that are likely to increase efficacy include 
(I) administration of boost vaccinations in order to extend 
the response; (II) treating patients earlier in their disease 
course; (III) and combination strategies with agents that 
are known to activate, accelerate, and augment immune 
responses (24). These include adjuvants (IL-7, IL-12, IL-
15, and monophosphoryl lipid) to augment T cell responses, 
and antagonists of negative regulators of T cell activation 
[anti-CTL-associated receptor 4 (CTLA-4) and anti-
programmed death 1 (PD1) receptors], as well as agents to 
neutralize immunosuppressive cytokines (anti-IL-10 and 
anti-TGF-β) that are important in winding down immune 
responses. Walter and colleagues (14) improved the efficacy 
of the IMA901 vaccination by means of a single-dose 
cyclophosphamide. Indeed, the median overall survival of 
the patients treated with IMA901 and cyclophosphamide 
was 23.5 months compared to 14.8 months in the patients 
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treated without cyclophosphamide. It has been postulated 
that this immunomodulator counteracts the regulatory 
mechanisms that oppose successful immunotherapy, e.g., by 
reducing the numbers of regulatory T cells (Tregs) (25). 

In conclusion, it remains to be established from ongoing 
phase III trials whether the DC-based vaccine AGS-003 or 
the peptide vaccine IMA901 results in the best treatment 
for advanced renal cell carcinoma with the highest overall 
survival benefit. However, it is likely that vaccination 
approaches will become part of the armamentarium of 
nephrologists, urologists and medical oncologists who 
manage and care for renal cancer patients.
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