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Background: Growing evidence has shown that genetic or epigenetic alterations are highly involved in the 
initiation and progression of renal cell carcinoma (RCC). This study aimed to find prognostic methylation 
markers in clear cell RCC (ccRCC). 
Methods: In this study, we developed and confirmed an integrated and comprehensive methylation 
signature by integrating DNA methylation, gene expression, and The Cancer Genome Atlas (TCGA) 
survival data. First, the methylation signature was found and checked based on data analysis of published 
datasets. Then, independent predictive factors were selected using the Cox proportional model and 
incorporated into the nomogram. Finally, the predictive nomogram was derived and validated using a 
concordance index and calibration plots.
Results: A series of differentially expressed and methylated genes were identified. After intersection 
analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis, protein-protein interaction (PPI) analysis, and correlation analysis, FCGR1A, F2, and NOD2 
were established as a predictive signature. According to the Kaplan-Meier survival analysis, the risk score 
system based on the predictive signature was able to stratify the patients into high- and low-risk groups with 
significantly different overall survival. The receiver operating characteristic (ROC) analysis further showed 
that the predictive signature yielded high sensitivity and specificity in predicting the prognosis outcome of 
ccRCC patients. Moreover, univariate and multivariate Cox regression analysis confirmed that the three-gene 
methylation signature was an independent prognostic factor in ccRCC. Finally, a nomogram comprising the 
predictive signature and several independent variables were constructed and proved to effectively predict 
ccRCC patient survival. 
Conclusions: The three-gene methylation signature was revealed to be a potential novel and independent 
adverse predictor of prognosis for ccRCC patients and may serve as a promising marker for treatment 
management and survival outcome improvement. However, substantial validation experiments are required 
to characterize the molecular background of the predictive signature.
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Introduction
 

Renal cell carcinoma (RCC) is a common renal malignancy 
that originates from renal tubular epithelial cells, accounting 
for 2–3% of all adult malignant tumors and 85−90% 
of primary malignant renal tumors (1). Clear cell RCC 
(ccRCC) is the most common subtype of RCC and accounts 
for 70% of this disease, with increasing incidence and 
mortality rates worldwide (2). The identification of accurate 
predictors of clinical outcomes is vital for the treatment 
management of ccRCC. Currently, the assessment for the 
prognosis of ccRCC is mainly based on the tumor, nodes, 
metastasis (TNM) staging system and Fuhrman grade (3). 
However, clinical outcomes among ccRCC patients with 
the same clinical stage may differ significantly, meaning that 
these systems still cannot accurately predict prognosis in 
ccRCC patients. Therefore, novel molecular biomarkers are 
urgently needed for the early detection and precise survival 
prediction for ccRCC.

  During the past few decades, genetic or epigenetic 
alterations have been recognized as playing a crucial role in 
the occurrence and development of various types of cancers 
(4,5). DNA methylation is an epigenetic modification with 
high potential in revealing cancer initiation, monitoring 
therapy response, and predicting the clinical outcome (6). 
Growing evidence suggests DNA methylation is highly 
involved in the initiation and progression of ccRCC and 
could thus serve as a useful biomarker for predicting the 
prognosis (7). Moreover, accumulating new evidence has 
revealed that a biomarker signature consisting of several 
methylated gene members may be more qualified due to 
its higher prediction power than single molecules, as it 
integrates the effect of multiple genes and accordingly 
provides a more comprehensive prediction of clinical 
behavior (8). Previous epigenetic studies have attempted to 
explore a series of frequently methylated genes in ccRCC; 
however, the classification may not be detailed enough and 
has not been sufficiently proven to allow clinicians to reach 
more informed decision-making for treatment management 
and survival outcome improvement (9).

This study therefore developed and established an 
integrated and comprehensive methylation signature with 
well-defined risk scores for ccRCC. This might serve as a 
foundation for understanding the mechanism of ccRCC 
involved in methylation and provide novel biomarkers 
for the prognosis or treatment of ccRCC. The schematic 
pipelines of this study are presented in Figure 1. We present 
the following article in accordance with the STROBE 

reporting checklist (available at http://dx.doi.org/10.21037/
tau-19-853).

Methods

Data source 

Two ccRCC gene expression profiles (GSE15641 and 
GSE53757) were downloaded from the National Center 
for Biotechnology Information (NCBI) Gene Expression 
Omnibus (GEO) repositories (http://www.ncbi.nlm.nih.
gov/geo/) (10,11). A total of 32 ccRCC tumor specimens 
and 23 adjacent normal tissues were available for 
GSE15641, while 72 pairs of ccRCC and matched normal 
tissues were included for GSE53757. The DNA methylation 
data of ccRCC (GSE70303) were also retrieved from the 
GEO database, which contained 12 pairs of ccRCC and 
matched adjacent normal tissues (12). Level 3 methylation 
and expression data, along with the corresponding clinical 
information for ccRCC patients, were obtained from The 
Cancer Genome Atlas (TCGA) database (13).

Data processing

For the gene expression data, the ‘affy’ package in the R 
language environment was applied to normalize and correct 
the expression values (14). When multiple probes annotated 
a gene symbol, the average expression value of these probes 
was then calculated to represent the expression level of this 
gene. For the methylation data, we used the probes located 
in the gene promoter region as the methylation level of the 
gene. The methylation profile data were normalized using 
quantile normalization in the R language environment, and 
then the gene promoter methylation status was evaluated 
by calculating the mean values of a given promoter 
region. Accordingly, the differentially expressed genes and 
methylated genes were identified based on the Limma 
package in R Statistical Program (15). P value <0.05 and 
|fold-change| >2 were considered as statistically significant. 
Then, a list of genes was identified by the intersection of 
the differentially expressed genes with the differentially 
methylated genes and used for further analysis. 

Functional enrichment analysis

Functional enrichment analysis was performed with 
these identified genes. In this study, the Search Tool for 
the Retrieval of Interacting Genes (STRING) database 

http://dx.doi.org/10.21037/tau-19-853
http://dx.doi.org/10.21037/tau-19-853
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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was applied. STRING is a robust database containing 
comprehensive protein-protein association data from 
functional discovery in genome-wide experimental datasets. 
STRING implements well-known classification systems, 
including Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) (16-18). Thus, the 
significantly enriched GO terms and KEGG pathways were 
identified based on STRING. The GO analysis was divided 
into 3 different levels including molecular function, cell 
component, and biological processes. P value <0.05 and 
gene count ≥2 were selected as the cut-off criteria. 

Protein-protein interaction (PPI) network analysis

To further understand the associations among the screened 
gene list and to identify more important genes, we 
performed a PPI network analysis. We first uploaded the 

gene list to the STRING database and then set up the PPI 
network with the identified genes by integrating the data 
retrieved from the STRING database. The PPI network 
was then visualized by using the Cytoscape tool. The hub 
genes were named based on combined scores (>0.7) and 
connection numbers (>8).

Correlation and prognosis analysis

Based on the Spearman’s correlation coefficient, the 
correlations between promoter methylation levels and the 
corresponding gene expression levels were investigated 
with methylation data and the matched gene expression 
data. The genes calculated with the negative correlation 
coefficient values were chosen for further analysis. After 
that, the Kaplan-Meier method with log-rank test was used 
to evaluate the correlation between the selected genes and 

Figure 1 The schematic pipeline of this study. 
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the overall survival (OS) of ccRCC patients (19,20). 

Prognostic model construction and evaluation

A prognostic gene methylation signature was constructed 
based on the genes identified from the above step. Then, 
a receiver operating characteristic (ROC) curve was 
constructed with the ratio value for each marker in the 
prognostic signature, and the area under the curve (AUC) 
was calculated for evaluating the diagnostic power of each 
marker in detecting ccRCC patients (21). A survival risk 
score model was set up to better assess the capability of 
the gene signature for predicting OS. With a median risk 
score as the cutoff, the patients were divided into 2 groups, 
including the high-risk (risk score > cutoff) groups and low-
risk groups (risk score < cutoff). Then the AUC of the ROC 
curve was applied to assess the performance of the risk 
groups. 

Univariate and multivariate Cox regression analysis

To identify whether the gene methylation signature and 
other clinical variables were independent factors in the 
survival outcome of ccRCC patients, univariate Cox 
proportional hazard analysis and multivariate Cox regression 
analysis were conducted by using the survival package in R 
language environment (22). Only the significant variables 
(P value <0.05) in the univariate model were selected to 
conduct the multivariate logistic regression analysis. 

Construction of a predictive nomogram

Finally, a prediction nomogram was constructed based on 
the significant prognostic factors of the multivariate Cox 
regression analysis by RMS package in the R Statistical 
Program (23). The calibration curve was generated to 
evaluate the calibration ability of the nomogram. The 
concordance index (C-index) was applied to evaluate 
the discriminative capacity of the nomogram (24). The 
C-index ranges from 0.5 to 1.0 and a higher C-index were 
considered to have superior discriminative capacity for 
prognosis. A C-index value ≥0.70 was suggested to possess 
an accurate prognostic prediction. Every variable in the 
nomogram was assigned a score. A risk classification system 
was developed based on the total scores of each ccRCC 
patient by using the nomogram to stratify ccRCC patients 
into 3 prognostic groups: the low-, intermediate-, and high-
risk groups. Then, the Kaplan-Meier method with log-rank 

test was used to analyze the difference in OS among the 3 
different risk groups. 

Results

Screening of differentially expressed and methylated genes

Based on the selected sample data of GSE15641, a total of 
11,507 differentially expressed genes were found between 
ccRCC tissues and normal tissues, including 10,451 up-
regulated and 1,056 down-regulated genes. For GSE53757, 
a total of 5,326 up-regulated and 6,840 down-regulated 
genes were found. We obtained 3,478 up-regulated and 
639 down-regulated genes by combining the 2 datasets. 
According to the methylation dataset, a total of 1,025 
differentially methylated genes were screened, among which 
193 were hypermethylated, and 832 were hypomethylated. 
The volcano plots for differentially expressed and 
methylated genes are plotted in Figure 2. After crosstalk, 
a total of 76 genes, including 12 hypermethylated down-
regulated and 64 hypomethylated up-regulated genes, 
were identified and selected for further analysis. The Venn 
diagrams for differentially expressed and methylated genes 
are also presented in Figure 2.

Integrative functional analysis results 

To further understand the biological functions of these 
methylation related genes, we performed an integrative 
functional enrichment analysis of those identified 76 genes. 
The results of the GO analysis are shown in Figure 3.  
At the molecular function level, the identified genes 
significantly correlated with some key molecule activity, 
including complement receptor, signaling receptor, 
and GTPase activator and binding function such as 
IgG binding, immunoglobulin binding, and chemokine 
binding. At the cell component level, these genes were 
highly associated with some critical cell structures. For the 
biological processes, the identified genes were linked with 
the regulation of various biological activities. The results 
of KEGG analysis showed that the identified genes were 
highly involved in several signaling pathways, including 
staphylococcus aureus infection, osteoclast differentiation, 
and natural killer cell-mediated cytotoxicity. 

PPI network construction and identification of hub genes

To further evaluate the associations among the identified 76 



1086 Peng et al. Methylation signature predicting survival in ccRCC

  Transl Androl Urol 2020;9(3):1082-1098 | http://dx.doi.org/10.21037/tau-19-853© Translational Andrology and Urology. All rights reserved.

genes, we established a PPI network by integrating the data 
retrieved from the STRING database. The PPI network 
from the STRING for the 76 genes was visualized by using 
the Cytoscape tool (Figure 4). Based on the combined scores 
(>0.7) and connection numbers (>8), 6 genes were identified 
as hub genes, including F2, FCGR1A, HLA-DQB2, 
LILRA2, NOD2, and PI3.

Correlation analysis and identification of signature genes 

We first explored the correlation between methylation 
levels and gene expression. Spearman’s rank coefficient 
was calculated for determining the correlation between 
the methylation and hub gene expression data. The 

results indicated that FCGR1A, F2, LILRA2, and NOD2 
correlated negatively with the level of methylation (P<0.05) 
while HLA-DQB2 and PI3 had no significant associations 
with methylation level (Figure 5). The 4 genes negatively 
associated with methylation levels were selected for further 
analysis. 

To identify the selected 4 genes which would be 
potentially related to the OS of ccRCC patients, the 
Kaplan-Meier analysis and log-rank test were then 
performed to assess the association between gene expression 
and patients’ survival. The results showed that FCGR1A, 
F2, and NOD2 were negatively correlated with the OS 
of ccRCC patients, while LILRA2 revealed no significant 
relationship with the OS of ccRCC patients. The survival 

Figure 2 Volcano plot and Venn diagram of differentially expressed and methylated genes. (A) Volcano plot for GSE15641; (B) volcano plot 
for GSE53757; (C) volcano plot for GSE70303; (D) venn diagram for hypermethylated and down-regulated genes; (E) venn diagram for 
hypomethylated and up-regulated genes.
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Figure 3 GO enrichment analysis results. 
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curves for the 4 genes are plotted in Figure 6. The 3 genes 
were then selected as candidates for further analysis.

The diagnostic power of the signature genes in detecting 
ccRCC patients

The capabi l i t ies  of  FCGR1A, F2,  and NOD2 in 
discriminating ccRCC patients from normal cases were 
further evaluated using the ROC analysis. The ROC curve 
(Figure 7) was plotted, and the AUCs of the 3 genes were 
0.6054 (NOD2), 0.6088 (F2), and 0.5879 (FCGR1A), 
revealing that these 3 genes had good distinguishing ability 
and may serve as the potential biomarkers for the early 
detection of ccRCC. 

Construction and evaluation of the predictive gene signature

Prognostic methylation of differentially expressed genes 

(MDEGs) signature based on FCGR1A, F2, and NOD2 
was constructed by integrating the data of the 3 candidates 
and corresponding estimated regression coefficient. Next, 
the risk score of every ccRCC patient was calculated and 
ranked. The patients were stratified based on the median 
risk score into high-risk (n=267) and low-risk (n=266) 
groups under each risk scoring system. The risk score 
distribution, survival score distribution, and the expression 
heat-map were plotted in Figure 8. Then, survival analysis 
was conducted with the Kaplan-Meier method and log-rank 
statistical test. The OS rates of ccRCC patients were 60% 
in the high-risk group and 75.8% in the low-risk group 
(Figure 9). The patients with ccRCC in the high-risk group 
had a significantly shorter OS than those in the low-risk 
group (HR, 2.46; 95% CI, 1.63–3.71; P<0.001). Therefore, 
the result revealed that patients in the high-risk group were 
correlated with a significantly worse prognosis than patients 
in the low-risk group. 

Figure 4 PPI network visualized with Cytoscape.
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The sensitivity and specificity of the signature for 
predicting OS were assessed by using ROC analysis to 
evaluate the predictive power of the methylation genes 
signature. According to the ROC analysis results (Figure 9), 
the three-gene methylation signature achieved the overall 
AUC of 0.6203, showing its moderate diagnosis power. 
Thus, it may be used as a novel and moderately correct 
prognostic biomarker for predicting the survival outcome of 
ccRCC patients.

Univariate and multivariate Cox regression of the 
predictive signature

A total of 306 patients clinically and pathologically 
diagnosed with ccRCC in TCGA were used to construct the 
predictive model for the prognosis of ccRCC patients. The 
detailed characteristics are presented in Table 1. Considering 
the clinical factors including age, sex, pathologic stage, T 
stage, tumor grade, hemoglobin result, platelet qualitative 

Figure 5 Correlation analysis results. (A) Box plots for the expression levels of the hub genes in primary tumor and normal tissue (F2, 
FCGR1A, HLA-DQB2, LILRA2, and NOD2 mRNA expression was enhanced in tumor tissue as compared to adjacent healthy tissue); (B) 
box plots for the methylation levels of the hub genes in primary tumor and normal tissue (F2, FCGR1A, HLA-DQB2, LILRA2, NOD2, 
and PI3 methylation expression was lower in tumor tissue as compared to adjacent healthy tissue); (C) the correlation between methylation 
levels and expression levels for the hub genes (FCGR1A, F2, LILRA2, and NOD2 negatively correlated with the level of methylation with 
P<0.05).
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result, and serum calcium result, univariate and multivariate 
Cox regression analyses were applied for evaluating the 
effect of the three-gene methylation signature (high risk 
vs. low risk) on OS. The univariate analysis indicated that 
age (HR =1.8, P=0.003), tumor grade (HR =2.3, P<0.001), 
pathologic stage (HR =3.47, P<0.001), T stage (HR 
=2.76, P<0.001), hemoglobin result (HR =0.54, P=0.006), 
platelet qualitative result (HR =0.61, P=0.059), and three-

gene methylation signature (HR =2.46, P<0.001) were 
correlated with OS in ccRCC patients. When integrating 
the independent factors into multivariate Cox regression 
analysis, age (HR =1.58, P=0.023), pathologic stage (HR 
=5.77, P<0.001), T stage (HR =0.44, P=0.04), hemoglobin 
result (HR =0.58, P=0.017), and three-gene methylation 
signature (HR =1.97, P=0.003) remained as independent 
prognostic factors for OS in ccRCC patients (Table 2).

Figure 6 Kaplan-Meier survival curves for F2, FCGR1A, NOD2, and LILRA2. The results indicated that F2, FCGR1A, and NOD2 were 
negatively correlated with the OS of ccRCC patients (HR >1, P<0.05), while LILRA2 revealed no significant relationship with the reduced 
OS of ccRCC patients.
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Building and assessment of a predictive nomogram

To build a model that could serve as an individual’s 
prognostic predictor, a nomogram was set up for predicting 
the 3- and 5-year OS by incorporating 5 independent 
covariates including age, pathologic stage, T stage, 
hemoglobin result, and three-gene methylation signature. 
The predictive nomogram is plotted in Figure 10. C-index 
was applied to assess the discrimination power of the 
model. As a result, the C-index for predicting OS in 
the nomogram was 0.762, which shows good predictive 
ability. The calibration curves of the nomogram revealed 
excellent consistency between the values of prediction and 
observation in 3-, and 5-year OS probability (Figure 10). 
The total score was calculated by adding the individual 
scores of all the selected variables. Then, we divided the 
ccRCC patients into 3 different risk groups, including the 
high-, median-, and low-risk groups based on the scores of 
the nomogram with the cutoff value of 172 and 130. Kaplan-
Meier curves for OS of ccRCC patients from TCGA 
were developed for each risk group, showing there was a 
significant difference among the 3 risk groups (Figure 10).  
We further compared the predictive OS power between 
the established nomogram and the prognostic ability of 
the independent variables. Promisingly, the C-index of 
the nomogram was significantly higher than those of the 
independent variables for OS prediction (C-index: 0.762 
vs. 0.746; P<0.05), revealing the constructed nomogram 
had the better discriminative capacity for predicting OS of 
ccRCC patients.

Discussion

Despite the advancements of treatment management and 
cancer surveillance of ccRCC, the prognosis of this disease 
is still poor. Current prognostic methods for ccRCC are 
still not sufficient for accurate prediction and individualized 
treatment. Genetic or epigenetic biomarkers have opened 
a window for the diagnosis, therapy, and prognosis of 
ccRCC as they can better reveal the underlying information 
of cancer than traditional markers. It is well established 
that alterations in DNA methylation play a vital part in 
the occurrence and progression of ccRCC and provide 
clinically viable biomarkers for early diagnosis and precise 
treatment of ccRCC. In this study, we systematically and 
comprehensively screened and showed a methylation 
signature associated with the prognosis of ccRCC through 
an integrated biomarker discovery phase. In addition, 
we developed a predictive model based on the identified 
methylation signature that may be useful for improving the 
clinical management of ccRCC.

We firstly found differentially expressed and methylated 
genes from 3 datasets. After the intersection, 76 genes were 
obtained for constructing the PPI network. Then 6 genes 
were found as hub genes, including F2, FCGR1A, HLA-
DQB2, LILRA2, NOD2, and PI3. The correlation and 
survival analysis revealed that FCGR1A, F2, and NOD2 
negatively correlated with the level of methylation and 
the OS of ccRCC patients. Following that, a prognostic 
gene methylation signature was constructed based on 
FCGR1A, F2, and NOD2. FCGR1A has been identified 
as an interferon-inducible gene that is highly expressed by 
myeloid cells, such as macrophages and neutrophils (25).  
Notably, FCGR1A has also been demonstrated to possess 
a diagnostic and prognostic potential in a series of diseases, 
including antibody-mediated rejection, tuberculosis, 
and triple-negative breast cancer (26-28). It is widely 
acknowledged that F2 is a coagulation factor that is 
proteolytically cleaved to generate thrombin in the original 
process of the coagulation cascade leading to the stemming 
of blood loss. F2 also plays fundamental and pleiotropic 
roles in maintaining vascular integrity during development 
and postnatal life (29,30). NOD2, an intracellular pattern 
recognition receptor, plays its role by sensing bacterial 
peptidoglycan-conserved motifs in the cytosol and 
stimulating host immune response, including in epithelial 
and immune cells (31). Recently gathered evidence has 
indicated that NOD2 is highly involved in host defense 
against infection and the control of inflammation (32). 

Figure 7 ROC analysis of sensitivity and specificity for the three-
gene methylation signature in diagnosing ccRCC patients.
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Figure 8 Distribution of risk scores, OS time and status, and expression of signature genes. (A) The distribution of the risk scores; (B) the 
overall survival time and status distribution; (C) expression heatmap of the 3 gene signatures in high- and low-risk ccRCC samples. 

Alive

Dead

risk

NOD2

F2

FCGR1A

High risk

Low risk

High risk

Low risk

R
is

k 
sc

or
e

1.00

0.75

0.50

0.25

0.00

4000

3000

2000 

1000

0

O
ve

ra
ll 

S
ur

vi
va

l (
da

ys
)

0                                                                     200                                                                  400

14

12

10

8

6

4

2

0

A

B

C



1093Translational Andrology and Urology, Vol 9, No 3 June 2020

  Transl Androl Urol 2020;9(3):1082-1098 | http://dx.doi.org/10.21037/tau-19-853© Translational Andrology and Urology. All rights reserved.

One previous study discovered that NOD2 was more 
highly expressed in human ccRCC tissue than in adjacent 
healthy tissue, and modulation of NOD2 receptors might 
provide a molecular therapeutic approach in ccRCC (33). 
However, the underlying mechanism of the occurrence and 
development of FCGR1A, F2, and NOD2 is still poorly 
understood, and it is thus worth further exploring the 
mechanisms of these molecules that contribute to ccRCC 
carcinogenesis. Moreover, further characterization of these 
molecules may offer new insights into the individualized 

management of ccRCC and might contribute to the 
identification of potential therapeutic targets for ccRCC.

A prognosis-related risk scoring system was established 
with the signature genes to evaluate the predictive power of 
the prognostic signature. Based on the risk score, ccRCC 
patients were divided into low- and high-risk groups 
with significantly different OS. Moreover, ROC curves 
demonstrated the high specificity and sensitivity of the 
prognostic signature in the survival prediction of patients 
with ccRCC. The results showed that the prognostic 

Figure 9 Distribution of death, Kaplan-Meier, and ROC analysis of the predictive roles of the signature genes. (A) Distribution of death; (B) 
Kaplan-Meier curve of ccRCC stratified by the median risk score; (C) the ROC curve represents reliability of risk score in predicting death 
risk.
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signature might have the potential for scheduling treatment 
strategies and guiding individualized follow-up for ccRCC 
patients. For example, we suggest that patients identified 
as high-risk should accept more intensive follow-up or 
therapy.

It is generally accepted that ccRCC is a heterogeneous 
disease, and a variety of confounding factors contribute to 
the establishment and development of this kind of cancer. 
A single marker is unlikely to be very valuable for survival 
prediction. Therefore, several clinical factors, along with 
the signature genes, were enrolled in the univariate analysis 
and were demonstrated to be significantly associated with 
OS in ccRCC patients. Moreover, when integrated into the 
multivariate Cox regression analysis, the signature genes 
remained independent prognostic factors for OS in ccRCC 

patients. These clinical factors and the predictive signature 
could be combined to serve as predictive substrates in 
predicting the survival of ccRCC patients. 

In recent years, a nomogram has become a promising 
component in assessing survival or specific outcomes 
by showing visual graphical interfaces. Moreover, the 
nomogram has superior predictive properties than 
conventional American Joint Committee on Cancer (AJCC) 
TNM staging under complicated clinical conditions and 
thus could play more critical roles in modern medical 
decision-making (34,35). In our study, we set up a 
nomogram consisting of 5 independent covariates generated 
from a multivariate Cox regression analysis for OS 
prediction of ccRCC patients. The predictive performance 
of the nomogram was shown to be effective in TCGA 
cohorts. Thus, our nomogram might facilitate decision-

Table 1 Patient characteristics

Variables Subtype Patients (%)

Age <65 198 (64.71)

≥65 108 (35.29)

Gender Male 206 (67.32)

Female 100 (32.68)

Grade G1 5 (1.63)

G2 143 (46.73)

G3 114 (37.25)

G4 44 (14.38)

Pathologic stage I 162 (52.94)

II 28 (9.15)

III 72 (23.53)

IV 44 (14.38)

T stage T1 166 (54.25)

T2 35 (11.44)

T3 98 (32.03)

T4 7 (2.29)

Hemoglobin result Low 190 (62.09)

Normal 116 (37.91)

Platelet qualitative result Low 38 (12.42)

Normal 268 (87.58)

Serum calcium result Low 193 (63.07)

Normal 113 (36.93)

Table 2 Univariate and multivariate analysis

Variables
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value 

Age (≥65 vs. 
<65)

1.80 (1.22–
2.65)

0.003* 1.58 (1.07–
2.35)

0.023*

Gender (male 
vs. female)

1.01 (0.67–
1.53)

0.952

Grade (G3+G4 
vs. G1+G2)

2.30 (1.51–
3.50)

<0.001*

Pathologic 
stage (III+IV 
vs. I+II)

3.47 (2.33–
5.17)

<0.001* 5.77 (2.57–
12.93)

<0.001*

T stage (T3+T4 
vs. T1+T2)

2.76 (1.87–
4.08)

<0.001* 0.44 (0.20–
0.97)

0.04*

Hemoglobin 
result (normal 
vs. low)

0.54 (0.35–
0.84)

0.006* 0.58 (0.37–
0.91)

0.017*

Platelet 
qualitative 
result (normal 
vs. low)

0.61 (0.37–
1.02)

0.059

Serum calcium 
result (normal 
vs. low)

1.25 (0.84–
1.85)

0.265

MDEG 
signature (high 
risk vs. low 
risk)

2.46 (1.63–
3.71)

<0.001* 1.97 (1.25–
3.10)

0.003*

*, P value <0.05 was considered as statistically significant.
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making as a simple, visual tool for predicting the prognosis 
of ccRCC patients.

Although a series of biomarkers has been identified for 
ccRCC, prognostic markers of ccRCC that could provide 
valuable information regarding prognosis and treatment 
options at diagnosis are still a long way off. A study reported 
that herpes virus entry mediator (HVEM) might serve as 

a promising and independent adverse predictor of survival 
outcomes in ccRCC patients. Another study identified 
tumor suppressor candidate 3 (TUSC3) to be a promising 
tumor biomarker for the early diagnosis and prognosis of 
ccRCC (36). High expressions of BMP1 were significantly 
associated with poor prognosis and may serve as a potential 
prognostic factor and therapeutic target (37). Moreover, a 

Figure 10 Nomogram analysis results. (A) Nomogram to predict the 3- and 5-year OS; (B,C) calibration curves for the nomogram model of 
the 3- and 5-year OS; (D) prognostic differences among the 3 risk groups based on nomogram scores.
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predictive signature was constructed based on the expression 
of 5 genes and was demonstrated to be an independent 
prognostic factor for ccRCC (38). These studies reflect the 
potential of the markers identified in clinical application. 
Most of these studies were, however, restricted with an 
isolated and static mode that focused on limited molecules. 
Our previous studies have proven that combination markers 
outperform single molecules in cancer characterization 
(39,40). Thus, combining methylation markers with other 
biomarkers may provide a new alternative for clinical 
application. A more complicated model that integrates the 
more useful parameters will make the prognostic model 
more powerful.

It is important to acknowledge our study has several 
limitations. Firstly, the sample sizes of the datasets that 
were used for identifying the differentially expressed and 
methylated genes were still limited. Secondly, due to 
the lack of information, some prognostic variables were 
not included in the nomogram, but they may be useful 
in modifying the nomogram to provide more accurate 
prognoses in clinical practice. Thirdly, the mechanisms 
behind the prognostic values of these methylation genes 
in ccRCC are still poorly understood, as we have not 
performed biological experiments that may provide vital 
information to further improve our understanding of their 
functional roles. Finally, although the predictive model 
was verified to be useful by published data, it has not yet 
been checked prospectively in a clinical trial. Regardless of 
these limitations, the significant and consistent correlations 
of our prognostic signature genes and nomogram with 
OS indicates that they may act as convenient and accurate 
prognosis prediction tools for ccRCC, and are worthy of 
further investigation.

Conclusions

To conclude, we developed and validated a three-gene 
methylation signature for predicting the prognosis of 
ccRCC. A nomogram, including the signature, could aid 
the prediction of individual OS and may help clinicians 
in decision-making for individualized treatment. Future 
clinical studies and biological experiments should be 
performed to further evaluate the predictive power of 
the three-gene methylation signature and examine their 
functional mechanisms in the pathogenesis and development 
of ccRCC.
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