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Introduction

Prostate cancer (PCa) is the second leading cause of 
cancer-related death in males in the United States, and 
approximately one in eight men are at risk of PCa (1). The 

age at diagnosis and the clinical severity vary, and the disease 

is heterogeneous. Localized PCa can often be well-managed 

via surgical intervention or radiotherapy, but patients with 

metastatic PCa face a bleak future, with a 5-year survival 
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rate of 55% (2). Androgen deprivation therapy (ADT) 
is the cornerstone systemic strategy for locally advanced 
and metastatic PCa. However, prolonged ADT is often 
associated with development of castration-resistant PCa 
(CRPC). Notably, chemotherapy enhances overall survival 
in patients with metastatic hormone-sensitive PCa (HSPC) 
and CRPC (3,4). However, a substantial subset of patients 
who initially respond to chemotherapy eventually become 
treatment-resistant. The recent regulatory approval of 
androgen receptor (AR) signaling inhibitors (ARSIs), such 
as abiraterone acetate and enzalutamide, and olaparib (a 
poly ADP-ribose polymerase inhibitor) has triggered a 
paradigm shift in PCa management (5,6). However, clinical 
challenges remain, including accurate screening of drug-
resistant PCa. Thus, the elucidation of PCa pathology and 
the development of efficacious therapeutic strategies require 
urgent study. 

Extracellular vesicles (EVs) are small lipid-bilayer 
membrane-bound vesicles released by all living cells. EVs 
were identified in 1996 (7) but were initially thought to 
simply remove unwanted components from cells. In 2007, a 
milestone study from Valadi et al. showed that both mRNAs 
and microRNAs (miRNAs) within EVs are transferred 
between cells (8). This principle of transferring nucleic 
acid to other cell was a novel concept, many researchers 
started to focus on the EV as research topics. EV contents 
reflect the characteristics of the cells from which the EVs 
originate. EVs contain bioactive molecules, including 
miRNAs, mRNAs, proteins, DNA fragments, and lipids, 
which are transferred to recipient cells. These EV contents 
then mediate intercellular signaling in the recipient 
cells and affect both normal physiological processes 
and the pathogenesis of various diseases (9). As EVs are 

encapsulated, their contents are stable in bodily fluids, 
and thus EVs will serve as useful biomarkers (10). In this 
review, we summarize recent reports on EVs in PCa and 
discuss the potential clinical applications. We present this 
article in accordance with the Narrative Review reporting 
checklist (available at https://tau.amegroups.com/article/
view/10.21037/tau-23-533/rc).

Methods

Using PubMed, a comprehensive literature search was 
performed. In Table 1, the search strategy for articles 
included is given. Peer-reviewed original articles and reviews 
published between 2006 and 2023 were analyzed to identify 
articles of relevance. The keywords searched included: 
“extracellular vesicles”, “exosomes”, “prostasomes”, “cancer 
progression”, “prostate cancer”, and “prostatic disease”. 
Publications that contained information that added to the 
existing body of literature within the field were included.

Discussion

EVs

EVs are often subclassified into exosomes, microvesicles, 
and apoptotic bodies based on their secretory origin (11). 
Exosomes (30–120 nm in diameter) are intraluminal vesicles 
of multivesicular bodies (MVBs) and are released when 
MVBs fuse with cellular membranes (12). Microvesicles 
(100–1,000 nm in diameter) are directly released from 
cells via outward pinching of the plasma membrane (13). 
Apoptotic bodies (500–2,000 nm in diameter) are released 
during the final steps of apoptosis via plasma membrane 

Table 1 Search strategy summary

Items Specification

Date of search September 21, 2023

Databases and other sources search PubMed

Search terms used “extracellular vesicles”, “exosomes”, “prostasomes”, “cancer progression”, “prostate 
cancer”, “prostatic disease”

Timeframe Between the years 2006 and 2023

Inclusion criteria Only English language studies were included. While peer-reviewed published manuscripts 
were prioritized, abstracts and textbook chapters that fit our search criteria (found on 
google.com) were also included

Selection process Each author was independently involved in literature search. The primary author (F.U.) 
reviewed all included articles

https://tau.amegroups.com/article/view/10.21037/tau-23-533/rc
https://tau.amegroups.com/article/view/10.21037/tau-23-533/rc
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blebbing (14). Additionally, prostasomes (40–5,000 nm 
in diameter) feature a cholesterol-rich, multilayered lipid 
membrane (15). Prostasomes are derived from prostate 
epithelial cells and are abundant in seminal fluid (16). 
Notably, prostasomes are ones of the first vesicles to 
be reported their function between cells. Prostasomes 
enhance spermatozoal mobility and protect spermatozoa 
from infection and phagocytosis by immune cells, thus 
contributing to human reproductive success (17,18). 
Furthermore, recently, novel small extracellular non-
EV particles, termed exomeres, have been reported, 
complicating our understanding of the compositions and 
functions of EVs (19,20). Each EV subtype may exert 
distinct functions, and thus new methods are required to 
distinguish among the subpopulations. The International 
Society for Extracellular Vesicles (ISEV) developed 
standardized terms to be used when analyzing exosomes 
and other EVs, and it recommends taking great care in the 
use of terms for the different EVs (21,22). It is essential that 
scientists involved in EV research should understand the 
diverse and heterogenous nature of EVs (Figure 1). Against 
this background, here we use “EV” as an umbrella term for 
all small vesicles secreted into the extracellular space, i.e., 
exosomes, microvesicles, apoptotic bodies, prostasomes, and 

exomeres, which will enable the creation of a review that is 
in accordance with the recommendations of the ISEV (21).

The effects of EVs on PCa progression

Between-cell communication mediated by EVs is pivotal 
for cancer progression. In the context of tumor initiation, 
Kosaka et al. firstly reported EV-mediated competition 
between cancer cells and adjacent normal epithelial cells (23). 
From then, an increasing body of evidence indicates that EVs 
promote cancer progression including the development of 
premetastatic niches (24,25), angiogenesis (26), destruction 
of the blood-brain barrier and the peritoneum (27,28), 
activation of cancer fibroblasts (29), and induction of drug 
resistance (30). Furthermore, Ono et al. found that EVs from 
bone marrow mesenchymal stem cells induce breast cancer 
cell dormancy and contribute to future recurrence (31). 

In  PCa,  EVs from PCa ce l l s  enhance  ce l lu lar 
proliferation (32), affect the immune milieu (33), and 
confer resistance to pharmacological interventions (34). 
Such actions synergistically accelerate the tumorigenic 
trajectory. Patients with advanced PCa often exhibit skeletal 
metastases that are not only impervious to treatment 
but also precipitate skeletal-related incidents, seriously 

Figure 1 Classification of EVs that contain miRNAs, mRNAs, DNAs, proteins, and lipids. Exosomes are formed via inward budding of 
MVBs into early endosomes. Then, the MVBs fuse with the limiting plasma membrane to release exosomes into the extracellular space. 
Microvesicles are directly shed by or bud from plasma membranes. Apoptotic bodies are released from cells undergoing programmed death. 
miRNA, microRNA; MVB, multivesicular bodies; EVs, extracellular vesicles.
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compromising quality of life. Recently, several articles have 
suggested that intercellular communication facilitated by 
EVs contributes to bone metastasis progression (35). Such 
metastasis in PCa patients is predominantly osteoblastic 
in nature, but the lesions are the consequence of intricate 
interactions among disseminated cancer cells, osteoblasts, 
and osteoclasts (35). This intricate feedback loop is 
the “vicious cycle” that is postulated to underpin bone 
metastasis outgrowth (36). 

Ito et al. were the first to describe EV-facilitated 
communication between PCa cells and osteoblasts. EVs 
from the human CRPC cell lines DU-145 and PC-3 
(which express the Ets-1 protein) triggered differentiation 
of murine MC3T3-E1 pre-osteoblastic cells (37). Ye et al.  
showed that EVs from a PCa cell line, MDA-PCa-2b, 
not only enhanced osteoblastic activity but also regulated 
the microenvironments of bone metastases. miR-141-3p 
contained in the EVs from MDA-PCa-2b cells reduced 
osteoblast DLC1 levels and activated the p38MAPK 
pathway, in turn enhancing osteoblast proliferation and 
OPG/RANKL expression. In addition, they also elucidated 
that the EVs from the PCa cells specifically targeted bone, 
promoting osteoblastic metastasis in vivo (38). Hashimoto 
et al. reported that miR-940 encapsulated in EVs from 
PCa cells triggered osteogenic differentiation of human 
mesenchymal stem cells via precise targeting of ARHGP1 
and FAM134A, thereby contributing significantly to 
establishment of an osteoblastic metastatic milieu (39). The 
cited studies focused on the effects of PCa-derived EVs 
on osteoblast differentiation (37-39); however, our group 
recently found that not only PCa-derived EVs but also 
crosstalk between PCa cells and osteoblasts mediated by 
EV transfer promoted osteoblastic bone metastases (40). 
Additionally, we also found that CUB domain-containing 
protein 1 was present on the EVs of an advanced PCa cell 
line, PC3M, and promoted osteoclast differentiation (41). 
Clinically, osteoblastic metastasis is the major form of PCa 
bone metastasis. However, we sometimes encounter PCa 
patients, especially advanced-stage patients, with partially 
osteolytic bone metastasis. Such metastasis is associated 
with a poorer prognosis compared with the osteoblastic 
phenotype (42). PC3M is an AR-independent, very 
aggressive PCa cell line that mirrors advanced-stage PCa. 
The mechanism by which bone metastasis is induced is 
complex, and further studies are required. However, reports 
suggest that the balance of EV-mediated intercellular 
communication might decide the phenotype of bone 
metastasis in PCa (Figure 2).

The roles played by EVs in PCa drug resistance 

Antiandrogens 
Antiandrogenic therapy, which comprises ADT with or 
without an ARSI, has traditionally been the principal 
systemic intervention for PCa. However, notwithstanding 
recent developments in antiandrogen drug development, 
all patients eventually become resistant to the therapy. It 
is thus imperative to understand the intricate molecular 
actions that trigger resistance to antiandrogen therapy.

Lei et al. found that let-7a was upregulated in EVs from 
androgen-independent PCa cells, and that it activated the 
AR and PI3K/Akt signaling pathways, thus contributing 
to androgen-independent transformation of androgen-
sensitive PCa (43). Lee et al. evaluated ARSI resistance, and 
found that YAP1 and COUP-TFII were upregulated in 
enzalutamide-resistant PCa cells and EVs from these cells. 
Notably, after EV-mediated transfer of these components, 
YAP 1 and COUP-TFII upregulated many genes involved 
in cancer stemness and lipid metabolism in the recipient PCa 
cells, which then developed resistance to enzalutamide (44). 
Martens-Uzunova et al. recently reported that androgen 
manipulation drastically altered the EV RNA profiles (45), 
supporting the idea that EV communication contributes to 
the development of antiandrogen drug resistance (Figure 3A).

Chemotherapy
Docetaxel is the primary therapeutic modality for patients 
with high-volume metastatic HSPC and metastatic CRPC 
(4,46). However, drug resistance always develops with 
docetaxel treatment. The mechanism of such resistance and 
a method to overcome it require urgent attention.

Shan et al. found that EVs from PCa cancer-associated 
fibroblasts (CAFs) transfer miR-423-5p to PCa cells, thereby 
inducing docetaxel resistance by modulating GREM2 
expression via the TGF-β signaling pathway (47). Cao et al.  
showed that chemotherapy significantly upregulated miR-
27a expression in PCa CAF. EVs from the PCa CAF 
were rich in miR-27a, which increased chemoresistance 
by targeting the gene encoding P53 (48). Additionally, 
Jiang et al. reported that lincROR, an oncogenic long 
noncoding RNA, was packaged into the EVs of docetaxel-
resistant PCa cells and then delivered to non-resistant 
cells, in turn stimulating the β-catenin/hypoxia-inducible 
factor 1-alpha pathway and contributing to dissemination 
of the docetaxel-resistant phenotype (49). Furthermore, 
EVs also enhance chemoresistance in a different approach. 
Corcoran et al. found that docetaxel-resistant PCa cells 
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overexpressing MDR-1/P-gp, a transporter protein, 
discharged docetaxel from the cytoplasm; MDR-1/P-gp 
was then transferred by EVs from docetaxel-resistant 
PCa cells to docetaxel-sensitive cells, which contribute to 
acquired chemoresistance (34). Many EVs play pivotal roles 
in chemotherapy resistance. Intercellular communication 
mediated by EVs may serve as a useful therapeutic target in 
individuals with chemoresistant PCa (Figure 3B).

Neuroendocrine differentiation (NED)
Neuroendocrine PCa is an aggressive histological 
subtype of PCa that usually develops via adenocarcinoma 
transdifferentiation after treatment resistance is established. 
The term “lineage plasticity” is often used to describe the 
phenotypic switch from an epithelial to a neuroendocrine cell. 

Quaglia et al. reported that EVs derived from PCa 
cells expressing Vβ3 specifically promote tumor growth 
and induce NED, as evidenced by increased levels of 
neuroendocrine markers (50). Enriquez et al. reported that 
crosstalk between PCa and stromal cells triggers NED 
development. Castration elevated GRP78 expression 

in PCa cells, eliciting the release of EVs that contained 
miR-29b, which was then transported to stromal cells, 
where it downregulated SPARC. This culminated in 
IL-6 release from stromal cells; IL-6 is a well-established 
stimulator of NED and acts on PCa cells (51). Extracellular 
communication via EVs may thus play an important role in 
NED development (Figure 3C). 

Immunotherapy
In contrast to the marked effects of immunotherapy on 
profoundly immunogenic neoplasms such as melanomas, 
PCa is a poor responder (52,53). The four pivotal 
KEYNOTE trials evaluated pembrolizumab combined 
with other agents; no therapeutic effect was noted (54-58).  
PCa is a “cold” tumor; the cancer does not activate the 
immune system to an extent that allows tumor eradication. 
Frequently, the tumor microenvironment exhibits 
immunosuppressive characteristics, thus abundant regulatory 
T cells, myeloid-derived suppressor cells, and M2-polarized 
macrophages, all of which contribute to immune system 
evasion (59). Some EV studies have explored the mechanisms 

Figure 2 The roles played by EVs in the several phases of PCa progression. Initiation, localized PCa, and metastatic PCa. mHSPC, 
metastatic hormone sensitive prostate cancer; PCa, prostate cancer; CAFs, cancer-associated fibroblasts; mCRPC, metastatic castration 
resistant prostate cancer; EVs, extracellular vesicles. 
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Figure 3 The roles played by EVs in PCa progression. Intercellular communication via EVs increases PCa progression via acquisition of 
(A) antiandrogen-, (B) chemotherapy-, and (D) immunotherapy resistance and (C) neuroendocrine differentiation. CAF, cancer-associated 
fibroblast; EVs, extracellular vesicles; PD-1, programmed death-1; PCa, prostate cancer. 

by which PCa enables immune system resistance.
In 2019, Poggio et al. reported that programmed death-

ligand 1 (PD-L1) expressed on the surface of EVs from 
metastatic PCa cells escalated tumor growth in an immune 
system-dependent manner. In a syngeneic PCa model, 
resistance to anti-PD-L1 therapy appeared to be triggered 
by PD-L1, and therefore targeting PD-L1 might be a 
valuable therapeutic strategy (60). Li et al. found that PD-
L1 was transferred via EVs from PCa cells expressing 
high levels of PD-L1 to PCa cells expressing lower levels, 
thus aiding the ability of PCa to evade immune cells (61)  
(Figure 3D). 

Bone-targeting radium-223 therapy prolongs survival 
in a fraction of bone metastatic PCa patients (62). Vardaki 
et al. recently found that the levels of immune checkpoint 
modulators in plasma derived-EVs were increased in 
patients who received radium-223 treatment (63). Using a 
mouse model, they also revealed that radium-223 treatment 
increased the levels of immune checkpoint modulators 
both in vitro and in vivo. Consequently, they tested the 
significance of the findings by combining Ra-223 with 
immune checkpoint blockade therapy and found that the 

combination had greater efficacy than Ra-223 alone (63), 
suggesting that the combination therapy may warrant a 
clinical trial. Although the PCa immune microenvironment 
is very complex, EVs may not only contribute to treatment 
resistance but also serve as potential markers of treatment 
efficacy.

The clinical significance of EVs in PCa liquid biopsies 

EV contents reflect the cellular origin of the EVs and may 
thus serve as valuable PCa biomarkers. Unlike conventional 
tissue biopsy, liquid biopsy is minimally invasive and allows 
real-time detection of actionable anomalies. In light of each 
facet of PCa management, liquid biopsy presents itself as a 
more compelling option. Thus, we next summarize recent 
clinical studies that investigated whether EVs are diagnostic 
or prognostic in the PCa context.

Diagnostic EVs
Given the location of the prostate, urinary EVs may 
elucidate aspects of prostate carcinogenesis. Many authors 
have explored whether urinary EVs serve as useful 
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diagnostic indicators (64-68). McKiernan et al. pioneered 
an FDA-endorsed non-invasive assay: the ExoDx Prostate 
IntelliScore urine exosome assay. The PCA3, ERG, and 
SPDEF levels in urine specimens are used to calculate the 
ExoDx Prostate IntelliScore. The method distinguishes 
high-grade PCa (Gleason score ≥7) from low-grade PCa, 
reducing the number of unnecessary prostate biopsies (69). 
EVs from plasma contain PCa-specific proteins including 
PTEN and survivin (70,71). Aggressive PCa is characterized 
by little or no PTEN expression; PTEN molecules have 
been detected in the EVs of PCa patients but not healthy 
controls (70). Furthermore, elevated EV survivin levels were 
more common in PCa patients than in those with benign 
prostatic hyperplasia or healthy controls (71).

Prognostic EVs 
Several studies have shown that certain EVs predict the 
outcomes of PCa. In recent years, many new pharmaceutical 
agents have been developed to address the therapeutic 
needs of patients with CRPC, including enzalutamide and 
abiraterone acetate. However, 20–40% of CRPC patients 
do not respond to such agents (72). The discovery that 
AR-V7 is key in conferring resistance to enzalutamide and 
abiraterone among metastatic CRPC patients has garnered 
substantial attention (72,73). Del Re et al. examined the role 
played by AR-V7-encoding RNA in plasma-derived EVs 
in terms of predicting resistance to hormonal therapy in 
patients with metastatic CRPC (74). miRNAs encapsulated 
in serum or plasma EVs may be used to diagnose PCa and/
or predict its prognosis. Notably, the miR-141 and miR-
375 levels within serum EVs have been linked to the risk of 
metastatic PCa (75,76). Huang et al. found that the miR-
1290 and miR-375 levels in plasma EVs serve as prognostic 
biomarkers of metastatic PCa (77). A comprehensive RNA 
sequencing strategy confirmed substantial associations 
between the levels of these miRNAs and the overall survival 
of CRPC patients.

Despite that EV data has aided PCa management, only 
the ExoDx system is used in clinical practice, because 
the supposedly useful EV components differ across the 
various investigations, partly due to variations in the assays 
employed and EV storage conditions. Although cell-free 
DNA status is applied in guiding PCa treatment selection, 
in the present era of precision medicine, further advances 
will be anticipated. As EV-centered liquid biopsies become 
more informative, a large prospective validation study 
followed by the development of pragmatic hospital-friendly 
protocols is key for clinical implementation.

Future clinical applications

Cells in tumor microenvironments engage in intercellular 
communication principally via secretion of cytokines, 
chemokines, and growth factors (78). The communication 
within such microenvironments is mediated by EVs released 
from all cell types. Many studies have revealed pivotal roles 
played by EVs in tumor progression (79). As the tumor 
microenvironment matures, EV production increases 
exponentially, contributing to tumor progression. It is 
possible that therapeutic reduction in the level of tumor-
derived EVs might impede cancer development. To date, 
three distinct approaches targeting EVs have been proposed: 
elimination of circulating EVs, inhibition of EV secretion, 
and disruption of EV uptake (10) (Figure 4A). Although we 
previously reported the potential of the inhibition of EV 
secretion in PCa (80,81), to date elimination of circulating 
EVs might be the optimal clinical choice. Marleau et al. (82) 
pioneered a therapeutic paradigm to eradicate circulating 
EVs, in which a sophisticated hemofiltration system 
selectively removes circulating EVs derived from breast 
cancer cells via precise targeting of the human epidermal 
growth factor receptor 2 (HER2) on the surfaces of such 
EVs (82). Notably, HER2 located on EV reduces the 
efficacy of cancer therapies (including trastuzumab) and 
contributes to cancer progression (83). Hence, selective 
removal of cancer-derived EVs via specific HER2 targeting 
will be an exceptionally promising approach for cancer 
treatment. Additionally, in PCa, as we referred above, PD-
L1 on EVs may contribute to resistance to immunotherapy 
(60,61), thus, targeting PD-L1 positive EVs might be a good 
approach for PCa treatment. 

Prostate-specific membrane antigen (PSMA) is a 
type 2 transmembrane protein, and its expression is 
transcriptionally repressed by AR. Therefore, antiandrogen 
therapy reduces AR signaling, which increases the 
expression of PSMA in advanced PCa (84). According to 
the increasing the expression level of PSMA in PCa tissue, 
CD9 and PSMA double-positive plasma derived EVs 
are increased in patients with metastatic PCa (45). The 
biological function of PSMA on EVs remains unclear; one 
recent study proposed that EVs targeting PSMA can be 
used to deliver drugs. Severic et al. developed genetically 
engineered EVs expressing anti-PSMA antibodies that were 
internalized by PSMA-positive PCa cell lines both in vitro 
and in vivo (85). siRNA loading of the EVs expressing anti-
PSMA antibody reduced the target gene expression in the 
recipient cells (PSMA-positive PCa cells) (86). Thus, EV-
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based drug carriers may greatly aid clinical drug delivery 
(Figure 4B). 

Efforts have been made to enhance the cancer detection 
and prediction of liquid biopsy. Machine learning has been 
employed to analyze EV proteomic profiles. Hoshino et al. 
meticulously amassed 426 human tissue explants, and plasma 
and other bodily fluid samples, from patients with seven 
distinct cancers and from healthy individuals (87). Exhaustive 
proteomic profiles obtained via low- and high-resolution/
high-mass-accuracy nano-liquid chromatography-tandem 
mass spectrometry data were subjected to rigorous 
evaluation by machine learning algorithms (87). A set of 
tumor-type-specific EV proteins in both tissue explants 
and plasma were identified and were able to categorize 
malignancies of enigmatic primary provenance (87). EV 
proteins may thus serve as useful biomarkers of cancer and 
specific cancer subtypes. Of course, further work will be 
required for clinical application (Figure 4C).

Conclusions

We have summarized recent research on how EVs may aid 
PCa management. To date, we have discovered only the tip 
of the iceberg. We anticipate that further research will yield 
innovative therapeutic modalities, thereby aiding all PCa 
patients. 
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