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Introduction

Hypogonadism is defined by the Endocrine Society as 
a testosterone level <300 ng/dL and is accompanied 
by associated symptoms,  such as  low energy and 
impaired libido (1). Testosterone therapy (TRT) is an 
effective treatment option that ameliorates symptoms of 
hypogonadism. Exogenous testosterone, however, can 
impair spermatogenesis by disrupting the hypothalamic-
pituitary-gonadal (HPG) axis. This adverse effect makes 
testosterone therapy challenging in men who wish to have 
children. The Endocrine Society recommends against TRT 
in men planning fertility in the near term (1). 

Fortunately, strategies exist that can mitigate the risk 
of developing infertility associated with TRT. Some 
therapeutic strategies may even enhance the fertility 
potential of men with certain diagnoses. This article reviews 
the current medical therapies that preserve spermatogenesis 
when TRT is indicated, highlights the re-emerging concept 
of HPG axis reset in hypergonadotrophic, hypogonadal 

infertile men planning sperm retrieval procedures, and 
presents our hypothesis for a novel protocol in the 
optimization of hypergonadotrophic hypogonadal infertile 
men.

 

Methods

A literature review was performed in MEDLINE using the 
terms infertility, hypogonadism, testosterone, luteinizing 
hormone, and follicle stimulating hormone. Both basic and 
clinical studies were included.

Physiology of the HPG axis

Male fertility and proper functioning of the HPG axis 
are closely intertwined. Spermatogenesis depends on the 
pulsatile release of gonadotropins, follicle stimulating 
hormone (FSH), and luteinizing hormone (LH), from 
the pituitary, and their action on their cells in the testis. 
FSH signals to FSH receptors (FSHR) on Sertoli cells 
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to initiate spermatogenesis, whereas LH signals to LH 
receptors (LHR) on Leydig cells to produce intratesticular 
testosterone (2). The qualitative and quantitative integrity 
of these receptors plays an equally significant role in the 
regulation of spermatogenesis. Unsurprisingly, inactivating 
mutations of the FSHR and LHR results in impaired 
fertility (3,4). However, gonadotrophic overstimulation 
can also have a detrimental effect on spermatogenesis by 
downregulating the expression of LHR and FSHR (5). 
This effect may explain the clinical observations of Ross 
et al., who observed a reversible decline in sperm motility 
following high dose administration of selective estrogen 
receptor modulators (SERMs), which function by increasing 
the gonadotropin levels (6).

High intratesticular testosterone (ITT) levels maintain 
the spermatogenic process and prevent germ cell death (7).  
Low ITT levels result in an impaired blood-testis barrier 
permitting immune cells to enter the seminiferous 
tubules and attack autoantigenic germ cells [reviewed by 
Walker (8)]. Low intratesticular testosterone levels also 
block the conversion of round spermatids to elongating 
spermatogonia and prevent spermiation, leading to 
phagocytosis of spermatids by Sertoli cells (8,9).

It is well established that exogenous testosterone 
therapy causes azoospermia in the majority of men (10). 
Exogenous testosterone’s contraceptive effect occurs 
through its suppression of the HPG axis, preventing LH 
and FSH release and their respective gonadal functions (11). 
Studies examining the reproductive outcomes and rates of 
azoospermia development of various testosterone treatment 
modalities show less detrimental effects with testosterone 
patches [24% rate of azoospermia (12)] compared to 
intramuscular injections of testosterone enanthate, which 
result in up to an 98% rate of combined azoospermia and 
oligozoospermia (≤3 million/cc) after 1 year of therapy (13). 

In a male contraceptive study, Coviello et al. followed 
seven healthy men with serum hormone assessments and 
percutaneous testicular aspirates to assess intratesticular 
hormone levels (14). They showed a 98% suppression 
of LH, 97% suppression of FSH, and 93% suppression 
of intratesticular androgenic bioactivity levels following 
weekly administrations of intramuscular testosterone 
enanthate (TE) 100 mg with levonorgestrel over a 6-month 
treatment period compared to baseline. Levonorgestrel 
was administered to suppress the HPG axis further. One 
subject failed to suppress spermatogenesis with a nadir 
sperm count of 3.4 mill/mL despite a reduction in his ITT 
level from 1,607 to 29 nmol/L (98% reduction). This study 

demonstrates the heterogeneity in TRT’s contraceptive 
effect and the variability in intratesticular testosterone 
levels necessary for spermatogenesis to occur. Conversely, 
recovery of the HPG axis function following testosterone 
therapy cessation is possible but can take between 110 days 
and 2 years (15,16). 

Strategies to preserve fertility when testosterone therapy 
cannot be stopped 

Hypogonadal  men des ir ing fert i l i ty  can become 
symptomatic beyond the capacity of current non-TRT 
medical therapies [see review by McBride and Coward (17) 
for non-TRT medical therapy]. Fertility can be maintained 
and potentially improved by the combination of exogenous 
testosterone therapy and adjunctive therapies to preserve 
spermatogenesis. Fertility data is available for the use of 
concomitant use of human chorionic gonadotropin (HCG) 
and aromatase inhibitor (AI) therapy with TRT. Below 
is evidence supporting the use of HCG, SERMs, and AI 
therapy.

HCG 

HCG is a heterodimeric glycoprotein and an LH analog 
that binds to the LH receptor [also known as the luteinizing 
hormone/choriogonadotropin receptor (LHCGR)] 
to induce steroidogenesis. In studies comparing the 
intracellular effects of LH and HCG activation of the 
LHCGR (18,19), HCG activation results in significantly 
higher cyclic adenosine-monophosphate (cAMP) levels, 
promoting anti-apoptotic and proliferative cell signaling 
events. However, there was no significant difference in 
testosterone production between the two gonadotropins, 
HCG and LH, in a murine Leydig cell model (18). 

Due to its ability to stimulate Leydig cells independent 
of the HPG axis, HCG has been used as an adjunct therapy 
in men receiving testosterone supplementation who wish 
to preserve spermatogenesis. Coviello et al. (20) showed 
increasing doses of HCG administered concomitant with 
200 mg TE intramuscular injections in 29 healthy, and 
eugonadal men resulted in dose-dependent increases in the 
ITT levels. The men that were given TE and HCG 500 
international units (IU) every other day had a 26% increase 
in their ITT levels over their baseline. Studies examining 
the ITT levels with high dose HCG are lacking. 

In addition to maintaining ITT, low-dose HCG can 
preserve semen parameters in men on TRT. This was shown 
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by Hsieh et al. (21) in a retrospective review of 26 men on 
testosterone replacement who were also given HCG 500 
IU every other day. At 1 year, none of the patients became 
azoospermic, and no difference was observed in the semen 
volume, sperm density, or motility. This stability in semen 
parameters was not seen in an earlier study by Matsumoto 
and Bremmer (22), who followed four men administered 
200 mg TE and 5,000 IU three times weekly. Men on 
combination therapy with high-dose HCG showed a 
decrease in ejaculated sperm concentration from a mean (± 
SEM) concentration of 79 (±7) million sperm/mL to 25 (±4) 
million sperm/mL after 6 months of combination therapy. 

Selective estrogen receptor modulators and aromatase 
inhibitors

SERMs and AI exert their action by inhibiting the negative 
feedback of estrogen on the hypothalamus and the 
anterior pituitary gland leading to increased LH and FSH 
production. 

Among the SERMs, clomiphene citrate (CC) and 
tamoxifen citrate are commonly used for male patients with 
hypogonadal symptoms as monotherapy or in combination 
with HCG. To our knowledge, no studies are assessing the 
reproductive outcomes of SERMs given in conjunction 
with TRT. Therefore, it is unknown if central estrogen 
inhibition is enough to overcome the HPG suppression of 
TRT. 

AI blocks the conversion of testosterone to estradiol 
by the enzyme aromatase. Commonly used AI for 
hypogonadism and male fertility include letrozole and 
anastrozole. While AI use is well established as monotherapy 
in hypogonadal men [reviewed by Tan et al. (23)], data 
supporting the use of AI and TRT is less rigorous. In a 
cohort of ten patients with Klinefelter syndrome, Mehta  
et al. (24) showed a 70% surgical sperm retrieval rate in men 
given topical testosterone therapy with a goal testosterone of 
>400 ng/dL combined with 1 mg of anastrozole daily. 

Few studies have examined the impact of combined 
testosterone therapy and AI on the HPG axis. Saki et al. (25)  
studied bone mineral density and HPG axis response in 
a four-arm sham-controlled study that compared control 
rats to orchiectomized rats that were given either given 
no additional therapy vs. TE intramuscular injections vs. 
TE and letrozole. The sham-control rats had LH values 
of 0.5±0.12 mIU/mL, orchiectomized rats given TE had 
LH-suppression with LH values of 0.21±0.16 mIU/mL, 
and orchiectomized rats given TE and letrozole had LH 

values of 0.45±0.45 mIU/mL. These results suggest the 
potential for HPG stimulation with AI despite testosterone 
suppression. However, it is unclear if TRT+AI therapy 
can achieve enough HPG stimulation to maintain 
spermatogenesis. 

Nasal testosterone

While it is known that testosterone pellets, intramuscular, 
and transdermal testosterone have detrimental effects 
on the HPG axis and spermatogenesis, newer modes of 
testosterone delivery may yield different results. Unique 
to nasal testosterone gel is its short half-life of only 10– 
100 minutes and its lack of pituitary gonadotropin 
suppression. This allows nasal testosterone to normalize 
androgen levels while maintaining baseline LH and 
FSH levels (26,27). Masterson et al. (28) explored nasal 
testosterone’s effects on semen parameters as part of a 
phase IV clinical trial. Seventeen reproductive-aged men 
(mean age 35) received nasal testosterone three times 
daily. They had reproductive hormone measurements 
and semen analyses at baseline and intervals of 1 month, 
3 months, and 6 months. Fifteen of the 17 enrolled men 
reached a 1-month follow-up, six reached a 3-month 
follow-up, and five reached a 6-month follow-up. The 
authors determined that after 1 month, 93% (14/15) 
of the men achieved eugonadal testosterone levels  
(>300 ng/dL) with a median value of 423 ng/dL. For the 
men who reached the 3-month interval, the median total 
motile sperm count (TMSC) decreased from 37.5 to 
24.8 million. However, at 6 months, the median TMSC 
increased to 32.5 million. Additionally, they observed 
no statistically significant change in LH and FSH levels 
throughout the trial (27). While this preliminary data is 
promising, more significant and longer-term studies are 
needed to confirm these findings.

HPG axis reset—a new tool in our armamentarium?

Among men with hypergonadotrophic, hypogonadal non-
obstructive azoospermic (NOA) men, excess gonadotropin 
exposure carries the potential for desensitizing Leydig and 
Sertoli cells (5). This is believed to occur due to a decreased 
responsiveness of LH and FSH-responsive adenylyl cyclase 
following hyperstimulation. Increased cAMP catabolism 
due to FSH stimulated phosphodiesterase activity results 
in a refractory period for Sertoli cells (29,30). Thus, a 
therapeutic dilemma with these men is the limited number 
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of options to improve the intratesticular testosterone before 
sperm search operations mixed with the potential for a 
detrimental effect of gonadotropins on Sertoli and Leydig 
cells. Emerging evidence has provided a potentially novel 
protocol for improving spermatogenesis in infertile men 
with hypergonadotrophic, hypogonadal NOA.

Among female infertility patients, controlled ovarian 
hyperstimulation (COH) protocols exist to improve the 
response rate of women who respond poorly to in vitro 
fertilization (IVF) hormonal regimens, including the 
administration of estradiol patches and manipulation of 
the HPG axis with gonadotropins (31). COH protocols 
incorporate transdermal estradiol and GnRH-a in the luteal 
phase, followed by the administration of gonadotropins 
in the follicular phase to optimize the follicular hormonal 
milieu and antral follicle responsiveness. This protocol 
addresses the idea that individual follicles may have 
increased innate FSH receptor sensitivity, allowing for 
an increased response to a low rise in FSH in the early 
luteal phase. Thus, these follicles may demonstrate 
greater responsiveness to exogenous gonadotropins in 
the subsequent follicular phase leading to heterogeneity 
and unsynchronized follicular maturation before oocyte  
retrieval (32). The COH protocol utilizes early FSH 
suppression with estradiol and GNRH-a to counteract 
the innate FSH receptor sensitivity of individual follicles 
allowing for more synchronized follicular maturation 
and decreased heterogeneity after hyperstimulation with 
gonadotropins in the follicular phase (33). Clinically, this 
resulted in a significantly reduced number of canceled IVF 
cycles and improved considerably the number of oocytes 
retrieved and embryos transferred (31).

A similar protocol can be employed in men via HPG 
axis suppression and reactivation in a more controlled, 
pulsatile manner. In 2018, Hu et al. (34) investigated the 
effects of suppressing endogenous gonadotropins with 
GNRHα (Goserelin) and replacing them with exogenous 
gonadotropins in idiopathic NOA men. A total of 35 men 
were enrolled who had failed testicular sperm extraction 
(TESE). There were 10 men in a control group and 25 
men in a group that received 150 IU of human menopausal 
gonadotropins (hMG) twice weekly and 2,000 IU of HCG 
therapy once weekly after HPG suppression. Ultrasound 
assessed the testicular volume and hormone levels were 
followed. An inhibin rise was seen in 11 of 25 patients 
after 4 weeks on the gonadotropin therapy; however, this 
rise was sustained in only five patients at 20 weeks. Among 
these five men, one recovered sperm in their ejaculate at 
a concentration of 1.42×106/mL and another had sperm 
found on repeat TESE. 

Additional evidence for HPG axis reset: an independent 
case series

Other case reports come from a review of the corresponding 
author’s patients, including two patients with non-mosaic 
Klinefelter syndrome (47 XXY) and a third patient with 
idiopathic infertility who were all hypergonadotrophic, 
hypogonadal, and azoospermic on at least two semen 
analyses. In preparation for microsurgical testicular 
sperm extraction (microTESE), all three patients were 
symptomatic from their hypogonadism (Table 1). The two 
men with non-mosaic Klinefelter syndrome showed pre-
treatment testosterone (ng/dL) and FSH (mIU/mL) levels 

Table 1 Demographics and the impact of HPG axis reset on perioperative hormone levels and microsurgical sperm recovery

Patient AGE Dx
Baseline 
T (ng/dL)

Pre TRT 
FSH  

(mIU/mL)

Pre TRT 
LH  

(mIU/mL)

Duration of 
HPG axis 

reset

Prior 
sperm 

retrieval

Pre 
mTESE 

FSH 
(mIU/mL)

Pre 
mTESE 

LH  
(mIU/mL)

Pre 
mTESE 

T  
(ng/dL)

Pre 
mTESE 

inhibin B 
(pg/mL)

Outcome  
of mTESE

iVF  
outcome

1 30 KS 150 21.8 25.9 10 Months none 2.6 0.6 582 <10 + SPERM;  
3 sperm

1 failed FET

2 33 KS 120 56.6 54.5 8 weeks (−) 
mTESE

1.1 Not avail Not 
avail

<10 + round 
spermatids; 

3 seen

Not 
attempted

3 36 Idiopathic 128 18.8 13.7 4 months None Not avail 7.1 352 <7 + sperm;  
3/HPF

10 eggs 
fertilized, 

arrested at  
8 cell stage
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of 120–150 ng/dL and 21.8–56.6, respectively. Following 
the administration of TE 200 mg/mL per week and 3000 IU  
of HCG three times weekly for a minimum of 6 weeks, FSH 
levels for the 47XXY men decreased to 1.1–2.6 mIU/mL 
and testosterone levels rose to >300 ng/dL in both patients. 
The third patient’s pre- and post-treatment LH (mIU/mL) 
levels decreased from 13.7 to 7.1. Pre-treatment FSH levels 
were 18.8 mIU/mL; however, post-treatment FSH levels 
were not available. All patients were found to have sperm 
on microsurgical TESE (Figure 1). In vitro, fertilization was 
attempted for one patient with Klinefelter syndrome which 
resulted in an unsuccessful fresh embryo transfer despite high 
grade embryos (blastocyst stage - 2AA). From this IVF cycle, 
30 oocytes were retrieved, 2 high-quality embryos were 
formed, and one was transferred. The second high-quality 
embryo was a cryopreserved pending repeat transfer. No IVF 
cycles have been attempted for the second or third patient.

One explanation for the successful sperm retrieval 
in these patients is the suppression of gonadotropins to 
more physiologic levels (<10 mIU/mL). Perhaps a further 
reduction of gonadotropins to undetectable levels may not 
have yielded the same outcome. 

While this case series of three patients is small, it 
is the first report of TRT used to enhance the fertility 
potential of hypergonadotrophic, hypogonadal NOA men 
who previously had no effective strategy for hormonal 
optimization before their sperm retrieval. The observations 
made permit expression of a hypothesis that needs further 
investigation and validation. 

Conclusions

Keeping men on TRT fertile has proven to be difficult 

for male fertility specialists. When the option of avoiding 
testosterone with alternative therapies, such as clomiphene 
citrate, aromatase inhibitors, and human chorionic 
gonadotropin, is not possible, some strategies can mitigate 
the negative impact of TRT on spermatogenesis. It 
is important to note that these therapies are not well 
established, possess limitations in their applicability, and 
carry side effects. 

Novel methods of treating hypogonadal symptoms and 
keeping men fertile include the use of nasal testosterone 
and resetting the HPG axis with TRT and controlled 
administration of HCG. While preliminary results 
suggest that these methods may increase success for 
fertility treatments, more extensive research is needed to 
demonstrate the efficacy and safety of these therapies. The 
most recent evidence provides hope for the future of male 
fertility in patients that require TRT.
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