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Background: Sperm DNA fragmentation (SDF) is recognized as a leading cause of male infertility 
because it can impair the paternal genome through distinct pathophysiological mechanisms. Current 
evidence supports SDF as a major factor in the pathophysiology of several conditions, including varicocele, 
unexplained infertility, assisted reproductive technology failure, and environmental lifestyle factors, 
although the mechanisms involved have not been fully described yet. Measurement of the levels of DNA 
fragmentation in semen provides valuable information on the integrity of paternal chromatin and may guide 
therapeutic strategies. A recently published clinical practice guideline (CPG) highlighted how to use the 
information provided by SDF testing in daily practice, which triggered a series of commentaries by leading 
infertility experts. These commentaries contained an abundance of information and conflicting views about 
the clinical utility of SDF testing, which underline the complex nature of SDF.
Methods: A search of papers published in response to the CPG entitled “Clinical utility of sperm DNA 
fragmentation testing: practice recommendations based on clinical scenarios” was performed within the 
Translational Andrology and Urology (TAU) website (http://tau.amegroups.com/). The start and end dates for 
the search were May 2017 and August 2017, respectively. Each commentary meeting our inclusion criteria 
was rated as “supportive without reservation”, “supportive with reservation”, “not supportive” or “neutral”. 
We recorded whether articles discussed either SDF characteristics as a laboratory test method or clinical 
scenarios, or both. Subsequently, we extracted the particulars from each commentary and utilized the 
‘Strengths-Weaknesses-Opportunities-Threats’ (SWOT) analysis to understand the perceived advantages 
and drawbacks of SDF as a specialized sperm function method in clinical practice. 
Results: Fifty-eight fertility experts from six continents and twenty-two countries contributed 
commentaries. Overall, participants (87.9%; n=51) were supportive of the recommendations provided by 
the CPG on the utility of SDF testing based on clinical scenarios. The majority of participants made explicit 
remarks about both the clinical scenarios and SDF assays’ characteristics. Among ‘not supportive’ and 
‘supportive with reservation’ participants, 75% (n=30/40) and 77.5% (n=31/40) expressed concerns related to 
technical limitations of SDF testing methods and clinical utility of the test in one or more clinical scenarios 
discussed in the CPG, respectively. The SWOT analysis revealed that the CPG provides a reasonable 
evidence-based proposal for integration of SDF testing in the routine daily practice. It also uncovered gaps 
of knowledge and threats limiting the widespread application of SDF in everyday practice, thus allowing the 
identification of opportunities to further refine SDF testing and its clinical utility. 
Conclusions: The understanding of the role of SDF in male infertility requires an in-depth analysis of 
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Introduction

Infertility affects approximately 15% of couples globally, 
with male infertility directly or indirectly responsible for 
about 60% of the cases (1,2). Conditions compromising 
male fertility potential include varicocele, congenital and 
genetic abnormalities, endocrine disorders, genitourinary 
infection, systemic diseases, and exposure to gonadotoxins, 
which can be identified through a comprehensive 
male infertility workup (3). A medical history, physical 
examination, and semen analysis are the minimum standards 
for the evaluation of men seeking fertility (3). Among 
these, routine semen analysis is the central laboratory test 
in male infertility evaluation (4). However, assessment 
of semen volume, sperm count, sperm motility, and 
sperm morphology rarely provides robust discriminatory 
information of the male fertility potential, unless at 
extremely low levels (5,6). As a result, half of the male 
infertility cases are deemed as unexplained or idiopathic due 
to currently existing limitations in diagnostic modalities (7,8).

Sperm DNA plays a critical role in embryo development 
and therefore influences the chances of establishing a 
pregnancy and delivering a healthy baby, both natural and 
assisted (9,10). The conditions that compromise male fertility 
may cause deterioration in semen parameters and damage 
sperm DNA (2,11). However, DNA damage is also seen in 
sperm of men with unexplained and idiopathic infertility 
(7,12,13). Although no mechanism has been suggested to 
explain sperm DNA damage conclusively, oxidative stress 
(OS) has been implicated as an important mediator of 
infertility in such cases (2,10,12-15). Nonetheless, different 
intrinsic susceptibility must exist among infertile men with 
various etiologies, which culminates in the variable effect of 
OS on sperm DNA (11).

Development of assays to evaluate sperm DNA made 

it possible to measure the proportion of sperm with 
damaged chromatin in a given ejaculate. Yet, although 
often equalized, one has to distinguish between damages 
directly to the DNA and disturbed chromatin condensation 
due to improper exchange of the histones by protamines, 
which in turn renders the DNA vulnerable to damage 
as the necessary protection provided by protamines is 
missing. Probes or dyes are used to identify the existence 
of DNA breaks in specimens examined by fluorescence and 
optical microscopy or flow cytometry (10,16,17). The term 
‘sperm DNA Fragmentation (SDF)’ has been used to name 
these tests. At present, sperm chromatin structure assay 
(SCSA), terminal deoxynucleotidyl transferase dUTP nick 
end labeling (TUNEL), sperm chromatin dispersion test 
(SCD), and single gel electrophoresis (Comet) are the most 
commonly used methods to measure SDF (18).

With increasing evidence on the role of sperm DNA 
damage in infertility (19) and the possible consequences of 
damaged sperm chromatin to the health of offspring (9), 
measurement of SDF in semen became popular as a means 
of providing additional information to that of routine semen 
analysis (18). However, a poor understanding of assays’ 
characteristics and a general belief that SDF is an untreatable 
condition has hampered the implementation of SDF testing 
in clinical practice. Among many questions faced by clinicians 
is the type of test to be used for SDF measurement, the 
patient populations that might benefit from this test, and the 
type of remedies to offer the affected patients.

To shed light on these critical issues, a clinical practice 
guideline (CPG)—the first of its kind—was recently issued 
concerning the clinical utility of SDF testing in specific 
clinical scenarios (20). The prime objective of the guideline 
was to underline the actual indications of SDF testing and 
to explain the management options available to patients 

the multifactorial pathophysiological processes and the theories involved. The SWOT analysis allowed 
an objective evaluation of CPG on the clinical utility of SDF testing based on clinical scenarios and its 
accompanying commentaries written by global experts in all possible angles. Implementation of SDF testing 
in the clinic may not only increase the outcome of ART but more importantly improve the health of both 
fathers to be and resulting offspring.
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with increased SDF. The authors examined original and 
review articles concerning the significance of SDF testing 
and arranged their CPG into two sections. In the first part, 
they presented the current tests for SDF evaluation, pointing 
out their core principles as well as the main advantages and 
shortcomings whereas in the second part they carried out 
an evidence-based analysis of test utility in clinical scenarios 
commonly found by urologists and reproductive specialists. 
Specifically, varicocele, unexplained infertility, recurrent 
(natural) pregnancy loss, recurrent intrauterine insemination 
(IUI) failure, in vitro fertilization (IVF) and intracytoplasmic 
sperm injection (ICSI) failures, and lifestyle risk factors were 
analyzed. In each clinical scenario, after a detailed discussion 
of the rationale involved, a clinical recommendation was 
made by the expert panel (20).

With the publication of the above-mentioned CPG, 
a group of urologists, andrologists and scientists with 
expertise in male infertility, as well as gynecologists, 
reproductive endocrinologists and embryologists were 
invited to contribute commentaries concerning its 
utility. These commentaries contained an abundance of 
information and conflicting views about the clinical utility 
of SDF testing, which underline the complex nature of 
SDF. In this review, we examine these commentaries to 
identify and analyze the strengths and weaknesses of SDF 
testing as perceived by fertility experts. For this purpose, 
we applied a Strengths-Weaknesses-Opportunities-
Threats (SWOT) analysis, a method that was originally 
developed for business (21), but has also been adapted to 
health sciences (22,23). The SWOT analysis focuses on the 
strengths and weaknesses as a means of identifying threats 
and opportunities available to circumvent existing gaps that 
may limit the broad application of a method or system.

Methods

A search of papers published in response to the guideline 
article by Agarwal et al. (20), entitled “Clinical utility of sperm 
DNA fragmentation testing: practice recommendations based 
on clinical scenarios”, was performed within the Translational 
Andrology and Urology (TAU) website (http://tau.amegroups.
com/). The start and end dates for the search were May 2017 
and August 2017, respectively. The overall strategy for study 
identification was based on hand search of ‘ahead of print’ 
articles related to the guideline mentioned above. Articles’ 
type included ‘editorial’, ‘commentary’, and ‘letter to the 
editor’. Additionally, we requested TAU’s editorial office and 
its senior editor (Dr. Lucine M. Gao) to provide us with full 

texts of articles to be published by TAU journal that met our 
inclusion criterion. Fifty-eight relevant articles—from now 
on termed “commentaries”—were identified and the full (24-
43) texts (44-62) were examined (63-81). Each commentary 
was rated as “supportive without reservation”, “supportive 
with reservation”, “not supportive” or “neutral” concerning 
the contents and recommendations provided by the CPG 
mentioned above. We also noted whether or not the authors 
specifically discussed the SDF test characteristics and clinical 
scenarios, and recorded if the concerns raised by them related 
to SDF as a laboratory test method, clinical scenarios, or both.

Subsequently, we extracted the particulars from each 
commentary about SDF testing as a lab method and utility 
of SDF in the clinical scenarios, as applicable. Clinical 
varicocele with borderline to normal conventional semen 
parameters, unexplained infertility/recurrent pregnancy 
loss/IUI failure, IVF/ICSI failure, and borderline 
abnormal (or normal) conventional semen analysis with 
lifestyle risk factors were the scenarios contemplated (20). 
The information was entered into an excel spreadsheet 
and was categorized further into one of the four areas, 
namely, “Strengths (positives)”, “Weakness (negatives)”, 
“Threats (external factors with possible impact)”, and 
“Opportunities”. Tables outlining the SWOT issues were 
developed. Then, a critical analysis of each item listed 
was carried out using both data from existing literature 
and relevant supporting information provided by a series 
of ‘reply to author’ published in TAU journal. The latter 
(82-98) were (99-116) responses (117-133) provided by 
the guideline’s authors (20) to the commentaries (24-43), 
editorials (44-62), and letters (63-81).

Results

Descriptive analysis

Fifty-eight fertility experts from six continents and 
twenty-two countries contributed commentaries. Overall, 
participants (87.9%; n=51) were supportive of the 
recommendations provided by the CPG on the utility of 
SDF testing based on clinical scenarios. Among these, 
27.6% (n=16) supported the CPG without reservation 
and 60.3% (n=35) with reservation, whereas 8.6% (n=5) 
participants were not supportive or neutral (3.5%; n=2) 
(Figure 1). The vast majority of participants made specific 
comments about either the clinical scenarios or SDF assays’ 
characteristics, or both (Table 1). Among ‘not supportive’ 
and ‘supportive with reservation’ participants, 75% 
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Table 1 Distribution of expert opinions according to the focused area: (I) SDF as a laboratory test method; (II) clinical scenarios; or (III) both, 
stratified by endorsement category (supportive without reservation, supportive with reservation, not supportive, neutral)

Variables 
SDF testing as a 

lab method, N (%)
Clinical scenarios, 

N (%)
Both, N 

(%)
Authors (reference)

Total (n=58) 10 (17.2) 15 (25.9) 33 (56.9) –

Supportive without 
reservation (n=16)

5 (31.2) 5 (31.2) 6 (37.6) Cho (24), Kosgi (26), Gosálvez (30), Menezo et al. (36), 
Vandekerckhove (46), Rey (47), Mirzazadeh & Sadri-
Ardekani (48), Drevet (52), Mathur (55), Carrel & Hotaling (61), 
Christensen & Humaidan (63), Samplaski (69), Hallak (72), 
Tandon (75), Evenson (78), Harlev (81)

Supportive with 
reservation (n=35)

6 (17.1) 6 (17.1) 23 (65.8) Henkel (25), Arafa & ElBardisi (27), Tadros & Sabanegh Jr (28),  
Turek (32), Garrido et al. (33), Oehninger (34), El-Sakka (35), 
Yovich & Keane (37), Hsiao (38), Khandwala & Eisenberg (39), 
Muratori & Baldi (40), Khalili & Agha-Rahimi (41), Tesarik & 
Galán-Lázaro (42), Basar & Kahraman (43), Franco Jr (44), 
Borini et al. (45), Pool (49), Glina (50), Amiri-Yekta et al. (51), 
Durairajanayagam (53), Lynne & Brackett (54), Jarvi (57), 
Kadioglu (59), Marmar (60), Tatem & Brannigan (62), Cunha-
Filho (64), Herati & Lamb (66), Ahmad (70), Kovac (71),  
Dada (73), Potdar (74), Varghese et al. (76), O’Flaherty (77), 
Malhotra (79), Ferlin (80)

Not supportive (n=5) 0 (0.0) 1 (20.0) 4 (80.0) Pandiyan et al. (29), Benagiano et al. (31), Fraczek & Kurpisz 
(56), Johnson & Sandlow (58), Mehta (65)

Neutral (n=2) 2 (100.0) 0 (0.0) 0 (0.0) Veeramachaneni (67), Ward (68)

SDF, sperm DNA fragmentation.

Figure 1 Expert opinion about the clinical utility of the guideline on 
sperm DNA fragmentation testing based on clinical scenarios (20). 

(n=30/40) and 77.5% (n=31/40) expressed concerns related 
to technical limitations of SDF testing methods and clinical 
utility of the test in one or more clinical scenarios discussed 
in the CPG, respectively (Table 1).

SWOT analysis

The (24-43) expert (44-62) commentaries (63-81) covered 
a broad range of issues concerning SDF, which reflect the 
mixed profile and expertise of participants, as discussed 
elsewhere (18). As seen in Table 1, authors of commentaries 
focused either on SDF as a laboratory test method or the 
utility of such testing in specific clinical scenarios, with most 
authors covering both areas. Given such heterogeneity, we 
developed the SWOT analysis in two parts. In the first part, 
we discuss participants’ concerns regarding SDF as a lab 
method (Figure 2) and in the second part, we reason their 
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Figure 2 A Strengths-Weaknesses-Opportunities-Threats (SWOT) analysis of sperm DNA fragmentation (SDF) testing as a specialized 
sperm function laboratory method.

concerns about the clinical utility of such testing in specific 
clinical scenarios (Figure 3).

Discussion

Part 1: SWOT analysis of SDF as a laboratory test method

Strengths
SDF tests assess the quality of DNA package
During spermiogenesis, histones are replaced by transition 
proteins and subsequently with protamines (104,134). 
Cysteine residues of protamines further undergo intra- and 
intermolecular disulfide cross-linking resulting in a highly 
condensed chromatin arranged in a toroid (116). This 
complex packaging protects the sperm chromatin during its 
transport from the male to female reproductive tracts and 
ensures delivery of intact paternal genetic material to the 
oocyte. A certain amount of histones is, however, retained in 
human sperm chromatin making it vulnerable to injury (10).

Sperm DNA damage is a complex process involving 
multiple non-mutually-exclusive causative mechanisms that 
generate a variety of insults to DNA. Varicocele, infection, 
and inflammation of the genital tract, cancer, genetic 
mutations, chromosomal abnormalities, aging, environmental 
exposure and lifestyle factors are the main conditions 
associated with sperm DNA damage (2). Furthermore, 

testicular apoptotic processes during spermatogenesis, 
aberrations during chromatin remodeling, and OS are among 
the primary mechanisms postulated to cause nuclear and 
mitochondrial sperm DNA damage (10,13,49).

SDF testing was originally developed to detect DNA 
damage in ejaculated sperm (78). Although the term 
‘fragmentation’ is widely used to refer to any test that 
assesses sperm chromatin, not all insults break the DNA into 
“fragments” (63). In addition to single- or double-stranded 
DNA breaks, chromatin damage includes DNA nicks, nuclear 
protein defects, and alteration of chromatin configuration (10).  
Mostly, the tests measure the proportion of sperm with: (I) 
real DNA breaks (e.g., TUNEL); (II) combination of actual 
DNA breaks and potentially denaturable DNA due to the 
preexistence of single-stranded DNA breaks (SS-DB) or 
double-stranded DNA breaks (DS-DB) (e.g., SCSA, SCD, 
and Comet); or (III) poor chromatin packaging (20,104,116). 
As noted above, not all types of damage are detected by the 
same test although SDF test results are interrelated to a 
greater or lesser extent via properties of the DNA (23).

Since the levels of SDF in the neat semen have been 
associated with infertility, both natural and assisted, it is 
therefore suggested that SDF testing reflects the overall 
quality of the DNA package in a given semen specimen, not 
just the damaged sperm detected in the test result (135).
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SDF tests provide results distinct and more significant 
than those of conventional semen parameters
Overall, clinicians agree that conventional semen analysis 
has limited value in clinical decision-making (4,9,10,136). 
Routine laboratory semen analysis is subjected to marked 
variability due to operational and technical factors 
(91,117,137-140). Moreover, there is biological variability 
in semen parameters of same individuals as spermatozoa 
are mixed with and diluted by fluid secreted from accessory 
glands, all of which are governed by the state of testicular 
sperm production, epididymal transit, the activity of 
accessory glands as well as ejaculatory abstinence (141,142). 
Importantly, routine semen analysis does not assess essential 
biological properties of spermatozoa which are needed for 
fertilization and embryo development. Experience with SDF 
testing has shown that sperm with high DNA fragmentation 

can have normal motility and morphology (143), thus 
helping to explain the limitations of routine semen analysis 
as to provide robust information to distinguish fertile from 
infertile men (4,117,136).

In contrast, SDF testing is a more accurate indicator of 
male fertility status as it looks into the paternal genome. 
The integrity of sperm DNA is considered to be vital 
for normal fertilization, embryo development, successful 
implantation, and pregnancy success in both natural and 
assisted reproduction [reviewed by Agarwal et al. (19)]. 
Moreover, in a study evaluating the ability of sperm vitality 
to predict SDF rates, Samplaski et al. found that over 32% 
of men gain additional information from SDF testing since 
vitality test alone would fail to predict SDF in these patients 
accurately (144). The inclusion of SDF testing to the 
male infertility armamentarium is advantageous as the test 

Figure 3 A Strengths-Weaknesses-Opportunities-Threats (SWOT) analysis of the clinical utility of sperm DNA fragmentation testing in 
specific clinical scenarios.
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provides valid information that can improve the diagnostic 
and prognostic value of the routine seminal evaluation (117). 
Despite the lack of a gold standard test in male infertility, 
none of the available tests provide diagnostic information 
equivalent to that offered by SDF during the evaluation of 
infertile men (19,91).
SDF is a parameter with low biological variation
SDF measurement in consecutive ejaculates is associated with 
low biological variability. In one study involving 100 men 
attending an infertility clinic, two consecutive semen analyses 
were carried out at a median interval of 1.4 months (range: 
0.5–6.9) (145). The median coefficient of variation (CV) was 
significantly lower (P<0.001) in SDF rates by SCSA (9.2%) 
than that of sperm count (43.0%), progressive motility 
(28.3%), and normal sperm morphology (28.3%) (145).  
Others have corroborated these results by showing that the 
biological variability is significantly less for SCSA results 
than conventional semen parameters in consecutive samples 
(146,147).
SDF is a marker of OS 
Reactive oxygen species (ROS) are considered the primary 
cause of SDF (94,122,148,149), thus making SDF testing 
a candidate surrogate marker of OS. OS is common in 
the infertile male population and has been associated with 
many known and unknown infertility conditions, including 
varicocele, infection, advanced paternal age, heat stress, and 
lifestyle factors (150,151). Excessive ROS exert a detrimental 
effect on male fertility via multiple mechanisms including 
sperm membrane peroxidation, mitochondrial and nuclear 
DNA damage, and apoptosis. Redox processes using various 
pathways, including hydroxyl radical, nitric oxide, and 
activation of sperm caspases and endonucleases, affect not 
only the sperm membrane but also nuclear and mitochondrial 
DNA, thus explaining the higher positivity for SDF in live 
ejaculated sperm of infertile men than fertile counterparts 
(10,116,152). SDF testing can provide a common pathway to 
measure the effects of oxidative damage and the success of 
treatments whether that be varicocele surgery, antioxidants 
or lifestyle modification (153,154).

Weaknesses
SDF testing lacks standardization
Standardization is necessary for any diagnostic test to be 
used clinically (4,60,133). Achieving such a characteristic 
is mainly related to the nature of the test, its complexity, 
and subjectivity in interpretation. Moreover, accuracy 
(extent to which the measurement reflects the real value), 
and precision (reproducibility of test results) are both 

important for clinicians who rely on the values provided by 
a laboratory test to direct the workup and counseling of the 
infertile male (155).

Although some methods to measure SDF suffer from 
high inter-laboratory variation, many efforts have been 
made to standardize the SCSA, TUNEL, and the SCD  
test (110). For instance, inter- and intra-laboratory 
precision, and inter- and intra-observer CV calculated for 
SCSA, SCD, and flow-cytometer TUNEL are extremely 
small (156-162) (Table 2). In a study using the TUNEL 
assay and a benchtop flow cytometer, semen specimens were 
evaluated in a blind fashion by two experienced observers, 
with results showing absolute inter- and intraobserver 
differences of 1.73% and 6.68% and percent inter- and 
intraobserver differences of 3% and 9.68% in >80% of cases, 
respectively (156). With the Halosperm G2 test kit, the 
intraobserver variability of the absolute average difference 
in SDF values between replicate tests was 1.02%±0.55% 
with a mean percent difference of 4.16% (157). In this study, 
the interobserver variability of SDF values between two 
technicians showed an absolute difference of 0.21%±0.57% 
and a mean percent difference of 9.56%. Furthermore, 
a recent study revealed no significant differences in SDF 
results between duplicates, with a high correlation between 
two independent laboratories (r=0.94) when experienced 
operators used the same semen samples, identical assay kit, 
protocol and flow cytometer settings to measure SDF by 
TUNEL (158).
There is a lack of criteria to which type of SDF should 
be recommended
In general, the methods for assessing sperm DNA damage 
can be grouped into three categories, namely: (I) assays that 
measure DNA fragmentation by incorporating DNA probes 
or modified nucleotides at the site of breaks; (II) assays 
that measure both the existing breaks and those generated 
after DNA denaturation; and (III) assays that indirectly 
measure the level of chromatin compaction, i.e., nucleus 
decondensation (116). While TUNEL belongs to the first 
group, SCSA, SCD, and Comet are examples of tests from 
the second group. In contrast, aniline blue and toluidine 
blue are methods that assess chromatin compaction 
(decondensation) rather than SDF (116).

Mostly, SDF refers to SS-DB or DS-DB and is 
predominantly associated with OS whereas sperm nucleus 
decondensation (SND) relates to defects in chromatin 
compaction (e.g., protamine mispackage via defective DNA-
protein crosslinking), which are intrinsically associated 
with the later stages of spermatogenesis. A synergistic 
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action among different effectors can contribute to the 
accumulation of DNA damage. As such, defective chromatin 
compaction can make the DNA more vulnerable to damage 
by ROS, and as a consequence SDF may ensue (116).

Due to these distinct assays’ characteristics, the results 
obtained from one method do not necessarily match those 
provided by a different test, especially if the methods being 
compared assess SDF and SND (16). Notwithstanding, 
there seems to be a fair correlation among the three mostly 
commonly used SDF tests, namely, SCSA, TUNEL and SCD 
(133,163,164), albeit the evidence is not unequivocal (17). SDF 
measurement with flow cytometer has been advocated as 
more precise and reliable (63,78), as the technique allows 
thousands of cells to be analyzed in a relatively short time 
compared with the use of optical/fluorescence microscopy. 
Moreover, the ability to evaluate a large cell number is 
another means to control inter- and intra-laboratory 
variations in test results (127,156,158). At present, however, 

suggesting one specific assay in preference over another 
does not seem to be in the best interest of clinicians and 
patients alike until a gold standard method is established.

Since the ideal method to measure SDF is still to be 
determined, any decision to consider SDF testing should 
take into account the limitations of testing methods and 
the possible benefits for clinical outcomes (117). In fact, 
the different type of SDF detected by each assay may be 
complementary to each other in distinct clinical settings (107). 
Nevertheless, it is essential that a reliable SDF assay with a 
validated threshold and performed by a skilled technician be 
used (10,16).
SDF lacks clear cut-off values
Although no definite threshold of DNA damage beyond 
which a seminal sample can be considered pathological 
has been agreed upon, cut-off values have been reported 
for SDF testing with regards to pregnancy prediction and 
infertility risk (112). For instance, recent data shows that 

Table 2 Summary of intra-laboratory and inter-laboratory correlation coefficients (r), coefficient of variation (CV), and intra- and inter-observer 
variation (%) for SDF assays

Method 
Intra-lab  

(r)
Intra-lab  

(CV) 
Inter-lab  

(r)
Inter-lab 

(CV)
Intra-observer 
variation (%)

Inter-observer 
variation (%)

Study

TUNEL; benchtop flow cytometer 0.75–0.956 0.1–5.7% 0.83–0.937 0.2–5.2% NR NR Ribeiro et al., 2017

TUNEL; benchtop flow cytometer NR NR NA NA ≤3%4 ≤1.7%5 Sharma et al., 2016

TUNEL; standard flow cytometry NR NR NA NA 3.2%2 4%3 Sharma et al., 2010

SCD* 0.91 NR NA NA 1%9 0.21%10 McEvoy et al., 2014

SCD NR NR NA NA 6–12%8 6–12%8 Fernandez et al., 2005

SCSA NA NA 0.90 ≤1% NA NA Giwercman et al., 2003

NR 1.0–9.1%1 NA NA NA NA Giwercman et al., 1999

*, Halosperm G2 test kit; 1, intra-assay CV varied between 1.0% and 9.1%, and the corresponding values for the inter-assay CV was 5.2% 
and 8.6%; 2, when absolute values were calculated, 80.0% of individual TUNEL measurement differed from the final designated values by 
no more than 3.2% (absolute difference); 57.1% of individual measurements in these data had a percentage difference less than 10% of 
the assigned value; 3, the absolute difference between an observer’s designated value and the mean among 2 observers was within 4.0% 
in 83.3% of specimens; in 83.3% of the specimens, the percentage difference between an individual observer’s designated TUNEL value 
and the 2 observers’ average value was within 15%; 4, a single TUNEL measurement from a given observer was within that observer’s 
average measurement by an absolute difference of 3% or less in 90% of cases; 5, the average TUNEL measurement from a given observer 
was within the two observers’ average measurements with an absolute difference of 1.73% or less in 80 % of cases; 6, correlation 
between duplicate readings obtained in each laboratory (results from two participating laboratories); 7, correlation coefficient between 
two participating laboratories reading the same set of specimens; 8, coefficient of variation for the estimated percentage of spermatozoa 
with fragmented DNA; 9, the average difference in the values of SDF between the two replicates was 1.02%±0.55% (absolute variation); 
the average percentage difference between the two replicates for each sample was 4.16%; 10, the average difference in the values of SDF 
between two technicians for each sample was 0.21%±0.57% (absolute difference); the average percentage difference between the two 
technicians for each sample was 9.56%. SDF, sperm DNA fragmentation; TUNEL, terminal deoxyribonucleotide transferase-mediated 
dUTP nick-end labeling assay; SCD, sperm chromatin dispersion test; SCSA, sperm chromatin structure assay; NR, not reported; NA, not 
applicable; CV, coefficient of variation.
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SDF test by SCD, when used in a fertility clinic setting, 
has a sensitivity of 80.8% and specificity of 86.1% with 
the SDF cutoff of 26.1%, and a prevalence ratio of 2.84 
for the occurrence of male infertility (165). Moreover, the 
benchtop flow cytometer TUNEL assay has been recently 
standardized and validated on semen samples obtained 
from 95 fertile controls and 261 infertile men (156). In this 
study, a SDF cutoff value of 16.8% was found to have a 
specificity of 91.6% and a positive predictive value of 91.4% 
in distinguishing infertile men from controls.

Along the same lines, SCD test was found to have a 
sensitivity of 86.2% and a negative predictive value (NPV) 
of 72.7% (P=0.02) in predicting successful ART treatment 
when the cutoff value of 25.5% was utilized (166). Likewise, 
a SCSA cutoff value of 30% was found to carry a significant 
predictive power to the likelihood of pregnancy both in 
vivo and after ART, where patients with a SDF <30% were 
7.1 times [95% confidence interval (CI), 3.37–14.91] more 
likely to achieve a pregnancy in vivo and ~2.0 times (95% 
CI, 1.10–2.96) more likely to achieve pregnancy after 
ART (167). Another recent study by Rilcheva et al. (168) 
utilized the SCSA assay to investigate the influence of SDF 
on the pregnancy outcome of 531 couples undergoing 
autologous ICSI (n=416), donation ICSI (n=39) and IUI 
(n=71). Using a cutoff value of 27%, the authors reported a 
statistically significant negative relationship between SDF 
and pregnancy outcome with IUI (χ2=6.87; P<0.05), and a 
positive relationship between SDF and pregnancy loss after 
IUI (t-test =1.58; P<0.05) and ICSI (OR =5.65; 95% CI: 
4.32–7.11; P<0.05). The authors concluded that infertile 
men should be evaluated with SDF in addition to routine 
semen analysis and suggested that when the result exceeds 
27%, patients should be offered ICSI at an earlier stage.

Collectively, the threshold range of 25–30% by SCSA 
or SCD seems valid for placing men into a statistical 
probability of longer time to achieve natural pregnancy, 
low odds of pregnancy by IUI and conventional IVF, 
and a higher risk of miscarriages, both natural or assisted 
(112,169). However, it is important is to note that having 
a SDF rate of 30% does not mean that 70% of remaining 
spermatozoa have entirely normal chromatin (72). The 
methods to evaluate chromatin integrity measure the 
percentage of cells with fragmented DNA/chromatin 
decondensation only and are based on the idea that the 
greater the fragmentation/decondensation rate, the greater 
the chance that the sperm population is pathological. It has 
been suggested that part of the remaining sperm may be 

already compromised as regards to DNA integrity, but not 
yet crossed the threshold detectable by the assay (170). High 
SDF probably represents the tip of an iceberg (72,127,170).

It is therefore crucial that clinicians be judicious when 
interpreting test results and using this information to predict 
reproductive outcomes. A high SDF result should be read 
as a general indicator of poor semen quality instead of an 
absolute value of abnormal sperm (57,130). Along these 
lines, nomograms taking into account various levels of SDF 
and female factors have been suggested as a means to better 
predict the reproductive outcomes (57). Consideration of 
female factors is important as the presence of SS-DB may 
be repaired by oocyte repair machinery (171), thereby 
preventing the adverse consequences of SDF. However, 
the oocyte has a limited capacity of repairing SDF (172) 
and importantly, not all types of sperm DNA breaks are 
repairable (173). Given the multitude of confounding factors, 
various cut-off values may be required to ensure satisfactory 
performance of the test in distinct clinical scenarios (93,127).
SDF tsting does not identify the type (nature of lesion) 
and site of DNA breaks
Currently, existing SDF methods are limited in revealing 
the kind of DNA damage and the location of break. However, 
as discussed above, TUNEL, SCSA, SCD test and Comet 
determine the presence of DNA breaks whereas aniline 
blue and toluidine blue the degree of chromatin compaction 
(decondensation) (116). None of them, however, can 
discriminate if the lesion affects coding or non-coding DNA 
domains. Since only about 1.5% of the genome encodes DNA 
sequences capable of producing proteins (10), it has been 
argued that lesions affecting non-coding sites may not be of 
clinical significance (33). However, the remaining genome 
may have specific functions ranging from various structural 
roles (highly repeated sequences) to direct regulation of 
gene expression or indirect gene expression control through 
epigenetic changes (174-176). Moreover, DS-DBs, especially 
if abundant within the nucleus, can trigger cell cycle blocking 
mechanisms that result in cell death (177,178). Cell death can 
also occur from unrepaired or erroneously repaired DNA 
lesions that lead to protein production deficiencies or even 
chromosomal abnormalities (177).

Collectively, apoptotic induction, erroneous DNA repair, 
and the presence of chromosomal alterations can cause cell 
death, and these may occur regardless of the location of the 
initial DNA lesions or whether or not the DNA domain has 
an informative capacity (10). Nonetheless, the stratification 
of DNA damage into testicular or post-testicular events 
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could help in our understanding of the pathophysiology and 
development of new treatment strategies (100). Although 
neither the amount of SDF in each cell—with the exception 
of Comet assay—nor the exact site of damage is quantified 
by SDF tests, a positive association between SDF and natural 
pregnancy/ART/miscarriage has been demonstrated despite 
the use of a wide variety of testing methods (19). Rather than 
being a limitation, the inability of SDF testing to assess how 
much DNA damage exists in each cell is advantageous given 
the large number of spermatozoa and the highly variable 
DNA integrity of each spermatozoon (130). As it stands, SDF 
testing reflects the quality of the DNA package in the entire 
semen sample, which provides an overall indication of DNA 
integrity and male fertility (135).
SDF testing is carried out in neat semen and may not 
reflect the sperm population used in ART
Although further research is needed in this area, the 
validity of using processed semen samples for SDF testing 
is currently not warranted. DNA fragmentation index 
(DFI) of density gradient centrifugation (DGC)-processed 
sperm measured by SCSA did not predict ART outcome 
in contrast to neat samples (103). Besides, no association 
between sperm SCSA DFI after swim-up and fertilization, 
implantation and pregnancy rates could be demonstrated in 
another study (179). Also, DGC has been reported to result 
in increased SDF especially when higher centrifugation 
force, longer duration and Percoll gradients were used 
(180,181). Furthermore, in a study investigating the 
dynamics of SDF by SCD and its implication on embryo 
development and pregnancy rate in couples undergoing 
ICSI, it was observed that the likelihood of pregnancy 
was decreased by 5.9% for every 1-unit increase in SDF 
observed after 12 h of incubation (182). These observations 
suggest that SDF results after sperm processing may 
increase as a function of factors such as incubation period 
and temperature, thus making its value questionable for 
pregnancy prediction in the ART setting.

Threats
Professional societies have not endorsed the use of 
SDF testing in daily practice
The literature is rich in systematic reviews and meta-
analyses reporting on a positive association between 
elevated SDF and infertility and ART outcomes. However, 
variation in SDF assays, SDF thresholds and differences 
in study populations have resulted in mixed conclusions 
concerning the clinical utility of SDF testing (83,183). 

Consequently, professional societies, such as the American 
Society for Reproductive Medicine (ASRM), the American 
Urological Association (AUA), the European Association 
of Urology (EAU), and the National Institute of Clinical 
Excellence (NICE), have not recommended SDF testing for 
routine clinical evaluation (74,114,184-187).

However, new evidence has been generated steadily 
after the publication of these guidelines. Studies reporting a 
significant detrimental relationship between SDF and clinical 
varicocele (11,187,188), unexplained infertility (189-192),  
and outcomes of ART (18,193,194) were published recently. 
Furthermore, new data emerged concerning the potential 
benefit of using testicular in preference over ejaculated 
sperm for ICSI in cases of high SDF (195-199), thus 
stressing the need for further updates in the clinical 
recommendations of the societies mentioned above. As 
CPGs are evolving documents, a timely review and update 
are highly expected.

Equally important is to consider that in addition to the 
sound guidance provided by CPGs, the application of a test 
should be weighed by the magnitude of benefit it can bring 
to a couple (103). Although it is unlikely that the dynamic 
interaction among multiple confounding factors, both in 
natural conception and ART, can be confirmed by a single 
test (109), SDF test in the clinical setting may aid in: (I) 
identification of the possible underlying etiology in couples 
who are otherwise classified as unexplained or idiopathic 
infertility; (II) monitoring of treatment outcomes of either 
empirical or new treatment modalities; (III) stratification 
of patients to receive more targeted treatment for SDF; 
and (IV) avoidance of unnecessary workup and wastage of 
precious time and money in unproductive treatments (93).
SDF testing is expensive and not reimbursed by 
insurance companies
The cost of SDF testing is approximately 170±123 USD (18),  
which remains an important factor limiting the routine use 
of SDF testing. However, cost is also a major drawback 
to all other fertility related therapeutic modalities and has 
been recognized to add significant handicap on infertile 
couples whose fertility treatments are usually not covered 
by medical insurance (200). SDF testing represents a 
fraction of the cost of other fertility treatments such as ART 
procedures or surgical varicocele ligation (112). A major 
aim of the CPG by Agarwal et al. (20) was to elucidate the 
circumstances where SDF testing would be most influential 
on treatment decisions, therefore, with a possible significant 
impact on the overall treatment cost.



S744 Esteves et al. SWOT analysis of SDF testing in male infertility

Transl Androl Urol 2017;6(Suppl 4):S734-S760tau.amegroups.com© Translational Andrology and Urology. All rights reserved.

The use of SDF testing in the right clinical scenario 
can aid in recommending an ART procedure or treatment 
that is associated with the highest likelihood of pregnancy, 
thereby eliminating unnecessary cost from less successful 
therapeutic modalities (95). In one study evaluating the 
use of SDF testing and testicular sperm in preference 
over ejaculated sperm for ICSI in men with high SDF in 
semen, the number needed to treat by testicular compared 
to ejaculated sperm to obtain an additional live birth per 
fresh transfer cycles was 4.9 (95% CI: 2.8–16.8) (195). This 
study suggested that we could avoid one out of five oocyte 
retrievals to obtain an additional live birth if we used SDF 
testing in the aforementioned clinical scenario (92).

Besides, the SDF result can help in selecting patients 
who are most likely to benefit from varicocele ligation 
eliminating unnecessary surgery. It seems sound that any 
step that can potentially improve natural pregnancy or 
ART outcomes will likely to pose a financial benefit to both 
the couple and society. A more comprehensive workup of 
male factors by incorporation of SDF testing is certainly 
an attractive and economical option. The cost of SDF 
testing will probably be justified since the test results reflect 
treatment outcome (95).

Lastly, the question of whether or not doctors should 
ask patients to spend more money to obtain a diagnosis of 
the status of DNA damage in the sperm as a tool for both 
the patient and clinician to decide on a course of treatment 
should be put in the right perspective (68). Given the 
evidence indicating that SDF is associated with reproductive 
health issues in the male and the embryo, the question we 
as individuals and as a medical community must ultimately 
consider is if we are providing the best care to the infertile 
couple and the offspring by ignoring the “health” of the 
sperm (61).

Opportunities
More research has to be conducted to clarify existing 
gaps and refine SDF as a valid lab method
The decision about the broad applicability of a clinical test 
is a delicate balance among numerous factors including 
cost-effectiveness and patient-centeredness. Currently, 
there exist gaps to be filled concerning SDF testing as a 
laboratory method, as discussed above. However, many 
drawbacks perceived by infertility specialists, such as 
poor validation, low precision, and low accuracy seem to 
result from a lack of careful appreciation of the emerging 

evidence concerning the enhanced performance of several 
test methods. The practice recommendations by Agarwal 
et al. is the first step forward to bridge the gap between 
research and clinical practice in promoting SDF testing. As 
the intended purpose of the CPG (20) was to identify the 
proper indications of SDF testing, meaningful refinements 
of its practical methods and diagnostic thresholds can be 
achieved further (115).

Part 2: SWOT analysis of clinical utility of SDF in specific 
clinical scenarios

Strengths
The CPG is timely to guide urologists and infertility 
specialists in requesting SDF tests in proper scenarios
Little information is available to give clinicians guidance 
according to which SDF testing should be requested (25). 
The CPG by Agarwal and colleagues (20) is the first attempt 
to provide this urgently needed practical orientation. It 
includes clear situations in which SDF testing can be used 
to benefit patients, with practical and easy-to-understand 
supportive information (24-26,30,33,54,55,57,61,69,81). 
The guideline also points out that SDF testing should not 
be regarded as the gold standard test in the male fertility 
assessment. Furthermore, SDF testing was not proposed 
as a replacement for routine semen analysis or to be used 
indiscriminately in all cases. Assessment of SDF should 
rather be a tool to provide physicians additional information 
that can influence their decision of how to counsel and 
manage their patients (89).
The four case scenarios cover the spectrum of 
difficult clinical decisions that most fertility specialists 
encounter in clinical practice. The evidence-based 
recommendations are extremely valuable for assessment 
of male subfertility and couples undergoing ART
Despite the availability of numerous studies exploring 
the impact of SDF on male fertility and reproductive 
outcomes, an understanding of the clinical utility of such 
an important test was still lacking. Foremost among all 
strengths of Agarwal et al.’s CPG is the scope of testing 
suggested (61). Although evidence is not available at this 
time to recommend routine screening of all men evaluated 
at a fertility clinic, the use of SDF testing in specific clinical 
scenarios is evidence-based and should be implemented in 
ART clinics not currently employing such assays. In brief, 
Agarwal et al. provided clear, evidence-based guidelines that 
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should facilitate practical implementation of SDF testing 
in the clinic with the objective of not only improving ART 
success rates, but more importantly to improve the health 
of the father and the offspring (54,61,66).
There is a common belief that SDF is untreatable. The 
guideline clarifies this issue and provides evidence-
based guidance for interventions
Although the association between SDF and natural 
pregnancy/ART outcomes has been extensively reported, 
the lack of effective treatment for high SDF is a common 
critique of SDF testing (62,120). Despite the common belief 
that SDF is untreatable, objective evidence indicates that 
treatment options are available. Among interventions shown 
to improve sperm DNA integrity, varicocele repair (201) and 
oral antioxidant therapy can alleviate SDF and improve the 
chances of establishing a pregnancy (132,202-213) (Table 3).  
Moreover, modifiable lifestyle factors such as smoking, 
obesity, and occupational exposure have been associated 
with high rates of SDF making them potential targets for 
interventions (128,214-216). It is suggested that correction of 
underlying factors can alleviate SDF and potentially enable 
natural conception or allow the use of less complex ART 
methods (135). If ICSI is to be used, lower miscarriage rates 
are anticipated after treatment of the conditions causing SDF. 
For this, a clinical evaluation of the infertile male is essential 
to identify the causes of infertility and allow treatment of 
the affected men aiming at reducing SDF. Lastly, laboratory 
sperm selection techniques and the use of testicular sperm 
represent alternatives to reduce the risk of using sperm with 
high SDF for ICSI, with the latter being the most attractive 
approach given it provides the highest reduction in SDF rates 
and LBR by ICSI (92,195,197,217-229) (Table 4).

A CPG such as the one presented by Agarwal and  
colleagues (20) is intended to provide clinicians and other 
healthcare practitioners useful information to enhance the 
quality of care deliverable to patients (113). It is also designed to 
discourage potentially harmful or ineffective interventions (84).  
However, the complexity of the human reproductive system 
cannot be completely covered by any guideline. The decision 
to perform a particular investigation, e.g., SDF testing, and 
to intervene accordingly should be individualized for every 
couple. The management strategy depends on factors such 
male and female age, duration of infertility, financial issues 
as well as couples’ willingness to pursue natural or assisted 
conception. The primary objective of the CPG under 
discussion was to translate the best evidence into practice and 
provide a framework of standardized care while maintaining 
clinical autonomy and physician judgment (84).

Weaknesses
Clinical scenario 1 (varicocele with normal/borderline 
semen parameters): there is no evidence that SDF 
alone can predict improvements in semen parameters 
or affect pregnancy outcomes after varicocele repair
Among infertile men with clinical varicocele, elevated SDF is 
observed in approximately 50% and 60% of those with normal 
and abnormal semen parameters, respectively (128,230). 
Furthermore, 70–90% of patients show improvement in 
SDF levels after varicocele repair (231,232). Reduction in 
SDF after surgery is shown to be more common in men who 
have a concomitant improvement in conventional semen  
parameters (230). Also, postoperative SDF rates are lower in 
men able to impregnate their partners naturally or by ART 
than those who are not (187,230). Notwithstanding, the 
presence of normal SDF levels in infertile men with clinical 
varicocele suggests that some patients may have scavenging 
mechanisms that counteract the effect of excessive ROS as 
causative of high DNA damage (14).

Although further studies are required, these observations 
provide some evidence that improvements in sperm DNA 
integrity after varicocele repair translate into higher 
pregnancy rates. However, the argument that the usefulness 
of SDF as a single test needs to be demonstrated is probably 
flawed given the interaction among multiple factors in the 
reproductive system (233). SDF testing in providing an 
assessment of the genetic content of males with varicocele 
should be considered complementary to conventional semen 
analysis. As with all diagnostic tests, care must be taken 
only to utilize them when the results directly affect clinical 
decision-making. SDF in the context of varicocele should 
be primarily reserved for the cases in which treatment is not 
warranted by itself, as depicted in Figure 4.
Clinical scenario 2 (unexplained infertility/recurrent 
pregnancy loss/IUI failure): little data is available to 
support the usefulness of screening for SDF
Elevated SDF (DFI >20–30%) is found in up to 45% 
of infertile men with unexplained infertility (128,189). 
Pregnancy rates are reduced among couples with 
unexplained infertility undergoing IUI when SDF rates 
are >20% (189). Furthermore, the odds of pregnancy 
are dramatically decreased (by 7.0 to 8.7-fold) in the 
general population of infertile couples subjected to IUI 
with high seminal SDF levels (19,234). Evidence of an 
association between SDF and recurrent pregnancy loss is 
also increasing steadily (128,190-192). SDF testing in these 
scenarios may help clinicians counseling the affected men to 
take all measures to reduce SDF, including oral antioxidant 
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Table 4 Summary of the effect of different strategies to reduce sperm DNA fragmentation 

Method SDF relative reduction SDF assay Study

Short abstinence 25% SCD Gosálvez et al., 2011

22% TUNEL Agarwal et al., 2016

Gradient centrifugation 22–44%* SCD Gosálvez et al., 2011

56.6% SCD Xue et al., 2014

Swim-up 33.3% SCD Parmegiani et al., 2010

38.1% SCD Xue et al., 2014

MACS 26.7% TUNEL Tsung-Hsein et al., 2010

None TUNEL Nadalini et al., 2014

PICSI 67.9% SCD Parmegiani et al., 2010

None SCSA Rashki Ghaleno et al., 2016

IMSI 78.1% TUNEL Hammoud et al., 2013

None SCD Maettner et al., 2014

Testicular sperm 79.7% SCD Esteves et al., 2015

79.6% TUNEL Greco et al., 2005

66.5% TUNEL Moskovtsev et al., 2010

*, combined with frequent ejaculation and short ejaculatory abstinence. MACS, magnetic-activated cell sorting; PICSI, ‘Physiologic 
ICSI’ with hyaluronic acid (HA) binding assay; IMSI, intracytoplasmic morphologically selected sperm injection; TUNEL, terminal 
deoxyribonucleotide transferase-mediated dUTP nick-end labeling assay; SCD, sperm chromatin dispersion test; SCSA, sperm chromatin 
structure assay.

intake and lifestyle changes, and to consider recommending 
IVF/ICSI as a means to overcome infertility related to poor 
sperm DNA integrity (Figure 5).
Clinical scenario 3 (IVF/ICSI failure): controversy 
exists regarding the predictive value of SDF testing and 
the association between SDF and ICSI outcomes
Most of the controversies in this scenario are due to 
misunderstandings which prevented proper interpretation 
and communication. Whereas SDF testing has been 
commonly utilized to distinguish couples who will or 
will not become pregnant naturally or with ART, studies 
examining test performance have used heterogeneous 
pat ient  populat ions and outcome measures ,  thus 
complicating their interpretation (83). For SDF to be used 
as a valid screening test, some conditions should be met. 
Foremost among all is application of the test in the proper 
population. For instance, the positive predictive value (PPV) 
of SDF in the ART setting reflects the probability that a 
couple who tests positive fails IVF/ICSI. In contrast, the 
NPV is the probability that a couple who tests negative 
succeed. By all means, SDF testing alone is not suitable 

to provide an accurate pregnancy prediction due to the 
multitude of factors affecting ART outcomes. Moreover, 
the limitations of the test will become more evident if 
SDF testing is applied to all comers because the PPV and 
NPV change with the prevalence of the condition. If the 
prevalence is low (e.g., men without risk factors for SDF), 
the PPV will be low, even if specificity and sensitivity are 
high (235). In contrast, if the prevalence is high (e.g., men 
with risk factors for SDF), the PPV will be high provided 
a highly specific cutoff value is chosen. As a matter of fact, 
it has been shown that the PPV of TUNEL concerning 
pregnancy in ART is only moderate whereas that of SCD 
is low despite the high sensitivity (77–85%) and specificity 
(89–91%) of both tests (83,166,236,237).

The use of SDF as a screening test for pregnancy 
prediction in a population at low risk for sperm DNA 
damage is highly problematic as couples can be erroneously 
categorized as having a higher or lower chance to get 
pregnant when in fact they have not. Because abnormal 
SDF levels are seen in only about 30% of men from the 
general IVF/ICSI population (128,167), these implications 
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will become evident when screening all couples to be 
subjected to ART, as there will be a high number of false 
positives results (i.e., successful pregnancy despite high 
SDF, thus resulting in a low PPV). Therefore, SDF testing 
will be most useful if applied to couples with high risk for 
an adverse outcome associated with SDF (e.g., men with 

risk factors and older partners, and couples with repeat 
IVF/ICSI failures).

Equally important is the influence of the type of ART 
on treatment outcomes. The negative association between 
high SDF and pregnancy rates in conventional IVF 
(112,192,238), but not ICSI (239), clearly illustrate these 
points. Since SDF testing concerns the integrity of paternal 
DNA, the poorer the DNA quality, the more fragile the 
spermatozoon in its ability to generate a healthy embryo. 
Therefore, the extent of sperm journey may impact IUI and 
IVF/ICSI outcomes. Reducing the length of the journey to 
the oocyte (by conventional IVF) as well as bypassing the 
process of fertilization (by ICSI) can minimize the extent of 
sperm DNA damage (63).

Additionally, female factors, such as age and oocyte 
quality, can modulate the impact of SDF on IVF/ICSI 
outcomes (118). Results of a retrospective clinical study 
showed that the live birth and implantation rates during 
IVF/ICSI in women with reduced ovarian reserve were 
significantly decreased when SDF exceeded 27.3%. In 
contrast, clinical pregnancy, live birth, and implantation 
rates were not affected in women with normal ovarian 
reserve (194). The oocyte capability to repair, at least to 
some extent, DNA damage means that semen specimens 
with low to moderate SDF combined with high-quality 
oocytes may result in acceptable reproductive outcomes. 
Lastly, the association between high SDF and increased 
miscarriage after both IVF and ICSI (19,240) suggest that 
the outcome measured also matters. The negative impact of 
SDF is more often expressed later at the implantation stage 
and onwards (late paternal effect) (101,241,242), which may 

✅Unexplained	infertility ✅ Recurrent	Miscarriage	 ✅ Recurrent	IUI	failure ✅ Recurrent	IVF	failure ✅ Recurrent	ICSI	failure

High	SDF

High	SDF

ICSI

ICSI

IVFIUI

High	SDF

Testicular	sperm	ICSI

+ Counselling	regarding	the	expected	outcomes	with	each	ART	modality

✅ Conditions	where	sperm	DNA	fragmentation	(SDF)	is	indicated 
IUI:	intrauterine	insemination
IVF:	In	vitro	fertilization
ICSI:	intracytoplasmic	sperm	injection	

Figure 5 Algorithm for the clinical utility of sperm DNA fragmentation in assisted reproductive treatments. 

Varicocele

Sperm	DNA	Fragmentation

Normal Abnormal

Varicocele	repair
No	varicocele	repair	

(follow	other	treatment	options)

Grade	II Grade	IIIGrade	I

Normal	semen	analysisBorderline	/	Abnormal	
semen	analysis	

Figure 4 Algorithm for the clinical utility of sperm DNA 
fragmentation in patients with varicocele. 
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explain why the risk of miscarriage is increased in the face 
of high SDF whereas clinical pregnancy rates may not be 
compromised (195).

As far as remedies for recurrent miscarriage/repeated 
IVF/ICSI failure related to high SDF are concerned, 
SDF results may guide clinicians as well. Patients can be 
offered any means to decrease SDF (if a correctable cause is 
identified) or ICSI with testicular sperm. The latter is based 
on the increasing evidence indicating that testicular sperm 
have lower SDF levels than ejaculated sperm and result in 
superior ICSI outcomes (23,85,125,195,199) (Figure 5).
Clinical scenario 4 (borderline abnormal or normal 
conventional semen analysis with life-style risk factors 
for SDF): there is insufficient evidence that lifestyle 
modification will result in resolution of SDF or improve 
fertility outcomes
At first glance, the clinical utility of SDF seems to be least 
convincing in patients with lifestyle risk factors, especially 
when no other reversible reasons for high SDF are detected 
(56,90). However, the negative impact of such risk factors 
on SDF has been consistently reported by several studies 
[reviewed by Esteves et al. (128)]. Furthermore, recent data 
indicate that a healthy dietary pattern and lifestyle decrease 
SDF (215,216). Additionally, evidence suggests that oral 
antioxidant therapy improve sperm DNA integrity and 
translate in better changes for establishing a pregnancy 
using ART (132) (Table 3).

Although further research is warranted to confirm 
the role of lifestyle changes concerning sperm DNA 
integrity, and how these changes may translate into better 
reproductive outcomes, information provided by SDF 
testing gives solid grounds for implementing lifestyle 
changes as well as monitoring patient compliance in health 
prevention programs. Knowledge of the SDF status can be 
used to strengthen patient counseling and allow clinicians 
to provide a more realistic prognosis of every modality the 
couple wishes to pursue.
Overall quality of evidence leads to level C 
recommendation
While all CPGs include recommendations, it is the 
quality of the available evidence that shapes the strength 
of recommendations. It is true that Agarwal et al.’s 
recommendations (20) are primarily based on levels B and 
C evidence and that more clinical data should be attained 
to support their advice further. However, CPGs issued by 
other societies such as the AUA, EAU, and the ASRM have 
also synthesized their recommendations largely based on 
studies of moderate to low quality (5,184-186,243), thus 

reflecting the limited evidence available in other areas of 
infertility as well. Nevertheless, the driving force of all 
involved in contributing guidelines, including Agarwal 
and his peers, is in translating the best evidence available 
into practice to serve as a framework for standardized 
care while maintaining physician autonomy. The existent 
shortcoming of SDF testing should not refrain physicians to 
take full advantage of its clinical benefits provided the data 
supporting that specific test be made clear to the patient.

Threats
Specialty societies and National Institutes do not 
recommend the use of DNA fragmentation in the 
routine workup of the infertile male patient
The lack of sufficient high-grade evidence in support of the 
application of SDF testing in the clinical scenarios discussed 
above is a criticism often heard (131). Moreover, despite 
many alternatives to treat patients with high SDF, including 
oral antioxidants, varicocele ligation, frequent ejaculation, 
and testicular sperm extraction, good clinical evidence is 
still lacking to support the routine use of these alternatives. 
As such, guidelines from various professional societies stress 
the lack of robust evidence to support the clinical utility of 
SDF testing (131). Furthermore, practices differ globally 
and in certain regions (e.g., UK) National Institutes for 
Health neither endorses varicocele treatment for infertility 
nor the use of SDF testing for infertility diagnosis and 
management (74,114). Despite that, the potential benefit of 
SDF testing in daily practice is increasingly being realized. 
Recognizing the significant efforts from researchers that 
have moved SDF testing from bench to clinical practice 
in the twenty-first century, the Society for Translational 
Medicine (244) has taken a step ahead and fully endorsed 
the CPG for SDF testing in male infertility (20,245). Also, 
the society mentioned above supported the publication 
of a journal supplement entirely dedicated to the topic in 
one of its official journals -Translational Andrology and 
Urology-, in which this paper stands, along with a concise 
practice recommendation for quick clinical reference (246). 
This initiative, in addition to the bulk of published data 
since previous male infertility guidelines were issued, must 
provide enough fuel for a timely review and update of other 
societies’ guidelines such as the AUA, ASRM, and EAU.
The guideline is not inclusive of all clinical conditions 
that may benefit from using SDF testing
Case scenarios are commonly used in medical literature 
to report a particular clinical condition or contextualize 
a situation hoping for better comprehension (247,248). 
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Although the use of clinical scenarios to illustrate a point 
may not apply to a slightly different scenario (54), Agarwal 
and colleagues utilized this method in their CPG (20) to 
personalize a message giving it a clinical perspective (90). 
Infertile men with advanced age, diabetes, subclinical 
infection, and cancer, among others, may benefit from SDF 
testing as well so that further response to interventional 
treatments could be monitored (40,63).

Opportunities
More studies have to be conducted to clarify the 
clinical utility of SDF test results to determine the 
course of treatment in the presented clinical scenarios 
and beyond
Well-designed studies with adequate power and standard 
techniques will be invaluable to refine the clinical utility 
of SDF testing further. In this article, we scrutinized the 
practice recommendations and commentaries from experts 
concerning its utility to identify existing gaps and potential 
areas for translational research. Some areas for further 
investigation concerns: (I) the efficacy of varicocelectomy to 
reduce SDF rates and their impact on pregnancy outcomes; 
(II) the role of female age and SDF oocyte repair capacity 
in natural and assisted conception; (III) the clinical utility of 
SDF to other categories of patients, such as cancer patients 
exposed to chemo/radiotherapy, and diabetes; (IV) the 
role of preimplantation genetic screening in cases of ICSI 
treatment associated to high SDF; (V) cost-effectiveness 
of testicular sperm and other methods to reduce SDF for 
ICSI; and (VI) the role of lifestyle interventions to reduce 
SDF rates and how the effects impact on pregnancy rates.

Conclusions

Understanding the role of SDF in male infertility requires an 
in-depth analysis of the multiple pathophysiological processes 
and the theories involved, as well as the examination of 
different levels of scientific evidence of published studies. 
Agarwal and colleagues provide a reasonable proposal for 
integration of SDF testing in the clinic in the ICSI era, 
despite inherent limitations in drawing an evidence-based 
clinical guideline. The uniqueness of SWOT analysis offers 
the possibility of evaluating this CPG on the clinical utility of 
SDF testing based on clinical scenarios and its accompanying 
commentaries written by global experts in all possible angles, 
thus providing rich information for clinicians and researchers 
alike. With further refinements in SDF testing and additional 
supporting evidence of its clinical utility, implementation of 

SDF testing in the clinic may not only increase ART success 
but more importantly improve the health of both fathers to 
be and resulting offspring.
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