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Introduction

Bladder cancer (BC), with approximately 549,000 new 

cases worldwide each year (1), is one of the most prevalent 

genitourinary cancers for which the main identified cause 
is currently tobacco smoking (2). According to whether 
the muscular layer of the urinary bladder wall is invaded 
by tumor, BC can be categorized into non-muscle invasive 
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BC (NMIBC) and muscle invasive BC (MIBC); the former 
accounts for the vast majority (approximately 75%). The 
treatment procedure for NMIBC, principally and initially, 
is transurethral resection of bladder tumor (TURBT). 
MIBC is routinely treated by radical surgery and urinary 
diversion with or without combined adjuvant therapy (3). 
Although the 5-year survival rate after initial resection has 
improved to 90%, the current issue for NMIBC is the lack 
of effective strategies to address its high recurrence rate (4,5). 
In the case of MIBC, the rapid metastatic progression of the 
tumor and the high mortality rate are the main problems (6).  
With the rise of immunotherapy, the prognosis for BC 
patients has been improved dramatically (7). However, only 
a few patients benefit from immunotherapy, and it faces 
challenges such as immune resistance and lack of response 
to immunotherapy (8).

Cellular senescence can be induced by different stimuli, 
both in vivo and in vitro (9). The most prominent feature of 
senescence is progressive loss of function or degeneration 
at different levels, from the molecular and cellular levels 
to tissue and organismal levels. In general, senescence is 
associated with the development of several degenerative 
pathologies, and it also promotes the progression of 
proliferative diseases, especially cancer (10). Based on the 
available data, it is hypothesized that a close relationship 
between senescence and carcinogenesis may exist. Generally 
speaking, the metabolic proliferation of cells will slow 
down when they enter the senescent state. At the same 
time, immune cells are attracted, with the purpose of killing 
senescent cells, thus inhibiting the progression of tumors 

(11-13). However, surprisingly, as cells enter senescence 
for an extended duration, they not only provide a tissue 
microenvironment for the development and growth of 
tumors (10), but also have the ability to shift the tissue 
phenotype from epithelial to mesenchymal, thus enhancing 
tumor invasion and distant metastasis (14). Furthermore, 
the examination of related cytokines is performed to protect 
senescent cells that have been harmed by DNA radiation 
or chemotherapeutic agents, aiming to shield these tumor 
cells from radiotherapy and consequently inducing drug 
resistance (15,16). In summary, cellular senescence may act 
as a cancer suppressor early in life, but, over time, it may 
disrupt normal tissue structure and function and drive the 
progression of associated degenerative and proliferative 
degenerative disease as senescent cells accumulate later 
in life (10). Therefore, further understanding of the 
mechanisms of aging-related genes (ARGs) in tumors will 
help us to find new therapeutic strategies and select the 
most effective treatments upfront.

In this study, we integrated 33 ARGs that have been 
characterized in previous studies and developed a 5-gene 
model. The data were derived from The Cancer Genome 
Atlas (TCGA) database. The function of ARGs in BC was 
comprehensively evaluated in terms of prognosis, immune 
microenvironment, tumor mutational burden (TMB), and 
immunotherapy in BC patients. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://tau.amegroups.com/article/view/10.21037/tau-
23-422/rc).

Methods

Data collection and processing

We obtained the transcriptome data of 428 bladder samples 
which included 19 normal samples and 409 BC samples. 
The tumor samples were collected from TCGA. Fragments 
per kilobase per million mapped fragments (FPKM) values 
were first normalized with transcripts per million (TPM) 
method and then transformed using log2. Excluding 
patients without overall survival (OS) information, we 
obtained a total of 398 BC samples for the follow-up 
study. The limma package (17) (normalize between arrays) 
function was used to eliminate possible batch effects 
between different sequencing batches of BC samples. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Highlight box

Key findings 
•	 Our findings indicate that there is a strong correlation between 

aging-related genes (ARGs) and the progression of bladder cancer 
(BC), which means that this predictive model could provide a new 
reference for the clinical diagnosis and treatment of BC.

What is known and what is new? 
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The occurrence rate of copy number variation (CNV) in 
ARGs

We obtained CNV information for BC from the University 
of California, Santa Cruz (UCSC) Xena database (https://
xena.ucsc.edu/). We then calculated the variant frequencies 
of 33 ARGs and visualized them using lollipop plots. With 
the Rcircos package, we mapped the chromosomal location 
of these ARGs.

Construction and evaluation of prognostic models for 
ARGs

By univariate Cox regression analysis, we identified ARGs 
that exhibited a significant association with prognosis, 
with TCGA samples used as the cohort, which were then 
considered for subsequent analysis (P<0.05). Based on the 
screened ARGs, we utilized the “glmnet” R package (18).  
To construct statistical prognostic features, least absolute 
shrinkage and selection operator (LASSO) Cox regression 
analyses were performed. The risk score model was 
calculated by multiplying the respective coefficients with 
their corresponding variables: risk score = MAPK1 × 
0.00979931139016805 + MAPK3 × 0.341316763794631 + 
CDK6 × 0.127860972192279 + ID1 × (−0.0418185591809889) 
+ UBC × 0.0131539686643873. We then partitioned the 
TCGA cohort into the training and validation sets using a 1:1 
ratio through random assignment. We divided BC patients 
into high- and low-risk groups in the training and validation 
sets on the basis of median risk score. For the purpose 
of evaluating the feasibility of the model, we calculated 
Kaplan-Meier (KM) curves with the help of the “survival” 
and “survminer” R packages to compare high- and low-
risk groups’ survival rates. Next, the predictive performance 
of risk scores was assessed on the survivorship at 1-, 3-, 
and 5-year intervals by creating time-dependent receiver 
operating characteristic (ROC) curves through the utilization 
of “survival” and “timeROC” R packages. The “ggpubr” 
package was used to draw box plots to compare differences 
in risk scores with other clinicopathological parameters, 
including survival status, tumor-node-metastasis (TNM) 
stage, T stage, and N stage. With the “pheatmap” package, 
we plotted a heat map of gene-clinical feature correlation to 
construct a risk score model.

Construction and evaluation of column line diagrams

To assess whether the risk score has an independent 

effect for the prognosis of BC patients, univariate and 
multifactorial Cox regression analyses were applied on 
clinical information, which included age, gender, TNM 
stage, and risk score in the TCGA cohort, and hazard ratios 
(HRs) and P values were calculated for each variable. Based 
on the appeal results, column line plots were constructed for 
predicting the survival of BC patients at 1, 3, and 5 years. 
Calibration curves and ROC curves were used to evaluate 
the stability and reliability of the column line graphs.

Differential gene identification and enrichment analysis

Using the “limma” package, we performed a difference-
in-difference analysis for high- and low-risk groups. 
Differentially expressed genes (DEGs) with adjusted P 
values <0.05 and absolute fold changes (FCs) >1 were 
considered significant, which were then used for further 
analysis. Based on the obtained DEGs, Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses were conducted using the R package 
“clusterProfiler” (19).

Correlation analysis between risk score and tumor immune 
microenvironment

The Estimation of Stromal and Immune Cells in Malignant 
Tumors using Expression data (ESTIMATE) algorithm (20) 
was applied, and we then calculated the ESTIMATE score, 
immune score, stromal score, and tumor purity in the 
TCGA cohort to assess the correlation between risk scores 
and the tumor microenvironment (TME). Subsequently, we 
determined the measurements of 29 common immune cells 
and immune functions present in each BC sample by single-
sample gene set enrichment analysis (ssGSEA) algorithm, 
which were then compared between the high- and low-risk 
groups and visualized the results of ssGSEA analysis with 
box plots. Afterwards, on the basis of the results of scoring 
common immune cells by seven types of scoring software, 
we proceeded with correlations between risk scores and 
immune cells using Spearman correlation analysis. It 
was considered statistically significant if P<0.05 for the 
Wilcoxon test.

Correlation analysis of risk scores with tumor mutation 
burden and immunotherapy

The TCGA database was used to download single 
nucleotide variant (SNV) data of BC patients and TMB was 
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then calculated. The correlation between risk scores and 
TMB was studied with the help of Spearman correlation 
analysis. The study used KM curves to assess disparities in 
TMB and prognostic outcomes between high- and low-
risk groups. In addition, the “maftools” R package (21) was 
applied to analyze the number of non-synonymous point 
mutations in the somatic cells of each sample. We compared 
risk scores and common immune checkpoints by Wilcoxon 
rank sum test and correlated the two by Spearman test. 
Afterwards, we obtained an immunotherapy cohort with the 
help of the Gene Expression Omnibus (GEO) database: the 
Metastatic Uroepithelial Tumor Cohort (IMvigor210: http://
research-pub.gene.com/IMvigor210CoreBiologies/) (22).  
Using the R package “EdgeR”, raw data were filtered 
and normalized. In a Wilcoxon rank sum test, differences 
in risk scores were compared between the response and 
non-response groups, and survival analyses revealed the 
prognosis after receiving immunotherapy. We then acquired 
data from The Cancer Immunome Atlas (TCIA) database 
(https://tcia.at/) (23). Data of BC patients who underwent 
immunotherapy were downloaded, and Wilcoxon rank sum 
test was performed to compare the difference between high- 
and low-risk groups in receiving immunotherapy (P<0.05 
was considered statistically significant).

Statistical analysis

Wilcoxon test was employed to compare differences 
between the two groups. KM analysis was performed using 
the “surv” package. Spearman test was applied for the 
purpose of correlation analysis and correlation coefficient 
calculations. R software (version 4.2.0; The R Foundation 
for Statistical Computing, Vienna, Austria) was applied for 
all statistical analyses, with statistical significance defined as 
a P value less than 0.05.

Results

Genetic variation and differential expression of ARGs in 
BC

We collected 33 ARGs for studying their role in BC and 
their developmental mechanisms based on the reported 
literature. First, we summarized the somatic mutation 
profiles of 33 ARGs, which were mutated in 255 out of 
411 BC samples with a mutation frequency of (62.04%), 
and we found that the mutation frequency for TP53 was 
48%, followed by RB1 (18%), and CDKN2A (6%) (Figure 

1A). Our next step was to analyze the CNV frequency. We 
observed that CNV alterations were prevalent in ARGs 
and mostly focused on copy number amplification, whereas 
almost half of the ARGs had a higher deletion frequency 
(Figure 1B). We further showed the mosomal location of 
ARGs (as revealed in Figure 1C). Subsequently, we further 
explored whether the messenger RNA (mRNA) expression 
of senescence-associated genes in normal versus tumor 
tissues was correlated with the CNV frequency. The results 
showed that ARGs with significant amplification or deletion 
were significantly different in normal and tumor tissues. For 
example, ARGs which exhibited the highest amplification 
frequency (E2F3, TFDP1, etc.) and the highest deletion 
f requency  (CDKN2A ,  e tc . )  showed cons iderably 
higher expression in tumor tissues in comparison with 
normal tissues (Figure 1D). This implies that significant 
CNV alterations have a corresponding impact on the 
transcriptional process of ARGs. Subsequently, we further 
obtained the interaction relationships of 33 ARGs from the 
Search Tool for the Retrieval of Interaction Genes/Proteins 
(STRING) database. As revealed in Figure 1E, CDKN2A, 
CDK4, and AGO1 had more interactions with other genes, 
suggesting their potential significance in the development 
of BC. In summary, we found significant heterogeneity in 
the genetic variation and expression profiles of ARGs in BC, 
which may have a notable influence on the development of 
BC.

Construction of a 5-gene model of aging-related risk

In order to evaluate the function of aging-associated genes 
in BC, we first performed univariate Cox regression analysis 
for screening prognosis-related ARGs. As shown in Figure 
2A, we found that MAPK1, MAPK3, CDK6, ID1, CDK4, 
UBC, and TFDP1 had a dramatic link with prognosis 
(P<0.05). The HR indicated that MAPK1, MAPK3, CDK6, 
CDK4, UBC, and TFDP1 were risk factors (HR >1), 
whereas ID1 was a protective factor (HR <1). To prevent 
the risk of overfitting, we further screened the above seven 
genes using LASSO Cox regression analysis. Ultimately, 
five core ARGs were identified to build a prognostic 
risk score model, which was calculated as follows: risk 
score = MAPK1 × 0.00979931139016805 + MAPK3 × 
0.341316763794631 + CDK6 × 0.127860972192279 + ID1 
× (−0.0418185591809889) + UBC × 0.0131539686643873 
(Figure 2B,2C). Subsequently, we excluded 11 tumor 
samples without complete survival information from the 
TCGA cohort, yielding 398 tumor samples for subsequent 
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Figure 1 Expression and mutation landscape of ARGs in BC. (A) Mutation frequency and classification of 33 ARGs in BC. (B) The 
lollipop plot revealed the CNV change frequency of 33 ARGs. (C) Chromosomal locations of genes related to aging. (D) Differences in the 
expression of 33 ARGs in normal and tumor tissues. (E) Protein interaction network diagram of 33 ARGs. Wilcoxon test showed statistically 
significant differences. *, P<0.05; **, P<0.01; ***, P<0.001. CNV, copy number variation; ARGs, aging-related genes; BC, bladder cancer.

analysis. We randomly grouped the TCGA cohort in a 1:1 
ratio to obtain the training and validation sets, respectively, 
with the training and validation sets each comprising 199 
samples.

The training set was divided into two categories, high-
risk (n=100) and low-risk (n=99), on the basis of the median 
value of the risk score and the distribution and survival 
status of the population in the high- and low-risk groups are 

shown in Figure 2D. As revealed, the population belonging 
to the high-risk group exhibited a higher mortality rate. By 
KM survival analysis, patients in the high-risk group had 
poorer OS and progression-free survival (PFS) compared 
to those in the low-risk group (P<0.05) (Figure 2E,2F). 
After that, we assessed the reliability and stability of the risk 
score in predicting 1-, 3-, and 5-year survival utilizing time-
dependent ROC curves, where the area under the curve 
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(AUC) was 0.642, 0.670, and 0.655 at 1, 3, and 5 years, 
respectively (Figure 2G).

Subsequently, to further assess the utility and validity of 
the risk prognosis model in predicting clinicopathological 
parameters, a clinical correlation study was conducted. As 

shown in Figure 2H-2K, we found that the high-risk group 
had a higher mortality rate and the majority of it was in 
the middle-to-late stages of tumor progression, which is 
consistent with a worse prognosis for the high-risk group. 
We found that MAPK1, MAPK3, CDK6, and UBC were 
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more highly expressed in the high-risk group, whereas ID1 
was more highly expressed in the low-risk group, Besides, 
the high-risk group had significant differences in TNM 
stage and clinicopathological T-stage compared with the 
low-risk group population with most BC patients in the 
mid-to-late stage (Figure 2L). Therefore, we gleaned that 
the prognostic risk score provided a superior diagnostic 
and predictive ability for BC, potentially serving as a novel 
avenue for BC treatment.

Internal cohort validation of the reliability of the risk 
scoring model

We conducted the follow-up analysis using the validation 
set from the TCGA cohort to assess the reliability and 

stability of the risk score model, and each sample was given 
a risk score by the same formula. According to the median 
value of the risk scores, we grouped the validation set into 
a high-risk group (n=100) population and a low-risk group 
(n=99) population. As with the training set, the high-risk 
group population had a worse survival advantage (Figure 
3A). As shown by the time-dependent ROC curve analysis, 
the risk score model had AUC values of 0.666, 0.626, and 
0.650 in predicting 1-, 3-, and 5-year survival rates in BC 
patients, respectively (Figure 3B). In addition, patients 
with high-risk scores in the validation set still had higher 
mortality rates (Figure 3C). Based on this, we continued to 
evaluate the association between the risk score model and 
clinical characteristics. We obtained similar conclusions as 
in the training set in Figure 3D-3G. High-risk patients had 
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higher mortality rates and were mostly in the middle to 
late stage of the tumor. The clinical correlation heat map 
also demonstrated that in the high-risk group, MAPK1, 
MAPK3, CDK6, and UBC had higher expression, whereas 
ID1 had higher expression in the low-risk group (Figure 
3H). As revealed above, the risk scoring model exhibited 
not only better stability but also better reliability. As 
a result, it is possible to become a novel approach and 
strategy in the realm of BC detection, diagnosis, and 
treatment.

Construction and evaluation of column line diagrams

To explore the link between risk score and prognosis as 
well as clinical characteristics, we performed univariate and 
multifactorial Cox regression analyses, which revealed that 
age, TNM stage, and risk score function independently in 
prognosis of BC (Figure 4A,4B). To provide a quantitative 
tool for the clinic, we utilized age, TNM stage, and risk 
score as components of the column line graph on the basis 
of the findings of both univariate and multifactorial Cox 
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regression analysis (Figure 4C). Subsequently, we further 
assessed the stability and reliability of the column line 
graphs using calibration curves and ROC curves. The 
calibration curve indicated that the predicted values were 
in high agreement with the actual observed values (Figure 
4D). Additionally, the ROC curve demonstrated a higher 
predictive efficacy with the AUC of 0.730, 0.732, and 0.761 
for estimating the OS of BC patients at 1-, 3-, and 5-year 
intervals, respectively (Figure 4E). As is revealed above, 
column line graphs incorporating clinical characteristics 
have more reliable and more accurate predictive ability, and 
could possibly be used as a new assessment method for BC 
in the clinical setting.

Identification of differential genes in high- and low-risk 
groups and enrichment analysis

To delve deeper into the molecular mechanisms, a 
differential analysis was performed in the high- and low-risk 
groups. By false discovery rate (FDR) <0.05 and |log2FC| 
>1, we obtained a total of 2,060 genes that were significantly 
different in the two groups. Next, we conducted enrichment 
analyses of differential genes using GO and KEGG 
enrichment analyses (Figure 5). GO enrichment analysis 
revealed that DEGs were primarily enriched in cell growth 
and development, as well as cellular chemotaxis, including 
extracellular matrix (ECM), ossification, chondrogenesis, 
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connective tissue development, collagen fibers, granulocyte 
chemotaxis, leukocyte migration, and cell-substrate 
adhesion. KEGG enrichment analysis revealed that 
myocarditis or cardiomyopathy, inflammation, and tumor 
metastasis were significantly enriched pathways. These 
pathways encompassed conditions such as myocarditis, 
dilated cardiomyopathy, hypertrophic cardiomyopathy, 
arrhythmogenic right ventricular cardiomyopathy, 
rheumatoid arthritis, Staphylococcus aureus infection, 
chemokine signaling pathways, cell adhesion molecules, 
ECM-receptor interactions, cytokine-cytokine receptor 
interactions, PI3K-Akt signaling pathway, and so on. In 
summary, we found that ARGs have a key impact on the 
development of BC, in addition to being closely linked to 
growth and development.

Correlation analysis of risk scores and immune 
microenvironment

According to recent studies, it has been found that 
the TME has a crucial impact on tumorigenesis and 
progression (24,25). As a result, our initial step was to 
perform a thorough analysis of both risk scores and the 
TME. In this case, we scored the patients in the TCGA 
cohort to obtain their immune score, stromal score, 
ESTIMATE score, and tumor purity by the ESTIMATE 
algorithm. Figure 6A-6D shows that patients classified in 
the high-risk group had higher immune scores, mechanism 
scores, and ESTIMATE scores, and correspondingly, they 
obtained lower tumor purity. Subsequently, we further 
studied the link between immune cell infiltration and risk 
scores. We scored 29 common immune cells and functions 
by ssGSEA algorithm, the vast majority of which were 
significantly enriched in the high-risk group. It included the 
immune cells such as dendritic cells, CD8+ T cells, B cells, 
macrophages, neutrophils, tumor-infiltrating lymphocytes, 
and helper T cells, and correspondingly immune functions 
such as antigen-presenting functions, cellular chemokines, 
immune checkpoints, pro-inflammatory responses, and 
class interferon responses (Figure 6E,6F). The heat map 
also provided a visual demonstration that most immune 
functions were remarkably enhanced in the high-risk group 
(Figure 6G). Besides, seven different software were applied 
to assess immune cell infiltration, the result of which 
indicated that the majority of immune cells have a positive 
correlation with risk scores (Figure 6H). Taken together, 
compared to the low-risk group, multiple assessments 

suggested that patients in the high-risk group had a greater 
abundance of immune infiltrates, which implies that they 
may reap better therapeutic benefits in terms of antitumor 
therapy and immunotherapy.

Correlation analysis of risk scores with TBM and 
immunotherapy

It has been shown that TMB is associated with infiltrating 
CD8+ T cells, which produce intense tumor killing upon 
anti-programmed cell death ligand 1 (PD-L1) treatment (22).  
At the same time, patients with high TMB produce better 
outcomes after anti-PD-L1 treatment (26). Next, we 
endeavored to find out the link between risk score and 
TMB, taking all these findings into account. Initially, we 
conducted an analysis on the distribution of gene mutations 
within both the high- and low-risk groups and the top 
20 genes with the highest mutation frequencies were 
demonstrated by waterfall plot. In the low-risk group, TTN 
(42%) was the most commonly mutated gene, whereas 
TP53 (58%) was the most frequently mutated gene in 
the high-risk group (Figure 7A,7B). Subsequently, we can 
conclude that patients with high tumor mutations tended 
to have better survival rates by survival analysis (P<0.001, 
Figure 7C). Also, stratified survival analysis suggested that 
patients with high TMB had a better prognosis, whereas 
those with a low TMB and in the high-risk group had the 
worst prognosis (P<0.001, Figure 7D).

Subsequently, we analyzed the common immune 
checkpoints. As is revealed in Figure 7E, the high-risk 
group showed high levels of large log immune checkpoints. 
Correlation analysis verified that the risk score is in 
direct proportion to the majority of immune checkpoints 
(Figure 7F). This implies that individuals in the high-
risk group were inclined to have better curative effect 
and greater benefit from receiving immunotherapy. In 
addition, we evaluated patients in the IMvigor210 cohort 
after immunotherapy and found out that there was a 
better response to treatment among patients of high-risk 
group (Figure 7G). Further survival analysis revealed that 
compared to the low-risk group, patients who are in the 
high-risk group had worse OS (P=0.035, Figure 7H). This 
may be because most of the patients in the high-risk group 
were intermediate-to-advanced stage patients, whereas 
most of the low-risk patients were early-stage patients, and 
although the former had better immunotherapy results, 
they still did not achieve satisfactory treatment outcomes. 
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assessed using seven types of scoring software. **, P<0.01; ***, P<0.001. ESTIMATE, Estimation of Stromal and Immune Cells in Malignant 
Tumors using Expression data; aDC, activated DC; DC, dendritic cell; iDC, immature DC; NK, natural killer; pDC, plasmacytoid DC; 
Tfh, T follicular helper; Th, T helper; TIL, tumor-infiltrating lymphocyte; Treg, regulatory T cell; APC, antigen-presenting cell; CCR, C-C 
chemokine receptor; HLA, human leukocyte antigen; MHC, major histocompatibility complex; IFN, interferon.
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mutant landscape of the top 20 genes with the highest mutation frequency in the high- and low-risk groups. (C) Survival analysis of high 
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Subsequently, we explored the link between risk scores and 
immunotherapy by performing International Prognostic 
Scores (IPS) on BC patients. Compared to the low-risk 
group, we can conclude that patients in the high-risk group 

had better efficacy when treated with PD-1 only (P=0.043); 
there was no significant difference when treated with 
CTLA4 only (P=0.085); and better benefit was produced 
when treated with the combination of PD-1 and CTLA4 
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(P=0.01, Figure 7I-7L). In conclusion, individuals in the high-
risk group showed a better response to immunotherapy.

Discussion

As growing evidence shows cellular senescence is a 
prominent factor in the inflammation, immunity, and 
tumorigenesis (27). In contrast, current studies on cellular 
senescence are limited to finite senescence genes, neglecting 
the exploration of the interplay of multiple senescence genes 
and their impacts on BC. Hence, the development of a new 
senescence scoring model can enhance our comprehension 
of the mechanism of ARGs in BC and the response to 
immune response, and offer innovative approaches and 
orientations for treating BC in clinical practice.

Here, a novel 5-gene risk score model on the basis of 33 
ARGs by one-way Cox regression analysis and LASSO Cox 
regression analysis was built in order to further explore the 
relationship between the risk score model and prognosis in 
BC patients. The TCGA cohort was grouped into a training 
cohort and a validation cohort at a ratio of 1:1. Then, a 
risk score was computed for each sample by analyzing the 
expression levels of five ARGs (MAPK1, MAPK3, CDK6, 
ID1, UBC). According to the median value of the risk score, 
the samples in the training set and validation sets were 
classified into high- and low-risk groups. We discovered 
that patients belonging to the high-risk group tended to 
have a more unfavorable prognosis for survival. Afterwards, 
the link between the risk score model and clinical 
characteristics was explored in more detail. The high-risk 
group had a higher mortality rate and those included were 
mostly in the middle and late stages of tumor progression. 
This is consistent with the fact that they had a worse 
prognosis. Subsequently, we further performed univariate 
and multifactorial Cox regression analyses based on clinical 
characteristics and risk scores, and risk scores were shown 
to be independent predictors, according to the outcomes.

Subsequently, the results obtained from the risk score 
and multifactorial Cox analysis were combined to construct 
an integrated column line graph model, which showed 
better gains than clinical characteristics in predicting 1-, 
3-, and 5-year OS in BC patients. This further validates the 
reliability of the model we constructed in predicting the 
prognosis of BC, thus offering a fresh avenue for diagnosing 
and treating BC in the clinical field.

Furthermore, we investigated the differences in biological 
functions between the high- and low-risk groups with the 
help of enrichment analysis. GO and KEGG enrichment 

analysis were performed on the basis of the obtained DEGs, 
which indicated that DEGs were predominantly enriched in 
cell growth and development, self-healing, and chemotaxis. 
Additionally, KEGG enrichment analysis showed that 
inflammation, infection, and metastasis of tumors were the 
entries of significant enrichment. The current study found 
that the presence of senescent cells is a significant factor 
in embryonic development and wound healing (28,29). 
Besides, the current study also shows that inflammation is 
a common marker of tissue aging and that inflammation 
leads to decreased tissue repair and production, which 
leads to a variety of diseases (30-32). In contrast, the role of 
aging for tumors appears contradictory. In general, cellular 
metabolism and proliferation are progressively weakened or 
even stalled after aging, which inhibits tumor growth and 
development, but studies over the past decade have shown 
that under certain conditions, persistently senescent cells 
can acquire pro-tumorigenic properties and thus promoting 
tumor development (33-35). Therefore, further dissection 
of the function of ARGs in tumor development may provide 
a new vision and entry point for tumor treatment.

Afterwards, we conducted a more in-depth analysis 
to examine the correlation between tumor immune 
microenvironment and risk scores. We observed higher 
immune scores, mechanism scores, and estimation scores 
in the high-risk group and correspondingly, lower tumor 
purity. The immune infiltration analysis revealed a 
significant enrichment of most immune cells or functions 
in the high-risk group, including dendritic cells, CD8+ T 
cells, B cells, macrophages, neutrophils, tumor-infiltrating 
lymphocytes, helper T cells, antigen-presenting functions, 
cellular chemokines, immune checkpoints, and pro-
inflammatory responses. Available studies have shown that 
the immunostimulatory receptor CD40 is significantly 
highly expressed on dendritic cells in the BC TME and 
exerts a better immunotherapeutic effect by significantly 
reducing CD8+ T cell depletion through administration 
of CD40 agonist receptors (36). Meanwhile, it was shown 
that CD40 agonists induced antitumor immune responses 
with IFN-γ (37), IL-12 (38), and T cells (37) also playing 
an important role. Simultaneously, it was also discovered 
that BC cells attract a larger population of CD4+ T cells 
compared to normal bladder cells, which potentially 
heightens the risk of invasion (37). Based on these findings, 
we speculate that significant immune cell and function 
enrichment may produce better immunotherapeutic 
outcomes, and it is also suggested that immune infiltration 
may have a non-negligible impact on the development of BC.
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TMB has now been shown to be significantly associated 
with immunotherapy, and patients with high TMB have 
displayed greater benefit in receiving immunotherapy (39). 
As a result, we delved deeper into the potential mechanisms 
of risk scores and TMB. As described above, patients who 
had high tumor mutations had better survival (P<0.001). By 
stratified survival analysis, it is obvious that patients in the 
high TMB and low-risk group had a superior prognosis. On 
the contrary, patients in the low TMB and high-risk group 
had the worst prognosis (P<0.001). In addition, the waterfall 
plot also demonstrates the top 20 genes with the highest 
mutation frequency. In the low-risk group, TTN (42%) 
had the highest mutation frequency, whereas in the high-
risk group, TP53 (58%) had the highest mutation frequency. 
Among them, TP53 is one of the most frequently reported 
prognostic risk factors for cancer survival and has been widely 
recognized to have a link with cancer development (40). In 
contrast, TTN has also been shown to have a pro-cancer 
effect and is related to poor prognosis in many cancers (41).  
The rise of immunotherapy in recent years has also 
significantly altered the prognosis of BC patients, 
attaining good results in treating those with PD-1/PD-L1  
inhibitors (42). Our study also revealed that the high-risk 
group had significantly elevated expression levels of most 
immune checkpoints, suggesting a favorable treatment 
outcome for patients belonging to this group. Analysis of 
individuals in the IMvigor210 cohort showed that those 
who received immunotherapy also responded better to 
treatment. Nevertheless, the survival rate of patients in the 
high-risk group after immunotherapy was lower than that 
of the low-risk group, probably because most high-risk 
patients had intermediate-to-advanced tumors.

In contrast, analysis of the IPS scores of BC patients 
revealed that treatment with PD-1 and the combination 
of PD-1 and CTLA4 improved outcomes for individuals 
in the high-risk group. Therefore, immune checkpoint 
inhibitor treatment provides a new treatment method for BC  
patients (43), but it is still only applicable to a small proportion 
of patients, and further reduction of immunotherapy resistance 
and lack of response to immunotherapy are still new directions 
that urgently need to be studied and explored.

Conclusions

Our findings indicate that there is a strong correlation 
between ARGs and the progression of BC, which means 
that this predictive model could provide a new reference for 
the clinical diagnosis and treatment of BC.
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