
  Transl Androl Urol 2021;10(4):1850-1864 | http://dx.doi.org/10.21037/tau-20-964© Translational Andrology and Urology. All rights reserved.

Introduction

Prostate cancer (PC) is the second most commonly 
diagnosed malignancy in men worldwide (1-6). The 
application of the prostate-specific antigen (PSA) test 
has greatly improved the diagnosis and treatment of PC 
(7-24). However, PSA has become associated with the 

overdiagnosis of patients with the non-aggressive disease 
and displays limited usefulness in patients with castration-
resistant PC (5,25-37). Therefore, there is an unmet need 
for novel diagnostic (detection of early-stage disease, 
and differentiation of benign from malignant disease), 
prognostic (prediction of disease outcome and monitoring 
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of disease recurrence), and predictive (monitoring of the 
response to therapeutics and aiding treatment decisions) 
biomarkers. 

Many studies suggested the role of glycans as potential 
biomarkers for diseases (38-54). A broad range of glycan 
alterations have been observed in blood-based or tissue-
based analysis, including aberrant PSA glycosylation, 
increased sialylation, core fucosylation, O-GlcNAcylation, 
and branched N-glycan formation (55-71). Of fluid-based 
biomarkers, urine is one of the most minimally invasive and 
promising sources for the discovery of new biomarkers of 
PC and contains cells, DNA, RNA, proteins, extracellular 
vesicles (exosomes), and glycans (72-80). However, 
not enough evidence currently exists to support the 
identification of urine-based glycan biomarkers of PC, due 
to methodological difficulties in analyzing complex glycan 
structure. However, the technological development of 
glycan analysis is rapidly advancing in association with the 
development of high-throughput platforms. In this review, 
we discuss the overview of glycan analysis and the potential 
of urinary glycans for diagnostic and prognostic biomarkers 
for PC. We present the following article in accordance with 
the Narrative Review reporting checklist (available at http://
dx.doi.org/10.21037/tau-20-964).

Overview of glycan analysis

Role of glycosylation and types of glycoproteins

Glycans (saccharides) are known to have crucial roles in 
molecular communications and are essential for nearly every 
biological process (Figure 1A) (81). It is believed that over 
50% of all proteins are glycosylated (40,82). Glycosylation 
is the most common posttranslational modification and is 
tightly controlled by specific glycosylation enzymes via one-
to-one correspondence, the expression of glycosylation 
enzymes are regulated by epigenetic modification (41). 
There are two types of glycosylation; O-linked and N-linked 
glycosylation (Figure 1B) (40,82). N-linked glycosylation 
occurs at the consensus sequence of asparagine-X-serine/
threonine (X is any amino acid except proline) and includes 
major three N-glycan structure types (high-mannose, 
complex, and hybrid glycans) (40). O-linked glycans are 
usually attached to serine or threonine residues and include 
eight O-GalNAc glycan core structures (cores 1 to 8) (82).  
The extent of glycosylation depends on the number of 
glycosylation sites in a protein and the expression of 
specific glycosylation enzymes within the cells. Dysfunction 

of glycosylation can abnormally influence homeostasis 
(41,81,83-85). Therefore, cancer therapies targeting glycans 
may have the potential to improve diagnosis and treatment 
outcomes (86).

Potential biomarkers in urine 

The advantages of urine analyses include noninvasive and 
repeat sampling to identify cancers such as PC or urothelial 
carcinoma (Figure 2). Urine after prostate massage contains 
many potential biomarkers for PC, including cells, DNA, 
RNA, proteins, exosomes, bacteria (microbiome), viruses, 
and other small molecules (72,75,87-92). Several RNA 
biomarkers have been used clinically, such as in the urinary 
PC antigen 3 test (RNA-based urinary marker) (93) and the 
ExoDx Prostate test (detection of PCA3, ERG, and SPDEF 
genes in urinary exosomes) (94). However, not many glycan-
based urinary biomarkers are available due to the technical 
difficulties of glycan analysis. A lectin-based microarray 
can detect aberrant glycoproteins in urine (95), including 
PSA glycoforms and exosomes (60). Glycan enrichment 
beads (Sweetblot) can specifically enrich the concentration 
of N-linked glycans (96). Capillary electrophoresis, liquid 
chromatography-tandem mass spectrometry (LC-MS) (97), 
and matrix-assisted laser desorption/ionization-time of 
flight mass spectrometry (MALDI-TOF/MS) can detect 
glycans directly (44). However, each methodology has its 
strengths and weaknesses for glycan analysis. The lectin-
based assay can detect both glycans and core proteins but 
needs multiple lectins to detect the specific structure of 
glycans. Mass spectrometry is mandatory to detect the 
whole structure of glycans, but not easy to detect core 
proteins. Therefore, multiple steps are necessary to see an 
overall picture of glycans. This represents a bottleneck in 
the technique of glycan analysis.

Methods

Search methods for identification of studies

PubMed online database was accessed for research on 
Aug 10th, 2020. Searches were performed using the 
keywords: “prostate cancer”, “urine”, and “glycan”. 
Each identified abstract was independently evaluated by 
two authors. All studies were independently evaluated 
and selected the consistent criteria such as independent 
cohort, a proper number of samples and controls, clinically 
meaningful outcomes, and promising diagnostic/prognostic 
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Figure 1 Role and types of glycans. Role of glycans in cell-to-cell communications (A) and types of glycoproteins (B) are shown.

Figure 2 Potential urinary biomarkers for prostate cancer. Urine after prostate massage contains many potential biomarkers for PC, 
including cells, DNA, RNA, proteins, exosomes, bacteria, virus, and other small molecules.
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performance. This study was performed according to 
the ethical standards of the Declaration of Helsinki and 
approved by the ethics review boards of the Hirosaki 
University School of Medicine (authorization number: 
2019-001 and 2019-099).

Result of study screening

We identified 38 studies and excluded 30 studies that 
did not meet the inclusion criteria. Finally, we included 
8 studies in this narrative review (Figure 3). Studies 
were classified into 5 categories such as (I) aberrant PSA 
glycosylation, (II) urinary glycoproteins, (III) exosome, (IV) 
glycosyltransferases, and (V) hyaluronic acid. The number 
of studies for PC detection, aggressive disease, and both of 
them were 6 (80,97-101), 1 (77), and 1 (79), respectively.

Urinary glycan analysis detecting aberrant PSA 
glycosylation 

PSA is a glycoprotein that has been used widely as a 

biomarker for PC. However, it has been associated with 
overdiagnosis and overtreatment of non-aggressive cancers 
(21,25,35,102). There is an unmet clinical need to identify 
aggressive PC requiring intensive treatment. Several studies 
have identified specific cancer-associated glycan structures 
and PSA glycosylation (63,65,103). Several studies suggest 
the importance of fucosylation associated with cancer 
and inflammation (55,104). Fujita et al. investigated the 
association of urinary fucosylated PSA levels with the 
detection of aggressive PC (79). They investigated Lewis-
type or core-type fucosylated PSA (PSA-AAL) and core-
type fucosylated PSA (PSA-PhoSL) in from urine in 69 
patients who suspected PC (20 patients without PC and 49 
patients with PC) and found urinary fucosylated PSA was 
significantly decreased in the men with PC compared with 
the men without PC (P=0.026 and P<0.001, respectively). 
Also, both PSA-AAL and PSA-PhoSL were significantly 
associated with the Gleason scores of the biopsy specimens 
(P=0.001, and P<0.001, respectively). The area under the 
receiver-operator characteristic curve (AUC) value for 
the prediction of cancers of Gleason score ≥7 was 0.69 

Figure 3 Search methods for identification of studies. PubMed online database was accessed for research on Aug 10th, 2020. Searches were 
performed using the keywords: “prostate cancer”, “urine”, and “glycan”. Inclusion criteria were (I) independent cohort, (II) a proper number 
of samples and controls, (III) clinically meaningful outcomes, and (IV) promising diagnostic/prognostic performance.
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(P=0.0064) for urinary PSA-AAL and 0.72 (P=0.0014) for 
urinary PSA-PhoSL. They developed an optimum logistic 
regression model to predict the probability of detecting 
cancers with a GS ≥7 in biopsy was obtained as P = [1 + 
exp (1.247 + 4.56 × PSAD – 0.00448 × PSA-AAL – 0.0493 
× PSA-PhoSL)] −1. Using this model, the AUC value for 
the prediction was 0.82 (95% CI 0.72–0.92, P<0.0001) 
with the sensitivity and specificity of the model at the best 
cutoff value were 74.1% and 81.5%, respectively (Table 1). 
Although the biological mechanism leading to decreased 

urinary fucosylated PSA level in urine remains unclear, 
decreased urinary fucosylated PSA level may be a potential 
marker for aggressive PC. 

It is possible to analyze urine PSA glycoforms using 
LC-MS with ion accumulation. Hsiao et al. reported that 
monosialylated, sialylated, and unfucosylated glycoforms 
of PSA were significantly different between PC and 
control samples (97). They investigated 61 benign 
prostate hyperplasia (BPH) urine samples and 38 PC urine 
samples. After the immunoprecipitation and in-gel protein 

Table 1 Summary of urinary glycan biomarkers the information of the Food and Drug Administration (FDA) approved biomarkers and/or those 
commercially availability

First author, 
year

Samples, n Glycans Clinical utility AUC Sensitivity Specificity FDA approval

Fujita, 2016 Ctrl, 20 vs. PC, 49 Serum PSA PC detection 0.59 N/A N/A Yes

Urinary PSA PC detection 0.58 N/A N/A No

Urinary PSA-AAL PC detection 0.69 N/A N/A No

Urinary PSA-PhoSL PC detection 0.72 N/A N/A No

Urinary PSA-AAL Aggressive disease  
(GS ≥8)

0.69 N/A N/A No

Urinary PSA-PhoSL Aggressive disease  
(GS ≥8)

0.77 N/A N/A No

Urinary PSA-AAL and PSA-
PhoSL levels

Aggressive disease  
(GS ≥7)

0.82 74.1% 81.5% No

Hisao CJ, 
2016

Ctrl, 61 vs. PC, 38 Urinary H5N4S1F1, 
monosialylated, sialylated, 
and unfucosylated 
glycoforms 

PC detection 0.72 87.5% 60.0% No

Barrabés, 
2017

Ctrl, 18 vs. PC, 35 Urinary S2,6PSA PC detection N/A N/A N/A No

Vermassen, 
2013

BPH, 62 vs. PC, 42 Urinary glycoprofile marker PC detection (gray 
zone)

0.77 90% 47% No

Vermassen, 
2015

BPH, 93 vs. PC, 74 Urinary glycoprofile marker PC detection (gray 
zone)

0.81 58% 91% No

Nyalwidhe, 
2013

Ctrl pool, 10 vs. PC 
pool, 48

Urinary exosome PC detection N/A N/A N/A No

Kojima, 2015 Prostatectomy, 35 Glycosyltransferases 
(GCNT1)

Disease localization 
and tumor expansion

0.7614 N/A N/A No

Skarmoutsos, 
2018

Ctrl, 52 vs. PC, 66 
(PIN 26)

Hyaluronidase PC detection 0.69 – – No

Hyaluronic acid PC detection 0.65 – – No

PIN, prostatic intraepithelial neoplasia ratio of nonfucosylated bi-, tri-, and tetra-antennary glycan structures on total of triantennary glycan 
structures; GCNT1, Core2 β-1,6-N-acetylglucosaminyltransferase-1; N/A, not applicable. 
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digestions, the peptides and N-glycopeptides generated 
from the chymotrypsin digestion were analyzed with an 
LC-MS. The normalized Hex5HexNAc4NeuAc1dHex1 
(H5N4S1F1), monosialylated, sialylated, and unfucosylated 
glycoforms showed significant differences between BPH 
and PC. The ROC curve and the AUC of those glycoforms 
showed significant differences in PC detection with 
sensitivity and specificity of 87.5% and 60%, respectively 
(Table 1). This result suggests the unfucosylated glycoforms 
of PSA were potential urinary glycan biomarkers in PC, in 
opposition to the results from Fujita et al. (79). One reason 
for this discrepancy might be the methodological differences 
between the lectin-antibody ELISA detection and LC-MS 
detection. Furthermore, the preparation of urine samples 
greatly influences the outcomes of downstream analyses. 
For example, urinary Tamm-Horsfall Protein (uromodulin) 
interferes with urinary assays and forms contaminant 
precipitates in the urine. Therefore, urinary aberrant PSA 
glycosylation needs further study to apply the clinical 
practice. 

PSA has a single N-glycosylation site at asparagine-69 
(103). Multiple studies have confirmed the ratio of complex 
biantennary glycans of α-2,3-sialic acid (S2,3PSA) and 
α-2,6-sialic acid (S2,6PSA) in serum have been closely 
linked to aggressive PC (56,58,105,106) in over 50 
glycoforms of serum PSA. However, this was not replicated 
in the urinary PSA. A previous study evaluated the clinical 
utility of S2,6PSA from urine after prostate massage in 35 
patients diagnosed with PC and in 18 controls (98). They 
found no significant difference in S2,6PSA levels between 
the biopsy negative patients and PC patients with Gleason 
score 6 (P=0.364), between the biopsy negative patients and 
PC patients with Gleason score 7 (P=0.116), and between 
the biopsy negative patients and PC patents with Gleason 
score 8 or more (P=0.276). Also, they found no relationship 
was found between S2,6PSA and PC aggressiveness. These 
results may suggest the limited utility of S2,6PSA alone 
in urine to detect PC. The ratio of S2,3PSA and S2,6PSA 
needs to be investigated because these 2 glycoforms are 
associated with each other during the PC progression. 
Therefore, this finding needs to be interpreted with caution 
because of the small sample size and limitation measurement 
of PSA glycoforms. Currently, urinary fucosylated PSA 
levels are a promising biomarker for PC detection and 
aggressiveness among the aberrant PSA glycosylation.

Capillary electrophoresis of urinary glycoproteins 

Capillary electrophoresis is a technique that separates 
molecules via an electric field according to size and charge. 
Several capillary electrophoresis-based systems for urinary 
glycan analysis are available, such as the Gly-Q system 
(Figure 4) and the multibacillary electrophoresis-based 
ABI3130 sequencer. Vermassen et al. (99) evaluated urinary 
N-glycosylation profiles in post-prostate massage urine 
using capillary electrophoresis and demonstrated differences 
between patients with PC and benign prostate hyperplasia. 
Also, they developed a urinary glycoprofile marker (ratio 
of non-fucosylated bi-, tri-, and tetra-antennary glycan 
structures on total triantennary glycan structures divided 
by the prostate volume), and showed the potential to 
differentiate benign prostate hyperplasia from PC with 
the AUC, sensitivity, and specificity of 0.77, 90%, and 
47%, respectively (Table 1). The updated analysis showed 
similar performance of the urinary glycoprofile marker 
in the patients with a gray zone (Table 1). The predictive 
accuracy of the urinary glycoprofile marker was significantly 
better than that of serum PSA (P<0.001) (80). A Capillary 
electrophoresis system can analyze glycoprotein in urine; 
however, limited evidence is currently available. Also, we 
need to combine some glycans (such as urinary glycoprofile 
marker) to detect PC. Further large-scale studies are 
necessary to address the use of capillary electrophoresis-
based analysis to identify urinary glycan PC biomarkers.

Exosomes

Exosomes are extracellular vesicles with a diameter 
of 30–200 nm that are secreted from most cell types. 
Urinary exosomes contain not only RNA and proteins, 
but also glycoproteins (75,107). However, glycan profiles 
in exosomes are largely unexplored in patients with PC. 
Urinary exosomes in PC may be promising sources of 
novel biomarker discovery, as urinary glycoproteins can be 
analyzed by lectin-based ELISA, lectin-based microarray, 
capillary electrophoresis, and mass spectrometry. Nyalwidhe 
et al. (101) reported N-glycan profiling of urinary exosomes 
after prostate massage using lectin and MALDI-TOF-
based profiling techniques. They demonstrated a decline of 
larger branched triantennary and tetraantennary N-glycans 
in exosomes using pooled samples (Table 1) (101). However, 
the major limitation of exosome analysis might be the 
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Figure 4 Schematic protocol of direct glycan analysis using capillary electrophoresis (Gly-Q). Capillary electrophoresis-LED-induced 
fluorescence-based Gly-Q N-glycan analysis system (Prozyme, Inc., CA, USA) combined with Gly-X rapid N-glycan preparation method can 
measure the amount of glycans under controlled automated SweetblotTM (System Instruments, Tokyo, Japan) machinery. Briefly, 1 mg/mL  
of target protein from the urine and 2 μL of Gly-X denaturant was mixed. Then, 2 μL of N-glycanase working solution was added to the 
denatured samples. After deglycosylation, 5 μL of InstantPC dye solution was added to the deglycosylated samples. The InstantPC Dye 
and deglycosyalted sample mixture was then loaded onto prewetted Gly-X cleanup plate and applied vacuum to <5 inHg. Then, 100 μL of 
Gly-X InstantPC eluent added to each well and collected InstanPC-labeled glycan samples into the Collection Plate using vacuum. Finally, 
InstantQ is a charged N-glycan dye that facilitates separation of labeled N-glycans on the Gly-Q CE system. Composition and structures of 
the glycans were analyzed using the Gly-Q Manager software performing automated peak analysis (Relative Fluorescence Unit: RFU and 
Glucose Unit: GU) and glycan assignments from the glycan library.

time-consuming methods of purification and small yield of 
exosomes from urine. Exosome preparation requires several 
sessions of ultracentrifugation (e.g., 25,000 ×g for 30 min, 
followed by supernatant centrifugation at 100,000 ×g for 4 h) 
and the expression of exosome protein markers (CD63 and 
CD9) needs to be verified. In some cases, pooled samples 
(from three patients) are needed due to small numbers of 
exosomes. Therefore, this protocol may not be feasible for 
the analysis of individual patients. Further methodological 
advancement for exosome enrichment is necessary for 
clinical application.

Upregulation of glycosyltransferases 

Aberrant glycosylations are caused by the over- or 
under-expression of glycosyltransferases in cancer 
cells (35,108). Several reports suggest positive links 
between aberrant glycosyltransferases and disease 
progression (57,59,62,77,104,109-112) through the 
androgen receptor regulation. Of these, N-acetylgalact
osaminyltransferase 7 (GALNT7) and Core2 β-1,6-N-
acetylglucosaminyltransferase-1 (GCNT1) are associated 
with androgen receptor splice variant-7 (AR-V7) (113). 
Taken together, these observations suggest the importance 
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of glycosyltransferases for PC progression. However, 
only a few studies investigate the clinical utility of urinary 
glycosyltransferases in PC. Kojima et al. (77) have reported 
the detection of GCNT1 in post-massage urine by 
immunoblotting can predict the extracapsular extension 
of PC after radical prostatectomy. They investigated post-
digital rectal examination urine from 35 patients before 
underwent radical prostatectomy and detected GCNT1 
by an anti-GCNT1 monoclonal antibody, followed by a 
horseradish peroxidase (HRP)-conjugated antibody. The 
GCNT1 expression (P=0.006) was highly correlated to 
the extracapsular extension of PC in a logistic regression 
analysis with the AUC value of 0.7614 (Table 1). Of urinary 
glycan markers, GCNT1 may be a potential predictive 
marker for tumor recurrence after radical prostatectomy. 
However, the association of these glycosyltransferases 
with specific final products (glycans) remains unclear, as 
overexpression of individual glycosyltransferases does 
not always lead to the overexpression of specific glycans. 
Therefore, further studies are necessary before the use 
of these glycosyltransferases as diagnostic and prognostic 
biomarkers for PC.

Hyaluronic acid and hyaluronidase

Hyaluronic acid and hyaluronidase may represent potential 
novel urine biomarkers for the diagnosis of PC. Skarmoutsos 
et al. (100) investigated post-prostate massage urine from 118 
high-risk PC patients, and hyaluronic acid and hyaluronidase 
were detected via enzyme-linked immunosorbent assay. Their 
results suggested that hyaluronic acid and hyaluronidase were 
independently associated with PC and that higher levels of 
hyaluronic acid and hyaluronidase were associated with a 
higher incidence of PC (100). ROC analysis for hyaluronic 
acid and hyaluronidase had a significant predictive ability 
for PC with AUC of 0.65 (70% sensitivity and 55.2% 
specificity) and 0.69 (65% sensitivity and 53.9% specificity), 
respectively (Table 1). However, limitations of this study 
included the lack of molecular size analysis of hyaluronic 
acid and the determination of specific hyaluronidases. The 
molecular size of hyaluronic acid has been hypothesized to 
play a role in tumor aggressiveness (114,115), and several 
types of hyaluronidases are associated with the digestion 
of hyaluronic acid (116,117). Additionally, no information 
is available to correlate tumor aggressiveness with levels of 
hyaluronic acid and hyaluronidase. Therefore, these findings 
may suggest a role for hyaluronic acid and hyaluronidase, as 
yet understudied potential biomarkers for PC.

The potential methodology of detection of urinary glycan 
biomarkers

Direct measurement of urinary glycans using mass 
spectrometry
Advances in mass spectrometry has led to the direct 
detection of glycans from fluid-based samples. With this 
methodology, it is extremely important to purify glycans 
from contaminants despite small sample sizes. To achieve 
this, a new technology for glycan-specific enrichment, 
called “a glycoblotting method,” was developed (96). A 
combination of glycoblotting and MALDI-TOF/MS 
enabled a high-throughput and quantitative glycomic 
analysis of various biological samples that included a large 
number of impurities (Figure 5) (44-46,49,51,60,118). 
However, the removal of impurities and adjustment of 
protein concentration is challenging for urinary analysis 
compared to a blood-based platform. Also, O-glycan 
analysis requires specialized techniques and processes to 
separate the O-glycans from proteins, such as a chemical 
reaction with ammonia salts. Although N-glycans are able 
to be released from proteins by peptide N-glycanase-F or 
-A (PNGases), no enzyme can specifically release O-glycans 
from proteins. No study has evaluated N- and O-glycans 
in urine from patients with PC, and only one study has 
evaluated urinary O-glycans in bladder cancer (44). The 
high cost of mass spectrometry is one of the major concerns 
in using this system for clinical applications. Further 
technological advancement is necessary for the direct 
measurement of urinary glycans.

Lectin-based microarray analysis for glycoproteins
Another methodology for the analysis  of  protein 
glycosylation is the lectin array (Figure 6). Lectins are 
glycan-binding proteins that selectively recognize free 
carbohydrates or glycoprotein epitopes. Lectin-based 
microarray systems have been developed to analyze both 
glycan profiles and glycoproteins (60,95) and can analyze 
both serum and urine. Matsumoto et al. (60) reported the 
use of lectin-based microarrays to identify serum a-1-
acid glycoprotein in patients with metastatic castration-
resistant PC (CRPC). They found terminal α-2,3-sialylated 
glycan, α-2,6-sialylated glycan, and terminal galactose 
were significantly increased in the CRPC patients (60).  
Anan et al. (95) reported the use of lectin-based microarrays 
to identify urinary osteopontin, and found that the 
glycosylation profile of osteopontin was significantly 
different in patients with urolithiasis (95). One limitation of 
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Figure 5 Schematic protocol of direct glycan analysis using SweetBlot and MALDI-TOF/MS. Fluid samples are applied to the SweetBlot 
for glycoblotting. After enzymatic cleavage from serum protein, total serum N-glycans released into the digestion mixture are directly 
mixed with BlotGlyco H beads to capture N-glycans. After the beads are separated from other molecules by washing, sialic acid is methyl-
esterified. These processed N-glycans are then labeled with benzyloxyamine (BOA) and released from BlotGlyco H beads. Mass spectra of 
BOA-labeled N-glycans are acquired using an Ultraflex III instrument.

this system is the requirement for protein concentration in 
urine samples. Concentrated urine (2 mg/mL protein) was 
applied to a lectin-based microarray after ultrafiltration and 
vacuum concentration. As the density of urine varies in each 
sample, urinary protein concentrate needs to be adjusted 
and normalized for downstream analysis. Lectin-based 
microarray systems are promising methods of novel urinary 
biomarker discovery. However, no study has yet reported 
the use of lectin-based microarrays for urinary biomarkers 
in PC.

Summary of urinary glycan biomarkers and the 
information of the Food and Drug Administration 
(FDA) approved biomarkers and/or those 
commercial availabilities

In this narrative review, we showed potential urinary 
glycan biomarkers for PC detection and aggressive disease 
(Table 1). Of those, urinary fucosylated PSA levels are a 
promising biomarker for PC detection and aggressiveness 
among the aberrant PSA glycosylation. Urinary CGNT1 

in the post-massage urine can be useful for the prediction 
of the extracapsular extension after radical prostatectomy. 
However, no FDA approved urinary glycan biomarker is 
available. Also, urinary glycan biomarker analyses were 
carried out using a custom technique, tools, and machines, 
while those are commercially available. Therefore, there is 
a significant hurdle between the urinary glycan analysis and 
clinical implementation. Therefore, urinary glycan analysis 
is far from clinical implementation. Further studies and 
methodological improvements are necessary to overcome 
these limitations. 

Conclusions

Urinary glycan profiling exhibits high clinical potential 
as a noninvasive assay to monitor tumor heterogeneity 
and aggressiveness and may lead to personalized cancer 
therapies. Currently, urinary fucosylated PSA levels and 
urinary CGNT1 in the post-massage urine are a promising 
biomarker for PC detection and aggressiveness. Although 
several challenges remain, the technological development 
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Esterification Labeling & release MALDI-TOF-MS and data-analysis
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of glycan analysis is rapidly advancing. Urinary glycan 
analysis is one of the most promising approaches for cancer 
biomarker discovery. 
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