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Background: Clear cell renal cell carcinoma (ccRCC) is one of the most common cancers worldwide, and 
its incidence is increasing every year. Endoplasmic reticulum stress (ERS) caused by protein misfolding has 
broad and profound effects on the progression and metastasis of various cancers. Accumulating evidence 
suggests that ERS is closely related to the occurrence and progression of ccRCC. This study aimed to 
identify ERS-related genes for evaluating the prognosis of ccRCC.
Methods: Transcriptomic expression profiles were obtained from the Gene Expression Omnibus (GEO) 
and The Cancer Genome Atlas (TCGA), and clinical data were downloaded from the TCGA. First, the 
differentially expressed genes (DEGs) were analyzed using the limma package, and the DEGs related to ERS 
(ERS-DEGs) were identified from the GeneCards database. Second, a function and pathway enrichment 
analysis and a Gene Set Enrichment Analysis (GSEA) were performed. Third, a protein-protein interaction 
(PPI) network was constructed to identify the hub genes, and a gene-micro RNA (miRNA) network and 
gene-transcription factor (TF) network were established using the hub genes. Finally, a least absolute 
shrinkage and selection operator (LASSO) regression analysis was conducted to establish a diagnostic model, 
and a Cox analysis was used to analyze the correlations between the expression of the characteristic genes 
and the clinical characteristics.
Results: We identified 11 signature genes and established a diagnostic model. Further, the Cox analysis 
results revealed a correlation between the expression levels of the signature genes and the clinical 
characteristics. Ultimately, five signature genes (i.e., TNFSF13B, APOL1, COL5A3, and CDH5) were found 
to be associated with a poor prognosis.
Conclusions: This study suggests that TNFSF13B, APOL1, COL5A3, and CDH5 may have potential as 
prognostic biomarkers in ccRCC and may provide new evidence to support targeted therapy in ccRCC.
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Introduction

With 403,262 new cases worldwide in 2018, renal cell 
carcinoma (RCC) is one of the most commonly diagnosed 
malignant cancers (1). Clear cell RCC (ccRCC) is the most 
common subtype of RCC, and comprises about 80% of 
all RCC cases (2). The incidence of ccRCC has increased 
fivefold since 1971, and the mortality rate has increased 
twofold (3). At present, about 25% of ccRCC patients 
are diagnosed when the disease is already in an advanced  
stage (4). Due to its heterogeneous pathologies and 
molecular characteristics, the treatment of ccRCC has met 
with obstacles. Considerable research has been conducted 
to identify genetic markers that can be used to accurately 
predict patient outcomes. As a first-line clinical treatment, 
immunotherapy drugs can greatly improve the survival 
time of advanced stage or relapsed ccRCC patients. The 
detection of tumor molecular markers may help to predict 
local recurrence and distant metastasis, and thus enable more 
aggressive treatment regimens to be implemented (5-9).

Endoplasmic reticulum stress (ERS) is the physiological 
dysfunction of the endoplasmic reticulum caused by 
oxidative stress, chemical damage, and other factors, leading 
to the accumulation of misfolded or unfolded proteins in 
the endoplasmic reticulum (10). ERS plays a key role in a 
variety of human diseases, including, neurodegenerative 
diseases, inflammatory diseases, metabolic diseases, and 
tumors (11). Previous research has shown that ERS plays 
an important role in the occurrence and development of 
tumors and protects tumor cells from drug-induced stress 

and radiation damage (12). Moreover, a study also showed 
that ERS maintains the survival of renal cancer cells and can 
be used as a new anti-cancer mechanism for the treatment 
of renal cancer (13). To date, relatively few studies have 
examined the treatment of renal cancer by regulating 
ERS, and there are few confirmed targets that can play a 
therapeutic role in the treatment of renal cancer (13).

In this study, we first selected two gene data sets (i.e., 
GSE53757 and GSE66272) from the Gene Expression 
Omnibus (GEO) database. Second, we identified the 
differentially expressed genes (DEGs) using R-encapsulated 
limma, we then identified the ERS-related genes from 
the GeneCards database, and finally we identified the 
ERS-related genes in ccRCC. Third, annotations and 
visualizations were used to analyze these DEGs, including 
the molecular functions (MFs), cellular components (CCs), 
biological processes (BPs), and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways. Fourth, we 
established a protein-protein interaction (PPI) network and 
then applied the cell type Molecular Complex Detection 
(MCODE) algorithm for an additional DEG analysis to 
identify some important modules. Fifth, we visualized the 
hub gene-micro RNA (miRNA) network associated with 
ccRCC, the hub gene-transcription factor (TF) network 
associated with ccRCC, and the hub gene-gene interaction 
network associated with drug-ccRCC using Cytoscape 
software. Sixth, we used The Cancer Genome Atlas (TCGA) 
data and the least absolute shrinkage and selection operator 
(LASSO) regression method to identify the final key 
characteristic genes, combined the final expression values of 
the characteristic genes with the regression coefficients of 
the characteristic genes to establish the diagnostic model, 
and then used TCGA data set and the GSE53000 data set 
to draw the receiver operating characteristic (ROC) curve to 
verify the effectiveness of the diagnostic model. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tau.amegroups.com/article/
view/10.21037/tau-23-374/rc).

Methods

Data collection

We used the R package GEOquery (14) to download the 
gene expression profile GSE53757 (15) and GSE66272 (16)  
data sets of human ccRCC tumor tissues and adjacent 
normal tissues from the GEO database (http://www.ncbi.
nlm.nih.gov/geo/) (17). The GSE53757 data set comprised 
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144 samples, of which 72 were tumor tissues and 72 were 
normal tissues adjacent to the tumors. The GSE66272 data 
set comprised 53 samples, of which 26 were tumor tissues 
and 27 were normal adjacent to the normal tissues. We also 
applied the R package TCGAbiolinks (18) to obtain the 
gene expression profile ccRCC data from TCGA database, 
which comprised 534 tumor tissues and 72 normal tissues 
adjacent to the tumors, and we obtained the survival data 
and clinical phenotypes of the ccRCC patients from TCGA 
database (https://portal.gdc.cancer.gov/). The ERS-related 
genes were obtained from the GeneCards database (https://
www.genecards.org/) (19).

DEGs

First, we used the R package sva (20) to remove the batch 
utility of the GSE53757 and GSE66272 data sets to obtain 
an integrated GEO data set. To analyze the influence of 
the gene expression values on the ccRCC tumor tissues 
relative to the normal tissues, according to the grouping 
information in the data, the R package limma (21) was used 
to analyze the differences between the groups. Genes with 
log fold change (logFC) >1 and P<0.05 were considered 
up-regulated genes, and genes with logFC <−1 and P<0.05 
were considered down-regulated genes.

DEG function and pathway enrichment analysis

A Gene Ontology (GO) function annotation analysis, which 
includes the BPs, MFs, and CCs, is a common method for 
large-scale gene enrichment research. KEGG is a widely 
used database that stores information about genomes, 
biological pathways, diseases, and drugs. The R package 
clusterProfiler (22) was used to perform the GO function 
annotation analysis and the KEGG pathway enrichment 
analysis of the differentially expressed ERS-related genes 
associated with ccRCC. P<0.05 was considered statistically 
significant.

Gene Set Enrichment Analysis (GSEA) enrichment 
analysis

A GSEA is used to evaluate the distribution trend of genes 
in a pre-defined gene set in a gene table ranked by the 
phenotype correlation to determine their contribution to 
the phenotype (23). We obtained the background gene sets 
of “c2.kegg.v7.4.symbols” and “c5.go.v7.4.symbols” from 
the MSigDB (24) database, and we used the “clusterprofiler” 

R package to perform the GSEA (25). In this analysis, 
P<0.05 was considered statistically significant.

PPI network

A PPI network is composed of individual proteins that 
interact with each other to participate in all aspects of life 
processes, such as biological signal transmission, gene 
expression regulation, energy and material metabolism, and 
cell cycle regulation. A systematic analysis of the interaction 
relationships between a large number of proteins in 
biological systems is useful to understand the working 
principles of proteins in biological systems, the reaction 
mechanism of biological signals and energy substance 
metabolism under special physiological conditions, such as 
diseases, and the functional connections between important 
proteins. The STRING database (26) can be used to 
search for known proteins and predict the interactions 
among proteins. The database includes 2,031 species, 
9.6 million proteins, and 1.38 million interactions of 
proteins to proteins. It contains the results obtained from 
experimental data, text mining from PubMed abstracts, and 
the integration of data from other databases, as well as the 
results obtained from using bioinformatics methods. We 
used the STRING database to construct a PPI network of 
differentially expressed ERS-related genes of ccRCC.

Closely connected local areas in a PPI network may 
represent molecular complexes that may possess specific 
biological functions. The MCODE (27) network clustering 
algorithm can be used to mine protein complexes or 
corresponding functional modules from complex protein 
networks. We extracted PPI subnets with MCODE scores 
greater than 10 to obtain ccRCC-related genes in the 
subnets. Additionally, cytoHubba was used to extract the top 
20 key genes in the network. The intersection of the hub 
genes and top 20 genes was used to compare the function of 
the hub genes in the PPI network.

Hub gene-miRNA network and hub gene-TF network

In the post-transcriptional stage, the miRNAs or TFs that 
control gene expression by interacting with the target gene 
were analyzed under conditions that define the disease 
(28,29). We used the miRNet database to identify the hub 
gene-related miRNAs and TFs associated with ccRCC. We 
used Cytoscape software to visualize the hub gene-miRNA 
network related to ccRCC and the hub gene-TF network 
related to ccRCC.

https://portal.gdc.cancer.gov/
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The drug-gene interaction database (DGIdb) version 
3.0.2 (https://www.dgidb.org) (30) is an available resource 
for targeting drugs, sensitive genomes, and drug-gene 
interactions. We searched the DGIdb to predict the 
potential drugs or molecular compounds that interact with 
the hub genes associated with ccRCC and visualized the 
drug-hub gene interaction network using Cytoscape.

Construction of a diagnostic model

We analyzed the ability of the hub genes related to ccRCC 
to distinguish between normal tissues and ccRCC tissues. 
We used the R package pROC (31) to draw a ROC curve 
for each gene and calculate the area under the curve (AUC), 
and we chose the genes with AUC values greater than 0.9 
from the two data sets as the key genes. We used TCGA 
database to find the best lambda value to confirm the final 
characteristic genes from the key genes using the LASSO 
regression method and combined the expression values of 
the final characteristic genes with the regression coefficients 
of the characteristic genes to establish a diagnostic model. 
The diagnostic score of each patient was equal to the sum 
of the characteristic gene expression value multiplied by the 
regression coefficient. The ROC curves were drawn using 
TCGA data set and the integrated GEO data set to verify 
the effectiveness of the diagnostic model. We also obtained 
an independent validation data set (GSE53000) (32)  
from the GEO. The GSE53000 data set comprised the 
gene expression profile data of 53 ccRCC tissues and six 
normal tissues. We drew ROC curves using the GSE53000 
validation data set to verify the effectiveness of the 
diagnostic model.

Prognostic analysis of the characteristic genes

Gene expression levels and clinical characteristics play a key 
role in the development and prognosis of tumors. To further 
evaluate the effect of the expression of the characteristic 
genes and the clinicopathological characteristics on the 
prognosis of patients, we first analyzed the differences in 
the expression levels of the characteristic genes between the 
normal tissues and tumor tissues in the two data sets. We 
then analyzed the effect of the characteristic gene expression 
levels on the survival and prognosis of patients with ccRCC. 
Univariate and multivariate Cox analyses were conducted 
to analyze the independent ability of the characteristic 
genes and clinicopathological characteristics to predict 
overall survival (OS), and the corresponding indicators were 

incorporated into a model to construct a clinical prediction 
nomogram and calibration curve. The gene expression 
level significantly affected the survival and prognosis of 
patients with ccRCC, and the correlations between the gene 
expression level and the clinical characteristics was analyzed.

Human renal cell lines

CcRCC tissues and normal adjacent tissues were collected 
from 10 patients admitted to the First Affiliated Hospital of 
Chongqing Medical University. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013) and was approved by the Ethics Committee of the 
First Affiliated Hospital of Chongqing Medical University 
(Ethical Application Ref: 2022-120). Informed consent was 
obtained from all the participants. Three renal cancer cell 
lines (786-O, RCC-23, and CAKI) and one human normal 
renal cell line (HK-2) were purchased from the American 
Type Culture Collection (Manassas, Virginia, USA). The 
cells were cultured in Dulbecco’s Modified Eagle Medium 
(Gibco, Waltham, MA, USA) and McCoy’s 5A medium 
(Gibco), which were supplemented with 10% fetal bovine 
serum (BioInd, Israel), 100 μ/mL of penicillin (Beyotime, 
Shanghai, China), and 100 mg/mL of streptomycin 
(Beyotime). The cells were incubated at 37 ℃ in 5% CO2. 
The medium was changed every 1–3 days.

Real time-quantitative polymerase chain reaction  
(RT-qPCR)

Trizol (ABclonal, Wuhan, China) was used to extract 
the total RNA from the tissues and cell lines under 
various experimental conditions in accordance with the 
manufacturer’s instructions. A complementary DNA 
(cDNA) Synthesis Kit (ABclonal) that was combined with 
RNA (1 μg) was used to reverse transcribe the cDNA. The 
qPCR was performed on an ABI 7500 RT PCR system 
(Applied Biosystems, Waltham, MA, USA) using the SYBR-
green method (ABclonal). The relative expression levels of 
the mRNAs normalized to β-actin were calculated using the 
2−ΔCt method. The primer sequences are shown in Table 1. 
Three assays were performed per cDNA sample.

Immunohistochemistry (IHC)

The slides were deparaffinized with xylene and rehydrated 
with graded ethanol for 1 hr. Antigen retrieval was achieved 
by immersing the slides in boiling sodium citrate‐
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Table 1 The primer sequences of APOL1, COL5A3, TNFSF13B, CDH5, and β-actin

Gene Primers Primers sequences

APOL1 F primer (5'-3') TGGACTACGGAAAGAAGTGGT

R primer (5'-3') CCTCCTTCAATTTGTCAAGGCTT

COL5A3 F primer (5'-3') TTCTCCTACGTGGACGCCGA

R primer (5’-3’) TCTCCATTGGTGCCAAGGAA

TNFSF13B F primer (5'-3') TTCTAGGGCACTTCCCCTTT

R primer (5'-3') CTCAAGACTGCTTGCAACTGA

CDH5 F primer (5’-3’) GGCTCCACAGAGCTCCACTC

R primer (5'-3') TGAGGGATGTTTCTGTTCCGT

β-actin F primer (5'-3') AAACGTGCTGCTGACCGAG

R primer (5'-3') TAGCACAGCCTGGATAGCAAC

hydrochloric acid buffer solution and heating them in the 
microwave for another 25 min. After the samples were 
cooled to room temperature, 3% hydrogen peroxide 
was added to remove the endogenous peroxidase, and 
the samples were washed three times with Tris-buffered 
saline (TBS). After normal goat serum was used to block 
the samples at room temperature for 15 min, the slides 
were incubated with primary antibodies overnight at  
4 ℃. After washing with TBS three times, the secondary 
antibodies were used. Next, the slides were washed 
and incubated with streptavidin‐biotin‐conjugated 
horseradish peroxidase (HRP) at 37 ℃ for another 30 min. 
After being washed three more times, diaminobenzidine 
was added for approximately 1 min, and hematoxylin was 
applied to counterstain for 50 s. The antibodies used in the 
study were as follows: COL5A3 (1:200, Abmart, pa2654), 
APOL1 (1:5,000, Proteintech, 66124-1-Ig), CDH5 (1:400, 
Proteintech, 66804-1-lg), TNFSF13B (1:400, Wanleibio, 
WL02618).

Statistical analysis

All the data calculations and statistical analysis were 
performed using R language (https://www.r-projec 
t.org/, version 4.0.2) and GraphPad Prism9 (GraphPad 
Software Inc., La Jolla, CA, USA). To compare two 
groups of continuous variables, the statistical significance 
of the normally distributed variables was estimated by an 
independent t-test. To compare two groups of independent 
variables, the differences between the non-normally 
distributed variables were analyzed by the Wilcoxon rank-

sum test. To compare multiple groups of independent 
variables, the difference between the variables was compared 
and analyzed by the Kruskal-Wallis test. R package pROC 
was used to draw the ROC curves and calculate the AUCs 
to evaluate the accuracy of the risk scores in estimating 
patient prognosis. All statistical P values were two-sided, 
and P<0.05 was considered statistically significant.

Results

Identification of ERS-related genes

We first performed a principal component analysis on 
the GSE53757 and GSE66272 data sets, and the results 
showed that there was a significant batch effect between the 
GSE53757 and GSE66272 data sets (Figure 1A). We used 
the combat function to remove the batch effect to obtain an 
integrated GEO data set (Figure 1B). The integrated GEO 
data set comprised 197 samples, of which 98 were tumor 
tissue samples and 99 were normal tissue samples.

To analyze the effect of gene expression on the ccRCC 
tissues relative to the normal tissues, we conducted a limma 
differential analysis to identify the DEGs in the two data 
sets and drew a volcano map of the DEGs. The GEO data 
were integrated and 1,977 DEGs were identified, of which 
1,007 were up-regulated and 970 were down-regulated 
(Figure 1C). The DEGs and data groupings were then used 
to draw a classification heat map (Figure 1D). The DEGs 
could be used to distinguish between the tumor tissues 
and the normal tissues. Using the TCGA-ccRCC data, we 
identified 4,937 DEGs, of which 2,362 were up-regulated 

https://www.r-projec t.org/
https://www.r-projec t.org/
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Figure 1 Differentially expressed genes. (A) PCA analysis before batch calibration. (B) PCA analysis after batch calibration. (C,E) The 
abscissa is the log2 fold change; the ordinate is −log10 (adjusted P value). (D,F) The abscissa is the patient id; the ordinate is the respective 
DEGs. (G) Venn diagram of the DEGs; the green circle represents the DEGs of the integrated GEO data set; the yellow circle represents 
the DEGs of TCGA data set. The intersection was used to identify the ccRCC-related DEGs. (H) The yellow circle represents the DEGs 
of TCGA data set; the green circle represents the DEGs of the integrated GEO data set; the red circle represents the ERS-related genes of 
ccRCC. PCA, principal component analysis; DEGs, differentially expressed genes; GEO, Gene Expression Omnibus; TCGA, The Cancer 
Genome Atlas; ERS, endoplasmic reticulum stress; ccRCC, clear cell renal cell carcinoma.
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and 2,575 were down-regulated (Figure 1E). The DEGs 
and data grouping were used to draw a classification heat 
map (Figure 1F). The DEGs could be used to distinguish 
between the tumor tissues and the normal tissues. We then 
identified 1,256 intersecting DEGs related to ccRCC in the 
two data sets (Figure 1G). The 1,256 intersecting ccRCC 
DEGs and 7,069 ERS-related genes were then entered into 
the GeneCards database and 550 differentially expressed 
ERS-related genes of ccRCC were identified (Figure 1H).

Functional enrichment analysis of the differentially 
expressed ERS-related genes

To analyze the relationship between the differentially 
expressed ERS-related genes of ccRCC and the BPs, MFs, 
CCs, biological pathways, and diseases, we first performed 
a functional enrichment analysis. The ERS-related 
genes were analyzed by a functional enrichment analysis  
(Figure 2A). In terms of the BPs, the differentially expressed 
ERS-related genes of ccRCC were mainly enriched in the 
extracellular matrix organization, extracellular structure 
organization, T cell activation, leukocyte cell-cell adhesion, 
response to molecule of bacterial origin, response to 
oxygen levels, regulation of cell-cell adhesion, response to 
interferon-gamma, antigen processing and presentation, 
response to hypoxia (Figure 2B). In terms of the CCs, 
they were simultaneously enriched in the collagen-
containing extracellular matrix, membrane raft, membrane 
microdomain, membrane region, apical part of the cell, 
endoplasmic reticulum lumen, apical plasma membrane, 
external side of plasma membrane, endocytic vesicle, and 
basolateral plasma membrane. (Figure 2C). In terms of 
the MFs, they were enriched in the extracellular matrix 
structural constituent, immune receptor activity, coenzyme 
binding, peptide antigen binding, glycosaminoglycan 
binding, integrin binding, extracellular matrix structural 
constituent conferring tensile strength, growth factor 
binding, peptide binding, and carboxylic acid binding  
(Figure 2D).

Next, a pathway enrichment analysis was performed 
on the differentially expressed ERS-related genes of 
ccRCC, and the results showed that the differentially 
expressed ERS-related genes of ccRCC were enriched in 
phagosome, rheumatoid arthritis, viral myocarditis, graft-
versus-host disease, carbon metabolism, allograft rejection, 
cell adhesion molecules, type I diabetes mellitus, HIF-1 
signaling pathway, natural-killer cell-mediated cytotoxicity, 
and other biological pathways (Figure 2E). The first 

three pathways that were significantly enriched were the 
hsa04145: phagosome (Figure 2F), hsa05323: rheumatoid 
arthritis (Figure 2G), and hsa05416: viral myocarditis 
pathways (Figure 2H).

To determine the effect of the gene expression levels 
on ccRCC, we analyzed the relationship between gene 
expression in the two data sets, and the BPs involved, the 
CCs affected, and the MFs performed. The results showed 
that the genes in the integrated GEO data mainly affected 
the activation of the immune response, adaptive immune 
response, α amino acid catabolism, and other biological 
functions (Figure 3A,3B). The genes in the TCGA-
ccRCC data mainly affected the activation of the immune 
response, adaptive immune response, α-T cell activation, 
and other biologically related functions (Figure 3C,3D). 
The occurrence of ccRCC was more likely to be related to 
immune response disorders.

We also separately analyzed the biological pathways 
affected by gene expression in the two data sets. The 
results showed that the genes in the integrated GEO data 
set mainly affected the butyrate metabolism, chemokine 
signaling pathways, cytokine-cytokine receptor interactions, 
Leishmania infection, valine leucine, isoleucine degradation, 
and other biological pathways (Figure 4A,4B). The genes 
in the TCGA-ccRCC data set mainly affected biologically 
related pathways, such as allogeneic rejection, antigen 
processing and presentation, autoimmune thyroid diseases, 
chemokine signaling pathways, and cytokine-cytokine 
receptor interactions (Figure 4C,4D).

Construction of a PPI network

We constructed a PPI network related to the differentially 
expressed ERS-related genes of ccRCC, which were 
visualized in Cytoscape (Figure 5A). There was a total of 
522 differentially expressed ERS-related genes of ccRCC 
and 4,826 PPI pairs in the PPI network. Among them, 
the top five differentially expressed ERS-related genes 
that had the most interactions with other ccRCCs were 
EGFR (which interacted with 121 differentially expressed 
ERS-related genes of ccRCCs), VEGFA (which interacted 
with 118 differentially expressed ERS-related genes of 
ccRCCs), FN18 (which interacted with 104 differentially 
expressed ERS-related genes of ccRCCs), CD44 (which 
interacted with 101 differentially expressed ERS-related 
genes of ccRCCs), and PTPRC (which interacted with 100 
differentially expressed ERS-related genes of ccRCCs). We 
used MCODE to obtain two subnets with scores greater 
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Figure 2 GO and KEGG enrichment analyses. (A) GO function enrichment analysis. (B) The top five BP items are displayed. (C) The top 
five CC items are displayed. (D) The top five MF items are displayed. (E) KEGG pathway enrichment analysis. (F) Significantly enriched 
KEGG pathway, hsa04145: phagosome. (G) Significantly enriched KEGG pathway, hsa05323: rheumatoid arthritis. (H) Significantly 
enriched KEGG pathway, hsa05416: viral myocarditis. The red boxes in (F-H) represent the up-regulated genes, and the green boxes 
represent the down-regulated genes. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological processes; 
CC, cellular components; MF, molecular functions.

than 10, of which the first subnet contained 33 ERS-related 
DEGs (Figure 5B), and the second subnet comprised 67 
ERS-related DEGs (Figure 5C). We obtained took 100 
ccRCC-related hub genes from two subnets to obtain. At 
the same time, we used cytoHubba to extract the top 20 
nodes in the PPI network related to the ERS-related DEGs 
(Figure 5D), and after intersection with the 100 ccRCC-
related hub genes, the following 18 genes were identified: 
TLR7, CD44, CD86, TLR8, IFNG, CXCR4, IRF7, HLA-
DQB1, PTPRC, HLA-B, HLA-DQA1, HLA-E, HLA-G, 
VCAM1, HLA-DRA, ICAM1, TLR2, and HLA-DRB1.

Construction of a hub gene-miRNA network and a hub 
gene-TF network

We constructed a mRNA-miRNA network of the hub 
genes of ccRCC, which contained 99 mRNAs and 1,408 
miRNAs. The top five miRNAs targeting ccRCC hub genes 
were VEGFA, which was regulated by 207 miRNAs, MYC, 
which was regulated by 194 miRNAs, RAP2B, which was 
regulated by 163 miRNAs, FSTL1, which was regulated 
by 144 miRNAs, and CD44, which was regulated by 138 
miRNAs. The top five miRNAs that controlled multiple 
ccRCC hub genes at the same time were hsa-mir-129-2-
3p, which controlled 49 hub genes, hsa-mir-124-3p, which 
controlled 47 hubs genes, and hsa-mir-27a-3p, which 
controlled 38 hub genes, hsa-mir-155-5p, which controlled 

37 hub genes, and hsa-mir-146a-5p, which controlled 36 
hub genes (Figure 6A).

We constructed the mRNA-TF network of hub genes of 
ccRCC, which contained 70 mRNAs and 232 TFs. Among 
them, the top five TFs targeting ccRCC hub genes were 
MYC, which was regulated by 74 TFs, VEGFA, which was 
regulated by 58 TFs, IFNG, which was regulated by 29 TFs, 
FAS, which was regulated by 24 TFs, and CXCR4, which 
was regulated by 23 TFs. The top five TFs that controlled 
multiple ccRCC hub genes at the same time were NFKB1, 
which controlled 28 hub genes, RELA, which controlled 
26 hub genes, SP1, which controlled 16 hub genes, STAT1, 
which controlled 11 hub genes, and IRF1, JUN, TP53, 
which controlled nine hub genes (Figure 6B).

We searched for 100 drugs and compounds related 
to the ccRCC hub genes from the DGIDB data set and 
constructed a ccRCC hub gene-drug action network, which 
contained 69 mRNAs and 404 drugs. Among them, the top 
five hub genes of ccRCC regulated by the most drugs were 
FLT1, which was targeted by 55 drugs, ADORA3, which 
was targeted by 27 drugs, VEGFA, which was targeted 
by 26 drugs, MYC, which was targeted by 25 drugs, and 
PLG, which was targeted by 20 drugs. The drug that 
controlled multiple ccRCC hub genes at the same time 
was PREDNISONE, which targeted five hub genes, while 
ASPIRIN, bevacizumab, etanercept, collagenase clostridium 
histolyticum, floxacillin, ocriplasmin and ticlopidine 

HG
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Figure 3 GSEA-GO analysis. (A) The GSEA-GO analysis of the integrated GEO data. (B) The first three items of the GSEA-GO analysis 
of the integrated GEO data are displayed. (C) The GSEA-GO analysis of TCGA data. (D) The top three items of the GSEA-GO analysis of 
the TCGA data are displayed. GEO, Gene Expression Omnibus; GO, Gene Ontology; GSEA, Gene Set Enrichment Analysis; TCGA, The 
Cancer Genome Atlas.
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Figure 4 GSEA-KEGG analysis. (A) The GSEA-KEGG analysis of the integrated GEO data. (B) The top five items analyzed by the 
KEGG of the integrated GEO data. (C) GSEA-KEGG analysis of TCGA data. (D) The top five items analyzed by GSEA-KEGG in TCGA 
data. GSEA, Gene Set Enrichment Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; GEO, Gene Expression Omnibus; 
TCGA, The Cancer Genome Atlas.
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Figure 5 PPI network. (A) PPI network of the DEGs related to renal clear cell carcinoma; the blue nodes indicate the DEGs related to renal 
clear cell carcinoma; the red nodes indicate the first subnet gene; the green nodes indicate the second subnet gene. (B) The first subnet in 
the PPI network of the DEGs related to renal clear cell carcinoma; the size of the node represents the MCODE score. (C) The first subnet 
in the PPI network of the DEGs related to renal clear cell carcinoma; the size of the node is the MCODE score. (D) Top 20 subnets in 
the PPI network of the DEGs related to renal clear cell carcinoma. PPI, protein-protein interaction; DEGs, differentially expressed genes; 
MCODE, Molecular Complex Detection.
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Figure 6 Hub gene-miRNA network, hub gene-TF network, and hub gene-drug network. (A) The mRNA-miRNA network of the hub 
genes related to renal clear cell carcinoma; the blue nodes indicate miRNA; the red nodes indicate the hub genes related to renal clear cell 
carcinoma. (B) mRNA-TF network of the hub genes related to renal clear cell carcinoma; the blue nodes represent the TFs; the pink nodes 
represent the hub genes related to renal clear cell carcinoma. (C) The mRNA-drug network of the hub genes related to renal clear cell 
carcinoma; the blue nodes represent the drugs; the pink nodes represent the hub genes related to renal clear cell carcinoma. miRNA, micro 
RNA; mRNA, messenger RNA; TF, transcription factor.

targeted four hub genes of ccRCC (Figure 6C).

Construction of a ccRCC diagnostic model

We analyzed the ability of the ccRCC hub genes to 
independently distinguish between tumor tissues and 
normal tissues and drew a ROC curve for each gene. We 

identified 45 key genes related to ccRCC with AUC values 
greater than 0.8 in the two data sets, and 16 key genes with 
AUC values greater than 0.9 in the two data sets (Figure 7).

We identified the following 11 characteristic genes 
using the LASSO regression method in TCGA database  
(Figure 8A,8B): TRIM22, PTPRC, TNFSF13B, FCGR2B, 
CTSS, TLR7, APOL1, COL5A3, C5AR1, CDH5, and 
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Figure 7 ROC curves of the key genes. (A-P) The ROC curves of the 16 renal clear cell carcinoma-related hub genes with AUC values 
greater than 0.9. ROC, receiver operating characteristic; AUC, area under curve; GEO, Gene Expression Omnibus; TCGA, The Cancer 
Genome Atlas.

TYROBP. The diagnostic model was constructed by 
multiplying the expression values of the 11 characteristic 
genes by the regression coefficients of each characteristic 
gene.

The model risk score was calculated as follows:
Model risk score = 0.121 × TRIM22 + 0.064 × PTPRC 

+ 0.699 × TNFSF13B − 0.011 × FCGR2B − 2.229 × CTSS 
+ 0.153 × TLR7 − 0.799 × APOL1 + 0.0537 × COL5A3 + 
0.089 × C5AR1 − 0.305 × CDH5 + 0.134 × TYROBP

The ROC curve was drawn using TCGA data set, and the 
results showed that the AUC value was 0.895 (Figure 8C).  

The ROC curve was drawn using the integrated GEO data 
set, and the AUC value was 0.851 (Figure 8D). The ROC 
curve was drawn using the GSE53000 data set, and the 
AUC value was 0.952 (Figure 8E). The diagnostic model 
we constructed had a high diagnostic efficiency. To analyze 
the relationship between the 11 signature genes and the 18 
intersection genes, we calculated the correlations between 
the 11 signature genes and the 18 intersection genes in the 
ccRCC tissues and normal tissues from TCGA (Figure S1). 
The 11 signature genes and 18 intersection genes showed a 
high positive correlation.
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Figure 8 Diagnostic model and its verification. (A) LASSO regression characteristic fitting curve. (B) LASSO regression analysis of 
characteristic genes. The ROC curve of the diagnostic model in (C) TCGA data set, (D) integrated GEO data set and (E) the GSE53000 
data set. LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic; AUC, area under the curve; 
TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus.

APOL1, COL5A3, TNFSF13B, and CDH5 were 
prognostic factors related to ccRCC

We analyzed the expression differences of the 11 
characteristic genes in the tumor tissues and normal 
tissues in the two data sets, and the results showed that 
the expression levels of the 11 characteristic genes in the 
tumor tissues were significantly higher than those in the 
normal tissues (Figure 9). We also analyzed the effect of 
the expression levels of the 11 characteristic genes on the 
prognosis of patients, and the results showed that high 
expression levels of APOL1, COL5A3, and TNFSF13B 
indicated a poor prognosis (Figure 10A-10C), while a 
low expression level of CDH5 indicated a poor prognosis  
(Figure 10D). Subsequently, the clinical data and 11 
characteristic genes were used to construct a nomogram 
(Figure 10E) to simultaneously predict the one-year survival 
rate (Figure 10F) and five-year survival rate (Figure 10G) 
of the ccRCC patients. The results showed that the Nomo 
model we constructed could accurately predict the one-year 
and five-year survival rates of the patients. A univariate Cox 
analysis was conducted using the 11 characteristic genes 
and clinical characteristics, and the results showed that 

TNFSF13B, APOL1, COL5A3, C5AR1, CDH5, age, and 
American Joint Committee on Cancer (AJCC) stage were 
prognostic factors related to ccRCC (Figure 10H). The 
multivariate Cox analysis showed that COL5A3, CDH5, 
age, and AJCC stage were all prognostic factors for ccRCC 
(Figure 10H).

APOL1, COL5A3, CDH5, and TNFSF13B expression was 
correlated with AJCC TNM staging

We found that APOL1, COL5A3, TNFSF13B, and CDH5 
were all related to the prognosis of ccRCC patients. We 
analyzed the correlation between the expression levels of 
these four genes and the patients’ gender and AJCC TNM 
staging. The results showed that the expression of the 
APOL1 gene was related to the patients’ gender. APOL1 
gene expression was significantly higher in male patients 
than female patients. APOL1 gene expression was also 
significantly related to the stage of the disease, such that 
the higher the gene expression level, the higher the stage 
of the patient (Figure 11A-11E). There was no significant 
difference in CDH5 gene expression between the male 
and female patients; however, CDH5 gene expression was 
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Figure 9 The expression of the hub genes. (A-V) The expression differences of the 11 hub genes between the normal tissues and tumor 
tissues of the two data sets. GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas.
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Figure 10 Prognostic analysis of characteristic genes. (A) APOL1, (B) COL5A3, (C) NFSF13B, (D) CDH5 expression levels. (E) A 
nomogram of 11 characteristic genes and clinical characteristics. Nomo model predicting the (F) 1- and (G) 5-year survival of patients with 
renal clear cell carcinoma. (H) Multivariate Cox analysis of the 11 characteristic genes and clinical characteristics. OS, overall survival.
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Figure 11 The correlation between the prognostic-related feature genes and clinical features. The expression levels of APOL1 between the 
(A) genders, (B) T grades, (C) N grades, (D) M grades, and (E) patients’ AJCC staging grades. The expression levels of CDH5 between the (F) 
genders, (G) T grades, (H) N grades, (I) T M grades, and (J) patients’ AJCC staging grades. The expression levels of COL5A3 between the (K) 
genders, (L) T grades, (M) N grades, (N) M grades, and (O) patients’ AJCC staging grades. The expression levels of TNFSF13B between 
the (P) genders, (Q) T grades, (R) N grades, (S) M grades, and (T) patients’ AJCC staging grades. AJCC, American Joint Committee on 
Cancer.
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Figure 12 The expression levels of (A) APOL1, (B) TNFSF13B, (C) CDH5, and (D) COL5A3 in the renal cancer cell lines and renal 
tubular epithelial cell lines as measured by RT-qPCR. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001 compared with HK-2.

significantly related to the stage of the disease, such that 
the lower gene expression level, the higher the stage of the 
patient (Figure 11F-11J). COL5A3 gene expression did not 
differ significantly between the male and female patients, 
and was not significantly correlated with the stage of the 
disease (Figure 11K-11O). TNFSF13B gene expression 
differed significantly between the male and female patients; 
TNFSF13B gene expression was significantly higher in male 
patients than female patients. TNFSF13B gene expression 
was also significantly related with the stage of the disease, 
such that the higher the gene expression level, the higher 
the stage of the patient (Figure 11P-11T).

APOL1, COL5A3, TNFSF13B, and CDH5 were highly 
expressed in ccRCC

Previously, using bioinformatics methods, we found that 
APOL1, COL5A3, TNFSF13B, and CDH5 were associated 
with the prognosis of patients with ccRCC and were 
significantly highly expressed in ccRCC. Further, the RT-

qPCR results showed that APOL1, COL5A3, TNFSF13B, 
and CDH5 were significantly more highly expressed in 
human ccRCC cell lines than renal tubular epithelial cell 
lines (HK-2) (Figure 12). Similarly, APOL1, COL5A3, 
TNFSF13B, and CDH5 were significantly more highly 
expressed in tumor tissues than adjacent normal tissues. 
Notably, the RT-qPCR and IHC results were consistent 
with our previous results (Figures 13,14).

Discussion

CcRCC is a common malignant tumor of the urinary 
system. The global morbidity rate of ccRCC continues to 
rise (1). Renal cancer accounts for about 4% of malignant 
diseases in adults (1) and has the highest annual mortality 
rate of urinary tract tumors (3). Innovative and multimodal 
treatment strategies have provided a large number of 
ccRCC patients with new options and prolonged their 
survival to a certain extent; however, the curative effects are 
still unsatisfactory in some patients (2,4,6).
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Figure 13 The expression levels of APOL1, COL5A3, TNFSF13B, and CDH5 in the tumor tissue and adjacent normal tissue. *, P<0.05; 
**, P<0.01.

Figure 14 Immunohistochemistry staining was performed to validate the differential expressions of APOL1, TNFSF13B, CDH5, and 
COL5A3 using ccRCC samples from our clinical center. Scale bar: 50 μm. ccRCC, clear cell renal cell carcinoma.
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Studies have shown that ERS is activated in multiple 
solid tumors and is associated with a variety of malignant 
biological behaviors, such as tumor cell blood vessel 
production, genome instabil ity,  radiotherapy and 
chemotherapy resistance, autophagy, and abnormal energy 
metabolism (7,8,10). RCC is essentially a metabolic 
disease characterized by the reprogramming of energetic 
metabolism (33-36). Notably, the metabolic flux through 
glycolysis is partitioned (35,37,38), and mitochondrial 
bioenergetics and oxidative phosphorylation are impaired, 
as is lipid metabolism (39-42). Accumulating research 
has shown that the ERS-related activation of an unfolded 
protein response plays a role in regulating cell metabolism, 
and lipid metabolism in particular. Emerging evidence 
suggests that the activation of specific metabolic pathways 
has a role in regulating angiogenesis and inflammatory 
signatures (43,44).

In our study, we obtained the gene expression profile 
data of 632 tumor tissue samples and 171 normal tissue 
samples from the GEO and TCGA databases and screened 
and identified 550 differentially expressed ERS-related 
genes associated with ccRCC. A further LASSO regression 
analysis identified 11 eigengenes related to ERS, and a 
diagnostic model was then constructed. Through TCGA 
and the integrated GEO data set, high AUC values were 
obtained. Our diagnostic model had outstanding diagnostic 
performance.

We found that APOL1, COL5A3, TNFSF13B, and 
CDH5 were all related to the prognosis of patients with 
ccRCC. APOL1 belongs to the APOL gene family, a 
minor component of high-density lipoprotein, which is 
associated with a variety of cancers. In previous studies, 
APOL1 was shown to be highly elevated in various cancers 
(15-18). Lin et al. found that APOL1 was significantly up-
regulated in pancreatic cancer and was associated with 
advanced pathological stage, lymph node metastasis, and 
distant metastasis, and could be used as both a prognostic 
biomarker and a new diagnostic target for pancreatic 
cancer patients (19). COL5A3 is a member of the 
collagen triple helical repeat family and plays a role in cell 
proliferation, differentiation, apoptosis, migration, and  
carcinogenesis (20). It has been shown to play a key role 
in breast cancer brain metastasis and radiosensitivity in 
rectal cancer (21,22). Amrutkar et al. found that COL5A3 
promotes the chemoresistance of pancreatic cancer cells 
to gemcitabine (23). TNFSF13B is a member of the TNF 
superfamily. As a B lymphocyte stimulator, it is important for 
the survival, proliferation, and differentiation of B cells (24).  

In addition, TNFSF13B effectively promotes the apoptosis 
of various tumor cells, such as human lymphoma cells 
(U937), prostate cancer cells (PC-3), colon cancer cells 
(HT-29), cervical cancer cells (HeLa), breast cancer cells 
(MCF-7), and embryonic kidney cells (A293) (25). Previous 
studies have confirmed that TNFSF13B can not only 
predict the prognosis of ccRCC patients, but is also an 
important mediator of information transmission between 
tumor cells and the tumor microenvironment, and is a 
potential therapeutic target (26). CDH5 is aberrantly 
expressed in a variety of human cancers, such as papillary 
RCC, lung adenocarcinoma, and breast cancer, and it plays 
an important role in angiogenesis (27).

We then analyzed the gene expression characteristics, 
identified 540 DEGs related to ERS, and performed a 
functional enrichment analysis. The GO function analysis 
showed that in addition to participating in ERS, these 
DEGs are also involved in T cell activation, leukocyte 
cell-cell adhesion, the response to oxygen levels, the 
regulation of cell-cell adhesion, antigen processing and 
presentation, and the response to hypoxia. ccRCC is 
considered an immunomodulatory disease with abundant 
immune infiltration (28,29). Features of the tumor 
microenvironment greatly affect disease biology and may 
affect responses to systemic therapy (42,45-47).

Among many ERS-DEGs, previous studies have shown 
that the high expression of TNFSF13B is mainly involved 
in some immune-related functions, and its expression is 
positively correlated with the abundance of activated CD4+ 
memory T cells, regulatory T cells, and CD8+ T cells 
(30,31). CD8+ T cell infiltration is associated with a good 
prognosis in most cancers, including bladder and lung 
cancer (32). Xiong et al. reported that infiltrating CD8+ T 
cells were associated with a poorer prognosis in ccRCC, and 
the authors also suggested that immunosuppressive immune 
cells, such as regulatory T cells, might suppress the anti-
tumor effects of CD8+ T cells (48).

ERS has a profound effect on the proliferation and 
survival of cancer cells, and it also has the ability to activate 
cells of the adaptive immune system. In other tumors, 
the activation of ERS can stimulate the phagocytosis of 
dendritic cells, thereby activating CD8+ T cells, triggering 
a dependent anti-tumor immune response, and ultimately 
increasing the sensitivity of tumor cells to antigen-specific 
CD8+ T cell-mediated killing (49). Thus, consistent with 
the results of this study, the higher the expression level of 
TNFSF13B, the higher the stage of the patients.

The GSEA showed that the differentially expressed 
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ERS-related genes of ccRCC mainly affect the activation 
of the immune response and adaptive immune response. 
The unfavorable microenvironmental conditions that 
predominate in most tumor types can significantly disrupt 
endoplasmic reticulum homeostasis and cause the abnormal 
unfolded protein response activation of infiltrating immune 
cells (50). Previous studies have shown that unresolved 
ERS enables pancreatic ductal adenocarcinoma to evade 
immunity and establish latent metastasis (51). In addition, 
studies have found that the ERS response further hinders 
the development of protective anti-cancer immunity by 
manipulating the function of immune cells in the tumor 
microenvironment (52).

The present study had some limitations. First, to fully 
reflect the factors that affect the microenvironmental 
phenotype of ccRCC, the clinical characteristics of more 
patients should have been included. Second, the sample 
size of each subtype was relatively small in the training set 
and the validation set, and only the GEO and TCGA data 
sets were used for verification, which might have led to 
inaccurate results and high false positive rates. Finally, while 
we constructed a PPI network, a hub gene-miRNA network 
and a hub gene-TF network, further in vivo and in vitro 
experiments still need to be conducted.

Conclusions

Our study suggests that the five signature genes associated 
with ERS may serve as prognostic indicators for clinical 
decision making in the treatment of ccRCC patients. 
A multi-omics analysis of the role of these genes in the 
promotion of ccRCC tumors may shed new light on the 
mechanisms underlying ccRCC.
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Figure S1 Correlations between the 11 signature genes and the 18 intersection genes in the ccRCC tissues and normal tissues from TCGA.
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