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Introduction

Prostate cancer is a common cause of cancer-related death 
in aging males in the Western world. Because hormone 
therapy is the standard of care for men with metastatic 
prostate cancer, most men succumb to the disease following 
developing resistance to at least one of the hormone therapy 
regimens. Castration-resistant prostate cancer (CRPC) is a 
term used to describe prostate cancers that relapse following 
first-line hormone therapy (1). It is known that CRPC is not 
completely refractory to further hormonal manipulation, 
and AR signaling remains as a pivotal driver for disease 

progression despite castrate levels of androgens (2,3).  
Sustained AR signaling may be mediated by a number 
of mechanisms, including AR gene amplification and 
overexpression (4-6), intra-tumoral androgen synthesis (7),  
overexpression of AR coactivators (8), aberrant kinase 
pathway activation (9-11), AR mutation (12) , and 
constitutively active AR splice variants (13). 

Novel therapies have been recently developed to treat 
CRPC patients by targeting overexpressed AR and intra-
tumoral androgen synthesis. Abiraterone acetate, designed 
to inhibit CYP17A1, was approved on November 2011 
for treating metastatic CRPC previously treated with 
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docetaxol (14), with expanded indication approved on 
December 2012 to include patients who did not receive 
prior docetaxol (15). Enzalutamide, a more potent anti-
androgen, was approved on August 2012 for post-docetaxol 
metastatic CRPC (16). The successful clinical development 
of these two new agents (14-16) underscores the importance 
of understanding the mechanism of sustained AR signaling 
in CRPC. In this light, most AR splice variants identified 
so far do not contain the intended therapeutic target, the 
AR ligand-binding domain (LBD), for any of the existing 
hormone therapy regimens including the two new agents. 
In this review, we will discuss discovery and characterization 
of the structural and functional diversity of AR splice 
variants for which the key features have been documented 
in the literature (key features of the 18 AR splice variants 

are summarized in Figure 1), their potential roles in 
mediating constitutively active AR signaling, and key areas 
of investigation to establish them as a mechanism of CRPC, 
particularly in the setting of resistance to abiraterone and 
enzalutamide.

The canonical AR-FL

In a normal male genome, there is only one copy of the AR 
gene located on Xq11-12. The AR gene is considered the most 
important gene in prostate cancer. The AR-FL cDNA was 
first cloned in 1988 (17). Structurally AR-FL resembles other 
nuclear receptors, containing a highly conserved DNA 
binding domain (DBD) encoded by Exon 2/3, a ligand 
binding domain (LBD) encoded by Exon 4-8 at C-terminus 

Figure 1 Decoding the androgen receptor splice variant transcripts. (A) AR gene structure with canonical and cryptic exon splice junctions 
marked according to GRCh37/hg19 human genome seqeunces (not drawn to scale); (B) Nomenclature, functional annotation, exon 
compositions, and variant-specific mRNA (color matched to Figure 1A) and peptide sequences (in gray).
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with lower sequence homology, a poorly conserved 
N-terminal domain (NTD) encoded by Exon 1, as well as 
a hinge region encoded by Exon 3/4 (18). Unique to AR, 
it has a long NTD domain (~538 amino acids) harboring 
two transactivating regions, termed transcription activation 
unit 1 (TAU1) and 5 (TAU5), that are indispensible for AR 
activation (19).

Earlier reports of AR splice variants: AR45 and 
AR23

In 2005, a NTD-truncated AR isoform with a deduced 
molecular weight around 45 kDa (so called AR45) was 
discovered by 5' rapid amplification of cDNA ends  
(5' RACE) from human placenta RNA (20). AR45 contains 
an intact DBD, hinge region, LBD, and a novel seven amino-
acid long N-terminal peptide encoded by the novel exon 
1b located ~22.1 kb downstream of AR exon 1 (Figure 1).  
The AR45 mRNA was found mainly in heart but also 
detected in skeletal muscle, uterus, prostate, breast, and 
lung (20). Exogeneously expressed AR45 did not stimulate 
the transactivation of androgen response element (ARE)-
luciferase reporter in the presence of ligand. AR45 was 
proposed as a dominant negative AR that suppresses the 
function of AR-FL (20). In 2007, another AR splice variant, 
named AR23, was identified from a CRPC bone metastasis 
specimen (21). AR23 resulted from aberrant splicing of a 
69 bp intron 2 sequence (corresponding to 23-amino acid 
residues), leading to in-frame insertion of a 23-amino acid 
sequence between two zinc fingers of the DBD (Figure 1). 
The genomic function of AR23 was not established because 
it does not translocate to the nucleus upon ligand binding, 
though cytoplasmic AR23 was partially active in androgen-
responsive promoter reporter assays (21).

AR Splice variants lacking LBD due to splicing 
of cryptic exons

AR splice variants drew more attention since 2008 primarily 
due to the discovery of a number of variants that lack LBD. 
Such variants have the potential to mediate constitutively 
active AR function, on the basis of earlier in vitro studies on 
AR deletion constructs generated in the laboratory (22). In 
2008, Dehm et al. performed 3' RACE with primers anchored 
at exon 1 and identified a new exon (termed exon 2b)  
37 kb downstream of exon 2, in the CWR22Rv1 cell line 
that demonstrated ligand-independent AR activity (23).  
Splicing of exon 2b yielded two novel C-terminally 

truncated AR variants, AR1/2/2b and AR1/2/3/2b (23). 
Due to the presence of stop codons in exon 2b, LBD was 
replaced by the variant-specific 11-aa peptide encoded 
by exon 2b. Both variants demonstrated constitutively 
active AR function by in vitro luciferase reporter assays. 
AR1/2/2b also lacks the second zinc finger of the DBD, 
while AR1/2/3/2b retains the entire DBD. Because the 
transcript structure of AR1/2/3/2b was explained by a 
duplicated DNA sequence unique to CWR22Rv1 cells (24), 
this variant was thought to be specific to this cell line. In 
contrast, AR1/2/2b was more commonly found in other 
PCa cell lines, including VCaP, LNCaP, and LAPC4, as 
well as PCa xenografts (23). 

In 2009, Hu et al. reported the identification of more AR 
cryptic exons in both cell lines and clinical specimens (25).  
Using a strategy combining exhaustive analysis of 
expressed sequence tags mapped to the human AR locus 
and experimental cloning to determine the precise splice 
junctions, Hu et al. identified three cryptic exons named 
CE1, CE2, and CE3 in intron 3, and CE4, identical to 
exon 2b (23) discovered by Dehm et al. (25). Splicing 
of the cryptic exons generated seven AR splice variants 
(named AR-V1 to AR-V7) (Figure 1), all lacking LBD 
due to stop codons present in the transcribed “intronic” 
sequences (i.e., cryptic exons). Among these, AR-V1 and 
AR-V7 were readily detectable in clinical prostate cancer 
specimens, with ~20-fold higher levels detected in CRPC 
specimens compared to hormone naïve prostate tumors. 
Importantly, a variant-specific antibody was developed 
for AR-V7, and used to detect the translated product of 
AR-V7 in prostate cancer cell lines and xenografts. Both 
PSA reporter assays and expression microarray analysis 
confirmed that AR-V7 was constitutively active in driving 
expression of canonical androgen-responsive genes (e.g., 
KLK3, KLK2, and NKX3.1) in an androgen-independent 
manner (25).

Guo et al. reported the discovery of LBD-truncated 
variants AR3, AR4, and AR5 using 3' RACE in 2009 (26). 
AR3, AR4, and AR5 contained coding sequences identical 
to those in AR-V7, AR-V1, and AR-V4, respectively.  
A variant-specific polyclonal antibody was also developed 
for AR3 (AR-V7), and used to detect protein expression 
in both hormone naïve and CRPC specimens.  In 
addition, knockdown of AR3 in CWR22Rv1/CWR-R1 
cells revealed a set of 117 genes that were preferentially 
regulated by AR3 (26). This study also reported the 
cloning of multiple additional variants that were not 
further characterized. 
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AR splice variants discovered by other 
approaches

Combining 3' RACE with next generation sequencing, 
Watson et al. not only confirmed the known AR-V1 and  
AR-V7, but also found 4 more AR splice variants named  
AR-V8 to AR-V11 (27) (Figure 1). This experiment was 
carried out in the VCaP cells, a prostate cancer cell line 
derived from vertebral metastatic lesion of a CRPC patient 
(27,28) that was shown to express the AR-V7 protein (25). 
These four new AR variants show splicing junctions 
between exon 3 and different regions of intron 3, with the 
predicted AR variant proteins truncated after AR DBD 
with 10-39 amino acid extension before the stop codon 
(Figure 1). Using VCaP xenograft in SCID mice, Watson 
et al. found that AR-Vs (AR-V7 and AR-V1) and AR-FL 
were upregulated by castration in both mRNA and protein 
levels, while re-administration of testosterone suppressed 
the expression of both AR-FL and AR-V7 in VCaP cells. 
Similar regulation of AR-FL and AR-Vs by androgens was 
also demonstrated in LuCaP35 xenografts with modest 
variation. However, only AR-V7, but not AR-V1, conferred 
gain-of-function on accelerating the LNCaP xenograft 
growth in castrated mice and colony formation in soft-agar 
assay (27).

More recently, Hu et al. employed a modified RNA 
amplification method, termed selective linear amplification of 
sense RNA (SLASR), for unbiased detection of transcribed AR 
sequences using arrayed 60-mer probes tiled across the human 
AR gene locus, directly in clinical CRPC specimens (29).  
This study provided a snapshot of the expression peaks along 
genomic sequences downstream of AR exon 3 and identified 
3 new variants named AR-V12 to AR-V14 (Figure 1).  
Importantly, this study revealed expression peaks within 
intron 3 as well as sequences further downstream of exon 8 
(named exon 9). These previously unappreciated expressed 
sequences have the potential to participate in AR splicing. 
One example is AR-V12 (Figure 1), which has the same 
open reading frame with ARv567es (see below) but contained 
untranslated sequences mapped to exon 9.

ARv567es and AR8

Sun et al. investigated the AR isoforms in a panel of 25 LuCaP  
prostate cancer xenografts (30). With a primer set anchored 
on exons 2 and 8 in RT-PCR, a short AR transcript 
spanning exon 2 to 8 was discovered. Sequencing revealed 
a novel AR variant arising from skipping of exons 5 to 

7 while retaining the full sequence of exons 1 to 4 and 
exon 8. This new variant is named ARv567es (30). This exon 
combination (1/2/3/4/8) shifts the open reading frame 
(ORF) of ARv567es to an early stop codon just after the first 
29 nucleotides of exon 8 (Figure 1). ARv567es is unique in 
that it retains the full hinge domain encoded by part of 
exons 3 and 4. The AR hinge domain contained important 
sequences for AR localization and activity (31). Similar 
to AR-V7, ARv567es activates androgen-responsive genes 
(such as KLK3, TMPRSS2, and NKX3.1) in a hormone-
independent manner when ectopically expressed in LNCaP 
cells (30). The coding sequence for ARv567es is identical to 
AR-V12, which is encoded by a transcript containing exons 
1/2/3/4/8/9 as later reported in Hu et al. (29) (Figure 1).  
However, more in-depth studies of ARv567es have been 
hampered by lack of a variant-specific antibody, as well 
as lack of suitable sequences to target for variant-specific 
knockdown that is an important tool to determine protein 
translation and function.

In CWR-R1 cells, Yang et al. identified a membrane-
associated AR variant, named AR8 by RACE (32). Using 
an alternative splicing acceptor site 186 bp upstream of 
exon 3, the deduced protein of AR8 (Exon1-3'-3-3b/
CE3) contained 33 unique amino acids after the NTD 
domain. Higher expression level of AR8 was detected in 
castration-resistant cell lines (C4-2, C4-2B, CWR22Rv1). 
This C-terminal truncated AR-V has no DBD or LBD and 
no transactivating function in ARE-luciferace reporter assay. 
Possibly due to palmitoylation of two cysteine residues within 
its unique C-terminal sequence, this protein was found 
mainly in plasma membrane when overexpressed in COS-1 
cells or PCa cells (LNCaP and CWR-R1). Membrane-bound 
AR8 complexes with AR-FL and EGFR and may serve as a 
mediator in Src-induced AR activation (32).

Nuclear localization of AR splice variants

A prerequisite for AR to exert its genomic function is to 
enter the nucleus. Upon androgen binding to LBD, AR-FL  
exposes a nuclear localization signal (NLS) within 
C-terminal end (CTE) of DBD and hinge region to interact 
with importin proteins for translocation through the nuclear 
pore complex (33). A canonical bipartite nuclear localization 
signal (NLS) was mapped at the junction of DBD and 
the hinge region (amino acid 617-RKCYEAGMTLG-- 
ARKLKK-633) (34). With the exception of AR-12/
ARv567es, other AR isoforms may have variable capability in 
nuclear import due to loss of NLS. Evidence provided by 
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immunofluorescent staining supports constitutive nuclear 
localization of AR-V7/AR3 and AR-12/ARv567es in the 
absence of androgens, while AR-V1, AR-V9, and AR-V13  
are mainly cytoplasmic (25,27,29,30), possibly due to 
lack of basic amino acids characteristic of the bipartite 
nuclear localization sequence (NLS) (35). Interestingly, 
genomic functions of AR-Vs do not always parallel to 
their localization. For example, AR-V1 and AR-V9 
showed ligand-independent activity in LNCaP cells 
but not in PC-3 cells (29). Such variants were termed 
“conditionally active” variants (29), to differentiate them 
from constitutively active variants (see below), because 
their functions are conditional on the cellular context.  
To further understand the nuclear transport of AR-V7 
and its relation with AR-V transcriptional function, Chan  
et al. showed that part of its unique sequence at C-terminus 
(aa 628-EKFRVGNCKHLKMTRP-643) resembles the 
truncated bipartite AR NLS. Mutation of amino acid 
residues K629 and R631 to alanine in AR-V7 shifted its 
expression from predominantly nuclear to a mixed nuclear/
cytoplasmic pattern; while alanine mutation at K636 or 
K639 had no effect on nuclear localization of AR-V7 (36). 

Diverse and cell-specific functions of AR splice 
variants

Among the AR-Vs listed in Figure 1, AR-V7 (also named 
AR3) and ARv567es have received more attention due to 
their unequivocal constitutively active nuclear functions 
(25,26,30). Both AR-Vs activate transcription of canonical 
AR-FL target genes when overexpressed in cell lines with or 
without activated AR-FL. Other AR-Vs may be conditionally 
active, i.e., their transcriptional activities are cell type-
specific (37). For example, AR-V1 and AR-V9 demonstrated 
transcriptional activity when introduced in AR-FL positive 
LNCaP cells but not in the AR-FL negative PC-3 cells (37).  
It is possible that the conditional activity of AR-V1 and  
AR-V9 may require nuclear localization that was not readily 
detected by immunofluorescence. Previous studies showed 
androgen receptor (AR) deletion mutants that retain a 
partially truncated LBD did not have constitutive activity 
(22,35,38). Hu et al. demonstrated examples of inactive 
AR splice variants that retain a partially truncated LBD, 
including AR-V13 and AR-V14 (37) (Figure 1).

Expression levels of AR-V7 are dramatically increased 
after suppression of AR-FL signaling by androgen 
depletion,  AR-FL knockdown, or treatment with 
enzalutamide in VCaP cells and LNCaP95 cells but not in 

LNCaP and CWR22Rv1 cells, suggesting that in addition 
to cell-context specific functions of AR splice variants, the 
regulation of AR variant levels may also depend on a specific 
cellular context (39). 

Molecular origin of AR splice variants

In clinical specimens, AR splice variants coexist with  
AR-FL, and the expression levels of individual AR variants 
almost always constitute a small fraction of the expression 
level of AR-FL (25,27). In addition, AR splice variants are 
also expressed in benign prostate epithelium (25,30), again 
at a much lower level relative to AR-FL. AR-FL is often 
overexpressed in CRPC due to AR gene amplification 
(40,41) or other genomic changes (42). In addition, elevated 
AR expression in CRPC may involve AR self regulation. Cai 
et al. showed that lysine-specific demethylation-1 (LSD-1) 
was recruited to AREs in intron 2 of the AR gene and acts 
as a repressor when AR-FL was activated. This recruitment 
was abolished when androgen was depleted (43). It is 
therefore possible that expression of AR splice variants are 
generally coupled with the transcriptional output from the 
AR gene locus (44). Supporting this possibility, AR variant 
levels were downregulated by testosterone replacement 
in castrated mice in parallel with a decrease of AR-FL in 
VCaP and LuCaP35 xenografts (27). In cell line models 
(VCaP and LNCaP95) with higher levels of AR-FL and low 
levels of AR variants, suppression of AR-FL signaling by 
enzalutamide resulted in an unequivocal increase of AR-V7,  
and a relatively moderate increase of AR-FL (39). In 
addition, increased expression of AR-FL, AR-V7 and ARv567es 
was also observed in castration-resistant LuCaP xenograft 
(LuCaP23CR and LuCaP35CR) when AR-FL signaling 
was inhibited by abiraterone (45). Thus, although AR-V 
expression may not strictly parallel that of AR-FL, and the 
magnitude of AR-V mRNA increase is generally greater than 
that of AR-FL in CRPC and in experimental models (39),  
AR-V expression is strongly coupled with AR-FL 
expression.

In some cell line and xenograft models (e.g., CWR22 
and LuCaP86.2), AR intragenic rearrangement or deletions 
may be responsible for high AR variant expression. In 
CWR22Rv1 cells, an intragenic copy number increase 
occurred in an approximately 35-kb AR genomic segment 
between introns 2 and 3, with the rearranged segment 
flanked by long interspersed nuclear element (5'-LINE-1 
and 3'-LINE-1) (46). To further investigate the association 
of focal imbalance of the AR gene and AR variant expression, 
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Li et al. demonstrated a complex pattern of focal copy 
number imbalance with or without AR gene amplification. 
In LuCaP 86.2 xenograft cells, an 8579-bp deletion of AR 
exons 5, 6, and 7 may be responsible for the high level of 
ARv567es variant expression (47). The extent to which similar 
genomic alterations contribute to the generation of AR 
splice variants in clinical specimens remains unclear.

Detection of AR splice variants in clinical 
specimens

The majority of AR-Vs listed in Figure 1 can be detected 
in prostate cancer tissue specimens by RT-PCR (25-27, 
32,37). Alternatively spliced transcripts containing premature 
stop codons may be degraded through the nonsense-mediated 
decay (NMD) mechanism (48). Therefore it is also critical to 
demonstrate protein expression by detecting the corresponding 
variant protein product in order to draw functional 
relevance. Variant-specific antibodies have been reported 
for AR-V7 (AR3) (25,26), AR8 (49), and AR1/2/2b (50).  
In all these efforts, the variant-specific c-terminal peptides 
were used (Figure 1) as antigens. Among these, AR-V7/
AR3 remains the only AR splice variant with a proven 
protein product that can be detected in clinical specimens 
using variant-specific antibodies (25,26,39), including 
a monoclonal antibody to AR-V7 (39). An alternative 
approach to detect the potential existence of LBD-truncated 
AR variants is to combine data obtained using antibodies 
recognizing AR-NTD and AR-LBD, respectively.  
For example, Zhang et al. showed a wide distribution of 
the AR-NTD/LBD ratio in clinical CRPC specimens (51).  
Higher ratios of NTD/LBD were detected in more 
aggressive tumors. However, this approach is based on 
the assumption that excess AR-NTD detected in CRPC 
specimens originated from the expression of AR-Vs.

Genomic functions of AR splice variants

A key question in relation to the genomic functions 
of AR splice variants is whether they active the same 
transcriptional programs directed by AR-FL. Hu et al. 
showed data suggesting that endogenously induced AR 
variants are not sufficient to “rescue” the suppressed 
AR-FL, when a set of canonical AR-FL target genes are 
evaluated (39). Instead, increased expression of AR variant 
paralleled the increased expression of cell cycle genes, and 
forced expression of both AR-V7 and ARv567ES induced the 
same set of cell cycle genes in both the presence of absence 

of canonical AR-FL signaling (39). Li et al. performed gene 
expression profiling in rearrangement-driven AR-V positive 
cells following specific knockdown of the AR-FL and AR-Vs  
to differentiate genes activated by the two different receptor 
molecules (52). AR-V-dependent cell cycle genes were found 
to demonstrate a biphasic response. They were induced 
at low AR-V levels but repressed when higher AR-Vs  
were expressed in the cells. This observation mirrors the 
canonical biphasic androgen-stimulated (i.e., AR-FL-
mediated) growth response observed in cell line models. 
The findings suggest that AR-V expression reactivates and 
restores the AR-FL transcriptional programs, rather than by 
targeting a unique set of genes. These seemingly opposing 
findings may be explained by cell-context differences as well 
as the different methodologies used in the studies. More 
in-depth analysis will address cell-context specific genomic 
functions mediated by the AR splice variants.

Future directions and priorities

In spite of intense interest in the putative role of AR splice 
variants in CRPC and the years that have elapsed since 
their discovery and characterization, the field is still in 
infancy and investigations encompassing the full spectrum 
of mechanistic characterization and clinical translation are 
still at a nascent stage. Successful clinical development of 
abiraterone and enzalutamide (14-16), both intended to 
target the AR LBD (which is missing in AR-Vs), is directly 
driven by laboratory mechanistic studies establishing 
intra-tumoral androgens and AR protein overexpression 
as the key molecular determinants of CRPC (2). Thus we 
envision that mechanistic studies dissecting the genomic 
functions of different AR molecules will facilitate efforts 
in developing new therapies to overcome resistance to 
abiraterone and enzalutamide. Given the expanded clinical 
use of abiraterone and enzalutamide, there is an urgent need 
to dissect the various putative mechanisms of resistance 
to these new, more potent inhibitors of AR-FL signaling. 
Although AR splice variants provide a biologically plausible 
explanation for therapeutic resistance, the concept has 
not been validated in clinical specimens due to the recent 
approval of the two new agents, and consequently lack of 
sufficient number of relevant specimens collected from 
treated patients. Nevertheless, the discovery of AR splice 
variants has already stimulated efforts to develop novel 
agents that target all AR molecules to overcome resistance 
(53-64). Further conceptual advances in the field will 
provide a sustained impetus for such efforts.
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