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Background: Renal cell carcinoma (RCC) is a common and aggressive tumor. A newly discovered form 
of programmed cell death, ferroptosis, plays an important role in tumor development and progression. 
However, a clear prognostic correlation between Ferroptosis-related genes (FRGs) and RCC has not yet 
been established. In this study, prognostic markers associated with FRGs were investigated to improve the 
therapeutic, diagnostic, and preventive strategies available to patients with renal cancer.
Methods: The present study analyzed the predictive value of 23 FRGs in RCC through bioinformatics 
techniques, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) tools, 
Kaplan-Meier survival analysis, Cox regression modeling, tumor mutational burden (TMB), CIBERSORT, 
and half maximal inhibitory concentration (IC50) difference analysis.
Results: We screened FRGs by differentially expressed genes (DEGs) and overall survival (OS). Four 
candidate genes were obtained by hybridization. Then, we constructed a two-gene prognostic signature 
(NCOA4 and CDKN1A) via univariate Cox regression and multivariate stepwise Cox regression, which 
classified RCC patients into high- and low-risk groups, and patients in the high-risk group were found to 
have worse OS and progression-free survival (PFS). We also found that patients with higher TNM stage, T 
stage, and M stage had higher risk scores than those with lower TNM stage, T stage, and M stage (P<0.05). 
Males had higher risk scores than females. This signature was identified as an independent prognostic 
indicator for RCC. These results were validated in both the test cohort and the entire cohort. In addition, 
we also constructed a nomogram that predicted the OS in RCC patients, the consistency index (C-index) of 
the nomogram was 0.731 [95% confidence interval (CI): 0.672–0.790], the areas under the receiver operating 
characteristic (ROC) curves (AUCs) were 0.728, 0.704, and 0.898 at 1-, 3-, and 5-year, respectively, which 
shows that nomogram has good prediction ability. and we also analyzed the immune status and drug 
sensitivity between the high- and low-risk groups.
Conclusions: We constructed a prognostic model associated with ferroptosis, which may provide clinicians 
with a reliable predictive assessment tool and offer new perspectives for the future clinical management of 
RCC.

Keywords: Renal cell carcinoma (RCC); ferroptosis-related genes (FRGs); prognosis; risk score; drug sensitivity

1183

https://crossmark.crossref.org/dialog/?doi=10.21037/tau-23-346


Li et al. Prognostic model of ferroptosis in kidney cancer1168

© Translational Andrology and Urology. All rights reserved.   Transl Androl Urol 2023;12(7):1167-1183 | https://dx.doi.org/10.21037/tau-23-346

Introduction

Renal cell carcinoma (RCC) is a highly malignant tumor of 
the urinary system (1), accounting for 90% of renal cancers, 
and it also contributes to cancer-specific mortality (2,3). 
Kidney cancer is responsible for at least 175,000 cancer-
related deaths worldwide, with approximately 403,262 
new cases reported in 2018, according to Global Cancer  
Statistics (4). The incidence of RCC is increasing globally, 
causing nearly 200,000 deaths annually and accounting 
for 1.8% of all cancer-related deaths (5). RCC is the 
second leading cause of death among urological tumor 
patients (6). Radical or partial nephrectomy is the first-
line treatment for early-stage RCC; however, 30–40% of 
patients experience disease recurrence (7). Unfortunately, 
RCC is either confined to the kidney (65% of cases) or 
has already metastasized (16% of cases) at initial diagnosis, 
with associated 5-year survival rates of 93% and 12%, 
respectively (8). Although the advent of targeted therapies 
has revolutionized the treatment of RCC and improved 
the survival time of patients with metastases, the median 
survival time is still less than 3 years (9). Therefore, 
to improve the survival rate of patients, it is clinically 
significant to find reliable markers to closely monitor their 
prognosis and adjust the treatment plan.

As a genetically encoded cell death program, ferroptosis 
differs from classical types of programmed cell death, such 
as apoptosis, necrosis, senescence, and pyroptosis (10-12).  
Ferroptosis is an iron-dependent cell death process 
driven by lipid peroxidation (13,14). Previous research 
has shown that ferroptosis-related genes (FRGs) can 
be used as diagnostic markers and may even function as 
drug targets, especially when in terms of developing and 
pharmacologically designing anticancer drugs and cancer 
treatments (15). For example, the study has discussed the 
sensitivity of different subtypes of breast cancer to iron 
death, suggesting that iron death related genes may provide 
a new direction for the development of biomarkers and 
treatment strategies for breast cancer (16). The induction 
of ferroptosis is considered a promising cancer treatment, 
especially in ferroptosis-sensitive cancer cells (13). However, 
the potential of ferroptosis in cancer treatment needs to be 
further explored (17), and the exact role of ferroptosis in the 
development of kidney cancer remains unclear.

Numerous studies have also demonstrated the critical 
role of ferroptosis in tumorigenesis and progression (18-20).  
For example, it has been shown that the FRG, FDFT1, 
is essential for predicting the prognosis of patients with 
colorectal cancer and clear cell RCC (ccRCC) (21,22). 
Significant overexpression of GPX4 in hepatocellular 
carcinoma is correlated with increased malignancy (23). 
There is also evidence that various primary tumors and 
metastases have varying degrees of DPP4 expression (24). 
In addition, other genes regulated by ferroptosis, such 
as ACSL4 (25), TFRC (26), and GLS2 (27), have also 
been shown to be closely related to the occurrence and 
development of tumors. However, there are few studies on 
the relationship between FRGs and the prognosis of RCC 
patients.

Therefore, the present study aimed to investigate 
ferroptosis-related prognostic markers, which could 
improve the current treatment, diagnosis, and prevention 
strategies for RCC patients. We also constructed a two-gene 
signature that could predict the outcome of RCC patients 
after screening for 23 FRGs. Our findings suggest that some 
FRGs play a crucial role in RCC progression and may serve 
as potential prognostic biomarkers and therapeutic targets 
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for RCC patients. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
tau.amegroups.com/article/view/10.21037/tau-23-346/rc).

Methods

Firstly, we screened differential FRGs through The Cancer 
Genome Atlas (TCGA)-RCC data set, then narrowed the 
range of differential genes by prognostic analysis, and finally 
constructed a prognostic risk model based on iron death 
related genes by COX regression analysis. At the same 
time, we analyzed the differences in clinical characteristics, 
immune infiltration and drug sensitivity between high-
risk group and low-risk group. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). The specific analyses were as follows.

Screening for differentially expressed genes (DEGs)

TCGA dataset (https://portal.gdc.cancer.gov) was used to 
obtain the RNA-sequencing expression (level 3) profiles 
and clinical information for RCC. The limma R software 
package (version 4.2.0, W. N. Venables, D. M. Smith and 
the R Core Team) was used to study the differentially 
expressed messenger RNAs (mRNAs). The following 
threshold was set for the differential gene expression 
of mRNA: adjusted P<0.05 and log2(fold change) >1 or 
<−1. Functional enrichment analysis was conducted on 
the data to confirm the underlying function of potential 
targets. Gene Ontology (GO) is an open-source tool that 
is widely used to annotate genes with their functions, such 
as molecular functions, biological pathways, and cellular 
components. An enrichment analysis based on the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) is another 
important tool for analyzing gene functions as well as 
associated information about high-level genome functions. 
A KEGG pathway enrichment analysis was carried out 
using the ClusterProfiler package in R to better understand 
the carcinogenesis of mRNA. A boxplot was drawn using 
the ggplot2 R software package.

Differential iron death-associated genes in kidney cancer

The RNA-sequencing expression profiles and corresponding 
clinical information for RCC were downloaded from 
TCGA dataset (https://portal.gdc.cancer.gov), and the 
acquisition method and application complied with the 
relevant guidelines and policies. The FRGs reported by Liu 

et al. were applied to systematically analyze the aberrances 
and functional implications of ferroptosis in cancer (28). 
The survival difference between the two groups was also 
compared using Kaplan-Meier survival analysis with a 
log-rank test. Kaplan-Meier curves were analyzed using 
log-rank tests and univariate Cox proportional hazards 
regressions to generate P values and hazard ratios (HRs) 
with 95% confidence intervals (CIs). The above analysis 
methods were conducted using R software (version 4.2.0), 
and P<0.05 was considered statistically significant. A Venn 
diagram Wenny was drawn using online sites (/tools/venny/
index.html).

Construction of the iron death-associated model

The Caret R package was used to randomly divide all 
of the RCC samples into a training set and a test set, 
and differences in the clinical parameters between the 
training and test groups were assessed using Pearson’s 
χ test (or Fisher’s exact test). Univariate Cox regression 
and multivariate stepwise Cox regression of proportional 
hazards analyses were performed using the survival and 
survminer packages in R. We calculated the risk score as 
follows: risk score = λ1 × Exp1 + λ2 × Exp2 + … + λi × Expi, 
where λ represented the coefficient value.

Next, we built a predictive model according to the risk 
score. The optimum cutoff evaluation was determined using 
the survival and survminer R packages, and the samples 
were divided into high- and low-risk groups according 
to the cutoff point. Then, overall survival (OS) and 
progression-free survival (PFS) curves for risk assessment 
were constructed using the survival and survminer R 
packages. Three-dimensional (3D) principal component 
analysis (PCA) plots were visualized using the scatterplot3d 
R package. Receiver operating characteristic (ROC) curves 
were generated using the Survival ROC R package, and 
heatmaps were drawn using the pheatmap function in the 
pheatmap package. We then tested the model’s estimation 
on the test and overall sets.

Establishment and validation of a predictive nomogram

To determine whether the model was independent of age, 
gender, tumor-node-metastasis (TNM) stage, and tumor 
stage, we performed univariate and multivariate analyses 
using the Cox regression modeling procedure with forward 
stepwise selection, and the critical value was set as P<0.05. 
We used the survival R package to plot each variable’s 

https://tau.amegroups.com/article/view/10.21037/tau-23-346/rc
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P value, HR, and 95% CI in a forest plot. Nomogram 
prediction plots were used to predict cancer prognosis. 
Factors including age, gender, tumor stage, T stage, N 
stage, and M stage were utilized to produce nomograms 
that predicted the OS of RCC patients at 1, 3, and 5 years. 
We also tested the validity of the nomogram using the 
consistency index (C-index) and calibration. In addition, 
1,000 replicate samples were measured using the bootstrap 
method to assess the nomograms’ recognition ability. We 
then generated calibration curves for the nomograms and 
monitored the predicted trends based on the observed 
results. The ggpurb R package was used to demonstrate the 
differences in risk scores between different subgroups, such 
as females and males and M0 and M1.

Tumor mutational burden (TMB) analysis

TMB reflects the number of cancer mutations. The PEARL 
programming language was used to extract the mutation 
data from TCGA website. We then used the “maftools” 
R package to examine and integrate the TCGA data and 
analyzed the TMB differences between the high- and low-
risk groups. Waterfall plots were used to illustrate the 
relationship between the risk score and TMB in RCC 
patients.

Immune cell infiltration analysis

CIBERSORT analysis was performed to assess the 
correlation between the expression of 22 tumor-infiltrating 
immune cells in RCC tumor tissues and the risk score. 
Immune cells were visualized using the “corrplot” R 
package, and the Wilcoxon rank-sum test, and P<0.05 was 
used to compare the immune cell infiltration levels between 
groups. The single-sample gene set enrichment analysis 
(ssGSEA) R package was used to explore the relationship 
between risk scores and immune cell infiltration, which 
was drawn by using a related heatmap. In addition, the 
differential expression of immune checkpoints in the high- 
and low-risk populations was analyzed by using “limma”, 
“reshape2”, “ggplot2”, and “ggpubr” R packages and 
presented as boxplots.

Assessment of drug sensitivity

To assess the sensitivity of the high- and low-risk groups 

in the ferroptosis-related prediction model to drugs in 
the clinical treatment of RCC, we used the “pRRophetic” 
R package and its dependencies, including “car, ridge, 
genefilter, preprocessCore, and sva”. The Wilcoxon signed-
rank test was used to compare the half maximal inhibitory 
concentration (IC50) differences of standard anticancer 
drugs between the high- and low-risk groups. In addition, 
the “limma”, “ggpubr”, and “ggplot2” R packages were also 
utilized.

Statistical analysis

The statistical analysis was performed on R studio using 
the R programming language (version 4.2.0). The R 
package “limma” was used to combine RNA-sequencing 
transcriptome data and TCGA somatic mutation data. 
Survival analysis was performed with the “survival” and 
“survminer” packages in R. For comparing categorical 
data between groups, chi-square tests were used. It was 
considered statistically significant when the P<0.05.

Results

Screening for FRGs in RCC

First, we compared the expression of 23 FRGs in kidney 
cancer and normal renal tissues, among which 18 FRGs 
were differentially expressed (P<0.05). Most differentially 
expressed FRGs were highly expressed in tumor tissues 
(Figure 1A). Subsequently, we identified 3,035 DEGs 
(2,185 upregulated genes and 850 downregulated genes) by 
comparing normal kidney tissue and tumor samples of RCC 
(Figure 1B). Table S1 shows the clinical information of 883 
patients with kidney cancer. The enriched KEGG signaling 
pathways and GO analysis were selected to demonstrate 
the primary biological actions of DEGs (Figure S1). The 
correlation circle plot confirmed the positive and negative 
correlations among FRGs; the circle of CDKN1A was the 
largest and its log-rank P value was minimal (Figure 1C). 
The heatmap shows the expression trends of FRGs between 
tumor and normal tissues (Figure S2). Furthermore, we 
performed Kaplan-Meier survival analysis on 18 FRGs 
and found that 12 genes were associated with prognosis  
(Figure S3, Table S2). From the intersection of the 
screening above, we finally obtained four candidate FRGs, 
as shown in the Venn diagram (Figure 1D). The survival 
curves of these four genes were shown in the Figure 2A-2D.

https://cdn.amegroups.cn/static/public/TAU-23-346-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-23-346-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-23-346-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-23-346-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-23-346-Supplementary.pdf
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Figure 1 Differential expression analyses of FRGs in RCC. (A) The expression distribution of ferroptosis-related mRNA in tumor tissues 
and normal tissues; the horizontal axis represents different mRNA, the vertical axis represents the mRNA expression distribution, the 
different colors represent different groups. Asterisks represent the levels of significance (**, P<0.01; ***, P<0.001). (B) A volcano plot was 
constructed using fold change values and adjusted P value. The red point in the plot represents the over-expressed mRNAs and the blue 
point indicates the lowly-expressed mRNAs with statistical significance. (C) The circle represents the ferroptosis-related mRNA, and the 
line represents the relationship between genes. The red represents the positive correlation and the blue represents the negative correlation. 
The thicker the line, the higher the correlation between the two genes. The larger the circle, the higher the prognosis log-rank P value. 
The different colors of the circles represent the different cluster categories. Here, there are two categories by default. (D) List 1 represents 
the differential genes in RCC and normal tissues; list 2 represents the differentially significant expressed genes related to ferroptosis; and 
list 3 represents the significant prognosis genes among the differential FRGs. RCC, renal cell carcinoma; FRGs, ferroptosis-related genes; 
mRNA, messenger RNA.
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Figure 2 Kaplan-Meier survival analysis of the gene signature in RCC of TCGA datasets; comparison between different groups was 
performed by log-rank test. HR represents the HR of the low-expression sample relatives to the high-expression sample. HR >1 indicates 
that the gene is a risk factor, and HR <1 indicates that the gene is a protective factor. (A) CDKN1A. (B) DPP4. (C) MT1G. (D) NCOA4. HR, 
hazard ratio; CI, confidence interval; OS, overall survival; RCC, renal cell carcinoma; TCGA, The Cancer Genome Atlas.

Building a prognostic model based on two genes

We identified three genes that were significantly associated 
with OS using univariate Cox regression (NCOA4 , 
CDKN1A, and DPP4, P<0.05). We divided the patients 
into two groups: a training group (n=440) and a testing 
group (n=439). As shown in clinical data in Table S3, the 
results showed no differences in clinical characteristics 
between the training and testing groups. Subsequently, we 
performed stepwise multivariate Cox regression analyses 
in the training set (n=440) to further narrow the genes. 
We then constructed an FRG-related prognostic model 
using two genes, NCOA4 and CDKN1A. The risk score was 
calculated as follows: 0.20534 × expressionCDKN1A − 0.12909 × 
expressionNCOA4. We performed a similar process for the test 

and entire sets. High-risk patients had shorter OS than low-
risk patients in the training (P<0.001, Figure 3A), testing 
(P=0.015, Figure 3B), and entire (P<0.001, Figure 3C) sets. 
Likewise, PFS in the high-risk group was significantly 
lower than that in the low-risk group (Figure 3D-3F). PCA 
showed marked differences between the high- and low-risk 
groups (Figure 3G-3I). The expression heatmap, risk score, 
and survival status of the two subgroups demonstrated that 
individual patient survival was closely related to the risk 
assessment (Figure 4A).

To confirm the accuracy of the risk score model, we 
performed the same analysis on the test and entire groups, 
with similar results (Figure 4B,4C). In the training set, the 
areas under the ROC curves (AUCs) for 1-, 3-, and 5-year 

https://cdn.amegroups.cn/static/public/TAU-23-346-Supplementary.pdf
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Figure 3 OS, PFS, and PCA of the ferroptosis-related prognostic model for the (A,D,G) training cohort, (B,E,H) testing cohort, and (C,F,I) 
overall patients according to the risk group classification. OS, overall survival; PFS, progression-free survival; PCA, principal component 
analysis.

OS were 0.714, 0.673, and 0.668, respectively (Figure 4D). 
Similarly, the AUC for the test and whole set indicated that 
the model had moderate clinical prognostic significance 
(Figure 4E,4F). To validate the expression of NCOA4 and 
CDKN1A in RCC patients, we performed bioinformatics 
analysis using data from TCGA dataset. The analysis 
showed that the expression of NCOA4 mRNA was reduced, 
and CDKN1A expression was increased in 893 RCC samples 
compared to 128 normal samples. Reverse transcriptase-
quantitative polymerase chain reaction (RT-qPCR) 
validated the results. The mRNA levels of NCOA4 and 
CDKN1A were significantly downregulated and upregulated 
in 12 RCC samples compared to paired normal samples, 
respectively (Figure 5).

Clinical value of the prognostic risk model

Univariate and multivariate Cox regression analyses were 
further used to investigate the risk score as an independent 
prognostic indicator for RCC. The univariate Cox analysis 
showed statistically significant differences among age (HR 
=1.027, P<0.001), T (HR =2.094, P<0.001), M (HR =1.975, 
P<0.001), N (HR =0.865, P=0.043), stage (HR =2.143, 
P<0.001), and risk score (HR =2.072, P<0.001). Multivariate 
Cox analysis revealed that age (HR =1.031, P<0.001), T 
stage (HR =0.730, P=0.038), stage (HR =2.583, P<0.001), 
and risk score (HR =1.757, P=0.002) were significantly 
associated with OS (Figure 6A).

Next, based on the risk score and clinicopathological 
characteristics, an accurate nomogram was developed to 
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Figure 4 The risk score, survival time, and survival status of two prognostic FRGs are shown. (A-C) The top heatmap is the gene expression 
from the signature. The medium scatterplot represents the risk score from low to high. Different colors represent different groups. 
The bottom scatter plot distribution represents the risk score of different samples corresponding to the survival time and survival status.  
(D-F) ROC curve analysis according to the 1-, 3-, and 5-year survival of the AUC value; higher AUC values correspond to a higher 
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predict the 1-, 3-, and 5-year survival probability of RCC 
patients (Figure 6B). The C-index of the nomogram was 
0.731 (95% CI: 0.672–0.790). It appeared that the model 
was stable over time, as the AUCs were 0.728, 0.704, and 
0.898 at 1-, 3-, and 5-year, respectively. The calibration 
plots were in good agreement with the nomogram 
prediction (Figure 6C-6E). Finally, an analysis of the 
risk score’s relationship with clinical characteristics was 
conducted. We found that patients with higher TNM stage, 
T stage, and M stage had higher risk scores than those with 
lower TNM stage, T stage, and M stage (P<0.05). Also, 
males had higher risk scores than females. However, there 
were no significant differences between dissimilar ages and 
N stages (P>0.05) (Figure 7A-7D).

Exploration of the immune profile of the high- and low-
risk groups

To further explore the correlation between the risk score 
and the immune microenvironment, the CIBERSORT 

algorithm was used to analyze the proportion of tumor-
infiltrating immune subpopulations and construct 22 
immune cell profiles in the RCC samples (Figure 8A). 
Correlation analysis of the immune cell populations 
and related functions revealed that functions (such as 
costimulation and coinhibition) and antigen-presenting 
cell (APC)-related functions [including costimulation and 
coinhibition, human leukocyte antigen (HLA), checkpoint, 
and parainflammation] were significantly different between 
the high- and low-risk groups based on the ssGSEA 
algorithm in TCGA-RCC data (Figure 8B). Based on these 
results, it was determined that FRGs were associated with 
immune cell infiltration in RCC.

We also investigated the immune infiltration of patients 
in the low- and high-risk groups using the CIBERSORT 
algorithm (Figure 8C), which indicated a significant 
correlation between risk class and level of immune 
infiltration. A comparison of the low- and high-risk groups 
was also performed in terms of immune checkpoints  
(Figure 8D). Most immune checkpoints differed significantly 
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Figure 5 Expression levels of NCOA4 and CDKN1A in paired tumor tissues and normal tissues. (A,B) The NCOA4 and CDKN1A mRNA 
levels in normal and tumor samples were analyzed by using TCGA datasets. (C,D) RT-qPCR was used to measure the relative mRNA 
expression of NCOA4 and CDKN1A in 12 paired normal tissues and tumor tissues. **, P<0.01; ***, P<0.001. mRNA, messenger RNA; 
TCGA, The Cancer Genome Atlas; RT-qPCR, reverse transcriptase-quantitative polymerase chain reaction.

between them. Interestingly, the tumor necrosis factor 
receptor superfamily, including TNFRSF25, TNFRSF4, and 
TNFRSF18, was highly expressed in the high-risk group.

TMB and therapeutic drug sensitivity

To investigate the possibility that tumor mutational load 
may play a role in RCC, we measured mutations in RCC 
and calculated the corresponding TMB scores. As shown 
in Figure 8E, the mutational burden in the high-risk 
RCC group was lower than that in the low-risk group. 
Mutation status was also compared between the high- and 
low-risk groups. The waterfall plot showed the 15 genes 
with the highest mutation frequency in the two groups  
(Figure 8F,8G). We found significant differences in the IC50 
values between the low- and high-risk groups for various 

drugs when we compared drug susceptibility. Table S4 
shows the sensitive drugs in the high- and low-risk groups. 
Among these drugs, high-risk patients responded better 
to crizotinib, etoposide, and sorafenib (Figure 9A-9C). In 
contrast, gemcitabine, pazopanib, and sunitinib were more 
effective in low-risk patients (Figure 9D-9F).

Discussion

RCC is not a single entity but encompasses a variety of 
different tumor subtypes, which are defined by unique 
pathological features or molecular alterations (29,30). 
RCC is predominantly resistant to standard systemic 
chemotherapy and radiation therapy (31). Activating 
regulated cell death is considered an ideal cancer treatment 
strategy, contributing to the development of resistance to 

https://cdn.amegroups.cn/static/public/TAU-23-346-Supplementary.pdf
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Figure 6 A prognosis prediction model based on risk score and clinical factors. (A) Forest plots report results of univariate and multivariate 
Cox regression analyses in RCC, which HR and P value were involved. (B) Nomogram to predict the 1-, 3-, and 5-year OS of RCC patients. 
(C-E) In the calibration curve of the 1-, 3-, and 5-year OS nomogram model, a dashed diagonal line represents the ideal nomogram. CI, 
confidence interval; OS, overall survival; RCC, renal cell carcinoma; HR, hazard ratio.

useful drugs (32). Several recent studies have confirmed 
that ferroptosis is a newly discovered form of regulated 
cell death caused by the accumulation of lethal lipid 
peroxidation (11,33). Dysfunctional ferroptosis is associated 
with a variety of diseases, including cancer, and inhibition 
or upregulation of ferroptosis modulates metabolic 
reprogramming in cancer cells (34,35). Given the critical 
role of ferroptosis in regulating cell death and the lack of 
studies on ferroptosis in RCC, it is important to investigate 
the expression pattern of FRGs to understand the role of 
ferroptosis in RCC patients.

In this study, we performed a systematic analysis of 23 
FRGs. Eighteen genes were differentially expressed between 

RCC tumors and paracancerous tissues. We performed 
a correlation analysis of these genes to gain more insight 
into the functional role of differentially expressed FRGs 
in RCC. The results showed either positive or negative 
correlations between them, suggesting that FRGs do not 
act independently but through a complex series of processes 
working together to drive or inhibit lipid peroxidation (36).  
Subsequently, we selected 12 FRGs associated with 
the prognosis of RCC, intersected them with DEGs of 
kidney cancer, and finally obtained four candidate FRGs: 
CDKN1A, DPP4, MT1G, and NCOA4. Specifically, the four 
genes involved in ferroptosis perform distinct functions. 
For example, CDKN1A is a direct transcriptional target 
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Figure 7 Relationship between the risk score and clinical characteristics of patients with RCC. (A) Ferroptosis-related risk score in the 
cohorts is stratified by gender (P=0.0093). (B) Ferroptosis-related risk score in the cohorts is stratified according to distant metastases 
(P<0.001). (C) Ferroptosis-related risk score in the cohorts is stratified by tumor stage (P<0.001). (D) Ferroptosis-related risk score in the 
cohorts is stratified by the T stage of RCC (P<0.001). RCC, renal cell carcinoma.

of p53, and CDKN1A ablation could phenocopy some 
aspects of p53 loss-of-function (37). In addition, DPP4 
inhibits erastin-induced ferroptosis in colorectal cancer 
when its activity is blocked by p53. Nevertheless, when 
p53 is not present, DPP4 binds to NOX1, forming the 
NOX-DPP4 complex, which results in lipid peroxidation 
in the plasma membrane and iron toxicity (38,39). MT1G 
hypermethylation significantly increases the risk of lymph 
node metastasis in patients with thyroid cancer. In addition, 
MT1G can also mediate tumor cell growth through PI3K/
AKT signaling pathway (40). Protein imbalance of NCOA4 
plays an important role in the pathogenesis of ovarian 
cancer (41). However, the mechanism of action of these 
genes in RCC needs to be further explored. We are also 
continuing to study the specific molecular mechanism of 
FRGs in the occurrence and development of RCC.

Next, using Cox regression analyses, we constructed a 
risk signature based on two prognostic FRGs (CDKN1A and 
NCOA4). CDKN1A was highly expressed in kidney cancer, 
while NCOA4 was expressed at low levels in kidney cancer, 
and this result was verified by RT-qPCR. The RCC patients 
were divided into high- and low-risk groups according to 
their median risk scores. We noted that OS and PFS were 
shorter in high-risk patients than in low-risk patients. The 
ROC curve showed that the signature worked well and 
had an excellent prognostic prediction ability. Additionally, 
multivariate Cox analysis indicated that the risk score was 
an independent prognostic indicator. We also developed 
an alignment diagram that combined the risk score with 
other clinical parameters, which was simplified to a single 
numerical estimate of event probability, to predict each 
patient’s prognosis. The calibration curves showed excellent 
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Figure 8 The exploration of the immune profile of the high- and low-risk groups. (A) Barplot shows the proportion of 22 kinds of TILs 
in RCC tumor samples. Column names of the plot were sample IDs. (B) In TCGA, a heat map of the correlation between 13 immune-
related functions and risk groups. (C) Boxplots of immune-infiltrating lymphocytes between the low- and high-risk groups, where blue 
indicates low-risk samples and red indicates high-risk samples. (D) Comparison of the immune checkpoints between the high- and low-risk 
groups, where red indicates high-risk samples and blue indicates low-risk samples. (E) The difference in TMB between the high- and low-
risk groups. (F,G) Oncoplot shows the somatic landscape of the high- and low-risk tumor cohorts. Fifteen genes with the highest mutation 
frequency were selected for visualization. The sidebar plot shows the −log10-transformed q values, as estimated using MutSigCV. The 
waterfall plot shows the mutation information for each gene in each sample. The color annotations of various cancer types are shown at the 
bottom. The barplot above the legend shows the number of mutation burdens. *, P<0.05; **, P<0.01; ***, P<0.001. TMB, tumor mutational 
burden; TILs, tumor-infiltrating lymphocytes; RCC, renal cell carcinoma; TCGA, The Cancer Genome Atlas.
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Figure 9 Drug sensitivity of the high- and low-risk groups. (A-C) Crizotinib, etoposide, and sorafenib were more effective in the high-risk 
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agreement between actual and expected results. We also 
observed a higher risk score for individuals with more 
advanced disease, which showed that the signature-based 
risk score was highly correlated with RCC progression. An 
increasing number of studies have reported that abnormal 
expression of FRGs is associated with human cancer (42,43). 
The above results also indicate a potential role of iron death 
in RCC. However, the specific mechanisms of CDKN1A 
and NCOA4 in RCC needs to be further investigated.

In general, TMB is a valid marker for immunotherapy 
(44,45), with higher TMBs signifying a greater likelihood 
that the immune system will recognize the tumor and a 
stronger possibility that immunotherapy will be effective. 
Our results showed that the high- and low-risk groups 
were significantly different in terms of TMB. Among the 
top 15 mutated genes, VHL had the highest mutation 
frequency in RCC patients, followed by PBRM1. There 
is an interaction between FRGs and tumor immune 
microenvironment (TIME). It has been shown that TIME 
is associated with iron metabolism and homeostasis, while 
ferroptosis is essential for tumor immunity. Besides, the 
immunosuppressive molecules released by iron-death cells 
can inhibit the role of T cells and APCs in the immune 
microenvironment, thus promoting tumor immune  
escape (46). Typically, as the tumor progresses, immune 
cells infiltrate into the tumor microenvironment. A 
previous study showed that regulatory T-cells, follicular 
helper T-cells, and memory B-cells were associated with 
poor ccRCC outcomes (47). Moreover, the infiltration of 
natural killer (NK) cells can impair the body’s immune  
regulation (48). According to the studies described above, 
the high-risk group we identified exhibited characteristics 
consistent with a poor prognosis. In addition, the 
ssGSEA results pointed to immune features such as type 
II interferon (IFN) response inactivation and T-cell 
costimulation activation in high-risk populations. Based on 
these results, it appears that our features may act to block 
the immune response in RCC’s tumor microenvironment 
and contribute to its progression. Moreover, the tumor 
necrosis factor receptor superfamily can initiate numerous 
immune and inflammatory processes (49). We found 
that the family members, TNFRSF25, TNFRSF4, and 
TNFRSF18, had elevated expression in the high-risk group. 
Therefore, the evaluation of FRGs in RCC will enhance 
the understanding of immune infiltration in the immune 
microenvironment, thus helping oncologists to develop 
personalized immunotherapy strategies. However, the 
correlation with ferroptosis needs to be further explored. 

Finally, we analyzed the drug sensitivity of these FRGs to 
guide clinical treatment. There are significant differences 
in IC50 between high-risk and low-risk patients to dozens 
of drugs, suggesting that some drugs are more sensitive 
to high-risk patients than low-risk patients. Sorafenib and 
sunitinib are both approved for treating advanced RCC 
(50,51). Our study found that sorafenib was sensitive in the 
high-risk group, while sunitinib was sensitive in the low-
risk group. The role of crizotinib and pazopanib in treating 
kidney cancer needs to be further defined.

Our study developed a prognostic risk model based on 
the genetic association of ferroptosis and identified low- 
and high-risk RCC groups. In our study, a significant 
correlation was identified between this model and prognosis. 
In addition, immune cell infiltration and drug sensitivity 
analyses were performed, and the relevance of the FRG 
model to RCC was initially demonstrated. However, despite 
achieving some encouraging results, this study has some 
limitations. First, we were not able to obtain validation from 
the Gene Expression Omnibus (GEO) and International 
Cancer Genome Consortium (ICGC) databases. The bias 
and limitations of commercial microarray data compared 
to TCGA data prevented us from obtaining the correct 
information on FRGs despite using the GEO and ICGC 
databases. Second, additional experiments are needed to 
determine specific mechanisms of action of critical genes 
for clinical application.

Conclusions

In summary, we provided new insights into the role of 
FRGs in RCC and constructed a promising risk-prognostic 
model that has potential as a biomarker of OS in RCC 
patients. Then, we established a new favorable prognostic 
column line graph for personalized survival prediction. 
Our constructed ferroptosis-associated signature has 
important clinical implications and may offer a new 
therapeutic strategy for individualized treatment and 
immunotherapeutic response in RCC patients. These two 
ferroptosis-associated genes may be therapeutic targets for 
RCC.
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Figure S1 The enriched KEGG signaling pathways are selected to demonstrate the primary biological actions of major potential mRNA. 
The abscissa indicates gene ratio and the enriched pathways are presented in the ordinate. GO analysis of potential targets of mRNAs. The 
BP, CC, and MF of potential targets are clustered based on the ClusterProfiler package in R software (version 4.2.0). (A) Enrichment results 
of differentially upregulated genes KEGG pathway. (B) Results of GO term enrichment of differentially upregulated genes. (C) Enrichment 
results of differentially down-regulated genes KEGG pathway. (D) Results of GO term enrichment of differentially down-regulated genes. 
KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular 
function.
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Figure S2 FRG expression heat map, where different colors represent the expression trend in different samples. The significance of the two 
groups of samples passed the Wilcox test, and the significance of the three groups and above passed the Kruskal-Wallis test. **, P<0.01; ***, 
P<0.001. RCC, renal cell carcinoma; FRG, ferroptosis-related gene.
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Figure S3 The prognostic impact of a gene on a given sample, based on the amount of individual gene expression, using the median gene 
expression as a grouping, the poorer prognosis of high expression means that the gene may promote tumor development, while the opposite 
is a protective factor. (A) CARS. (B) FANCD2. (C) FDFT1. (D) GLS2. (E) GPX4. (F) LPCAT3. (G) SLC1A5. (H) SLC7A11. HR, hazard 
ratio; CI, confidence interval; OS, overall survival.
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Table S1 Clinical information of 883 patients with RCC

Variables TCGA-RCC (n=883)

Status, n

Alive 656

Dead 227

Age (years)

Mean (SD) 60.2 (12.4)

Median [min, max] 60 [17, 90]

Gender, n

Female 288

Male 595

Race, n

American Indian 2

Asian 16

Black 120

White 721

pT stage, n

T1 79

T1a 245

T1b 166

T2 95

T2a 17

T2b 18

T3 13

T3a 169

T3b 59

T3c 3

T4 15

TX 4

Table S1 (continued)

Table S1 (continued)

Variables TCGA-RCC (n=883)

pN stage, n

N0 421

N1 43

N2 5

NX 414

pM stage, n

M0 695

M1 91

MX 97

pTNM stage, n

I 464

II 107

III 188

IV 103

Grade, n

G1 14

G2 227

G3 206

G4 75

GX 5

RCC, renal cell carcinoma; TCGA, The Cancer Genome Atlas; 
SD, standard deviation; pT, pathological tumor; pN, pathological 
node; pM, pathological metastasis; pTNM, pathological tumor-
node-metastasis.
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Table S2 Twelve of 18 FRGs are significantly associated with prognosis

Genes P value HR Low 95% CI High 95% CI

LPCAT3 0.000279 0.611296 0.468778 0.797142

HSPA5 0.282848 1.154061 0.888506 1.498984

CARS 0.000216 1.654772 1.267175 2.160926

CDKN1A 0.000228 0.599453 0.456624 0.78696

ACSL4 0.503597 1.093133 0.842066 1.419058

GLS2 0.000229 0.599534 0.456683 0.787069

ALOX15 0.069483 1.274838 0.98083 1.656976

RPL8 0.056248 1.29031 0.993234 1.676241

FANCD2 0.000565 1.593932 1.222838 2.077642

GPX4 0.009255 0.702277 0.538162 0.91644

FDFT1 0.000163 0.59631 0.455797 0.78014

MT1G 8.83E-06 1.840019 1.406128 2.407795

NCOA4 0.015428 0.721661 0.554244 0.93965

SLC7A11 0.007644 1.436118 1.100752 1.87366

HSPB1 0.134944 0.818282 0.629085 1.06438

CISD1 0.356558 0.884367 0.68105 1.148382

SLC1A5 7.42E-05 1.723584 1.316703 2.256198

DPP4 9.82E-06 0.539542 0.410416 0.709294

FRG, ferroptosis-related gene; HR, hazard ratio; CI, confidence interval.
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Table S3 Clinical features of RCC patients in the training set and testing set

Features Total Test Train P value

Age, n (%) 0.0497

≤65 years 576 (65.53) 302 (68.79) 274 (62.27)

>65 years 303 (34.47) 137 (31.21) 166 (37.73)

Gender, n (%) 0.7916

Female 287 (32.65) 141 (32.12) 146 (33.18)

Male 592 (67.35) 298 (67.88) 294 (66.82)

Grade, n (%) 0.481

G1 14 (1.59) 8 (1.82) 6 (1.36)

G2 227 (25.82) 114 (25.97) 113 (25.68)

G3 206 (23.44) 118 (26.88) 88 (20.00)

G4 75 (8.53) 38 (8.66) 37 (8.41)

Unknown 357 (40.61) 161 (36.67) 196 (44.55)

Stage, n (%) 0.5242

Stage I 455 (51.76) 218 (49.66) 237 (53.86)

Stage II 102 (11.60) 54 (12.30) 48 (10.91)

Stage III 187 (21.27) 99 (22.55) 88 (20.00)

Stage IV 103 (11.72) 55 (12.53) 48 (10.91)

Unknown 32 (3.64) 13 (2.96) 19 (4.32)

T, n (%) 0.3715

T1 482 (54.84) 230 (52.39) 252 (57.27)

T2 125 (14.22) 67 (15.26) 58 (13.18)

T3 255 (29.01) 135 (30.75) 120 (27.27)

T4 15 (1.71) 6 (1.37) 9 (2.05)

Unknown 2 (0.23) 1 (0.23) 1 (0.23)

M, n (%) 0.5955

M0 547 (62.23) 281 (64.01) 266 (60.45)

M1 89 (10.13) 49 (11.16) 40 (9.09)

Unknown 243 (27.65) 109 (24.83) 134 (30.45)

N, n (%) 0.419

N0 326 (37.09) 163 (37.13) 163 (37.05)

N1 43 (4.89) 25 (5.69) 18 (4.09)

N2 6 (0.68) 2 (0.46) 4 (0.91)

Unknown 504 (57.34) 249 (56.72) 255 (57.95)

RCC, renal cell carcinoma; T, tumor; N, node; M, metastasis.
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Table S4 List of drug sensitivities for high- and low-risk groups

Groups List of drug sensitivities

High-risk A-443654, AS605240, AZ628, BMS-754807, Bortezomib, CP466722, CP724714, Crizotinib, Doxorubicin, Erlotinib, Etoposide, 
FH535, GSK429286A, GW-2580, JNK-9L, JQ12, JW-7-24-1, KIN001-135, LAQ824, Lisitinib, MS-275, NG-25, NSC-207895, 
OSU-03012, Phenformin, Pyrimethamine, Salubrinal, Sorafenib, TAK-715, TL-1-85, TL-2-105, Tubastatin A, Vinorelbine, 
WZ3105, YM155

Low-risk A-770041, LY317615, AKT inhibitor VIII, Midostaurin, AP-24534, NPK76-II-72-1, AS601245, NSC-87877, AT-7519, Obatoclax 
Mesylate, AUY922, PAC-1, BAY 61-3606, Paclitaxel, Bexarotene, Parthenolide, BI-2536, Pazopanib, Bleomycin, PF-562271, 
BMS345541, QL-XII-47, BMS-509744, QS11, Bryostatin 1, Rapamycin, BX-912, Roscovitine, CAL-101, Ruxolitinib, CGP-
082996, Shikonin, CMK, STF-62247, Cyclopamine, S-Trityl-L-cysteine, Dasatinib, Sunitinib, DMOG, TAE684, Epothilone B, 
TGX221, FMK, Thapsigargin, FR-180204, Tipifarnib, Gemcitabine, VX-11e, Genentech Cpd 10, WH-4-023, GSK-650394, WZ-
1-84, GSK1070916, XL-184, HG-6-64-1, XMD8-85, Imatinib, XMD14-99, IPA-3, Z-LLNle-CHO, Ispinesib Mesylate, ZSTK474, 
JW-7-52-1, Lapatinib, KIN001-102, LFM-A13


