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Background: The aim of this stay was to determine the effect of calcium ions in promoting osteogenic-like 
differentiation in human renal interstitial fibroblasts (hRIFs). The role of miRNA-410-3p in upregulating 
Msh homeobox 2 (MSX2) level in hRIFs was also investigated.
Methods: Quantitative polymerase chain reaction (qPCR) analysis was used to assess the expression levels 
of miRNA-410-3p in Randall’s plaque (RP) and normal renal papillary (nRP) tissues. Furthermore, the 
expression levels of osteogenesis-related protein in the RP and nRP tissues were assessed with qPCR and 
immunohistochemistry (IHC). hRIFs were cultured from isolated human kidney papilla before treatment 
with calcium chloride or osteogenic medium, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) assay was performed at 1, 5, 9, and 14 days post-treatment. Alizarin red staining was used to 
estimate the deposits of calcium aggregates. After the overexpression or knockdown of miRNA-410-3p, we 
evaluated the changes in the osteogenic-like differentiation and osteogenesis-related protein by alizarin red 
staining and qPCR, respectively. A binding relationship between miRNA-410-3p and MSX2 was established 
through a dual-luciferase reporter gene assay. Rescue experiments demonstrated that miRNA-410-3p 
regulated the osteogenic-like differentiation by targeting MSX2.
Results: miRNA-410-3p levels were lower in RP tissue than in control nRP tissues. qPCR and IHC 
showed that the level of runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and osteopontin 
(OPN) were higher in RP tissues. The calcium deposition of hRIFs showed a time-dependent trend when 
treated with osteogenic medium or calcium chloride. The overexpression of miRNA-410-3p downregulated 
the levels of osteogenesis-related expression and attenuated mineralization. The knockdown of miRNA-
410-3p yielded the opposite trend. Dual-luciferase reporter gene assay and rescue experiments indicated that 
miRNA-410-3p could target MSX2, while the overexpression of MSX2 reversed the effects of miRNA-410-
3p on osteogenic-like differentiation.
Conclusions: The current findings suggest that calcium ions could promote the osteogenic-like 
differentiation of hRIFs and miRNA-410-3p regulates hRIFs osteogenic-like differentiation by inhibiting 
MSX2.
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Introduction

Kidney stones are the most common disease of the urinary 
tract, and a reported 10–12% of people in industrialized 
countries will have a urinary stone in their lifetime (1). 
Kidney stones affect 1 in 11 people in the USA, with over 
600,000 Americans estimated to suffer from urolithiasis 
every year (2). Approximately 5–10% of the Chinese 
population is expected to be diagnosed with urolithiasis, 
25% of which will require hospitalization (3). The main 
components of kidney stones are calcium stones (about 
80%) with the majority being the calcium oxalate (CaOx) 
type. The mechanisms of kidney stone development, or 
lithogenesis, are not completely understood. The major 
theory for predicting lithogenesis is the presence of 
Randall’s plaque (RP), which appears to be the precursor 
of kidney stone development (4). One study found that 
most CaOx stones were found to be attached to RP at the 
renal papilla (5). However, the pathogenesis of RP remains 
unclear. Hypercalciuria, and the acidification concentration 
of urine, have all been implicated in RP formation (6). 
Among these, the involvement of hypercalciuria deserves 
special focus.

Recently, investigators have found that ectopic 
calcification is involved in the formation of RP (7). Many 
studies have shown that typical bone osteoid protein and 
hydroxyapatite mineralization are found in RP (8-10). He 
et al. discovered calcium ions could promote renal epithelial 
cell differentiation into cells with osteogenic phenotypes in 
idiopathic hypercalciuric patients (11). Typical bone osteoid 
proteins were also found to be significantly increased 
in hypercalciuric rats (12). These studies suggest that 
hypercalciuria may promote osteogenic-like differentiation 
of RPs.

MicroRNAs (miRNAs) are small noncoding RNA 
molecules of approximately 22 nt in length. They have 
been shown to elicit post-transcriptional gene regulation 
by degradation or inhibition of target mRNA translation. 
In recent years, several studies have been reported 
that miRNAs are associated with bone formation and 
osteoporosis (13,14). miRNA-410-3p is involved in 
a variety of biological processes and plays important 
roles in mammalian development. For instance, it 
has been implicated in the promotion of apoptosis in 
rhabdomyosarcoma cells and the attenuation of gemcitabine 
resistance in pancreatic ductal adenocarcinoma (15,16). 
However, there are no reports that clarify the role of 
miRNA-410-3p in osteoblast differentiation.

Studies have shown that Msh homeobox 2 (MSX2) 
enhances osteogenic differentiation in synergy with bone 
morphogenetic-2 protein (BMP2). Furthermore, MSX2 
was found to promote the expression of critical osteogenesis 
proteins [runt-related transcription factor 2 (Runx2) and 
Osterix] in vascular smooth muscle cells (17). However, 
little is known about the relationship between MSX2 and 
miRNA in the development of RP. We speculated that 
human renal interstitial fibroblasts (hRIFs), as one of the 
main cell components in renal papillary tissues, may have 
osteogenic-like differentiation potential, and osteogenic-
like differentiation may occur under the influence of 
pathological factors such as high concentration of calcium 
ions. Thus, this study aimed to investigate whether calcium 
ions could promote the osteogenic-like differentiation of 
hRIFs and whether miRNA-410-3p could regulate MSX2 
level in hRIFs. Our findings may provide novel concepts for 
kidney stone treatment.

Methods

Tissue samples

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the Ethics Committee of The Xiangya 
Hospital, Central South University (No. 201703258) and 
informed consent was taken from all the patients. RP 
tissues were obtained from patients with CaOx stones 
who underwent percutaneous nephrolithotomy. Donors 
of normal renal papillary (nRP) tissues were patients with 
renal tumors who underwent nephrectomy. Samples were 
obtained from papillary tissues with no tumor invasion. All 
samples were surgically collected and immediately stored at 
–80 ℃.

hRIFs isolation and culture

hRIF isolation and culture proceeded as described by 
Rodemann et al. (18). hRIFs were obtained from normal 
human kidney papillary tissues (10 g). Cell isolation was 
performed with enzyme mix [15 mL, 0.2% Collagenase I 
(Sigma-Aldrich, USA) and 0.25% trypsin (Sigma-Aldrich, 
USA) at 37 ℃ for 60 min. The cell suspension was then 
filtered through a 200-mesh nylon net and centrifuged at 
800 rpm for 5 min. The culture medium (DMEM, 10% 
fetal bovine serum (FBS; BI, Israel), 100 U/mL penicillin 
(BI, Israel) and 100 μg/mL streptomycin (BI, Israel)] was 
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added to the precipitate, and the cells were maintained at  
37 ℃ in 5% CO2 for 1 hour, and then the culture medium 
was replaced with new media to filter the adherent 
fibroblasts. The culture medium was replaced every 3 days.

RNA extraction and quantitative real-time polymerase 
chain reaction (qPCR) analyses

RNA extracted from tissue samples were isolated with 
Trizol reagent (Invitrogen, Carlsbad, CA, USA), according 
to the manufacturer’s protocol. The primer sequences 
for qPCR are displayed in Table S1. qPCR analyses were 
performed on MX3000p real-time PCR (Agilent, USA). 
The relative miRNA and mRNA expression levels were 
analyzed using the 2–ΔΔCt method.

Immunohistochemistry (IHC)

IHC was performed to evaluate the osteogenesis-related 
proteins expression in RP tissue. Paraffin-embedded 
sections were dewaxed and rehydrated before treatment 
with 3% hydrogen peroxide for 30 minutes. Antigen 
retrieval and incubation with anti-Runx2 antibody (RRID: 
AB-10888180), anti-osteocalcin (anti-OCN) antibody, 
and anti-osteopontin (anti-OPN) antibody (RRID: AB-
2194998) were performed. After 24 h, the tissue sections 
were incubated with horseradish-conjugated secondary 
antibodies. Subsequently, all sections were stained with 
hematoxylin. Positive protein expression was indicated by 
brown granules in the cytoplasm or matrix. The staining 
intensity was graded into four levels: 0 was negative 
staining, 1 was low intensity, 2 was moderate intensity, 
and 3 was high intensity. The percentages of positively 
stained cells were also divided into four levels: 0 was 0%, 
1 was ≤25%, 2 was ≤50%, 3 was ≤75%, and 4 was ≤100%. 
Histological scores were determined by the sum of intensity 
scores and the percentage of positively stained cells. Protein 
expression levels were considered low if histological scores 
were ≤3, while scores ≥4 and ≤ 7 were considered high.

Osteogenic culture of hRIFs

hRIFs were seeded in 6-well plates and cultured for 24 h. 
Osteogenic medium containing 10% FBS, 1% L-glucose, 
1% penicillin-streptomycin, 0.25 mM ascorbic acid,  
10 mM b-glycerophosphate, and 10 nM dexamethasone was 
applied to a hRIF group. Another hRIF group underwent 
osteogenic induction in medium containing 10 mmol/L  

calcium chloride dehydrate (Sigma, St. Louis, MO, 
USA). The control group was cultured with Dulbecco’s 
Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/
HAM’S-F12) and 10% heat activated-FBS. The osteogenic 
and control media were both replaced every 3 days.

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) assay

The proliferation ability of hRIFs was evaluated by MTT 
assay according to the manufacturer’s instructions (Roche 
Diagnostics GmbH, Mannheim, Germany). hRIFs cells 
were transferred into 96-well plates. MTT solution  
(5 mg/mL) was placed into every well and incubated for  
4 h. A microplate reader was used to examine the 
absorbance values at 490 nm.

Alizarin red staining

Alizarin red staining was performed to estimate the 
deposits of calcium aggregates. After treatment with 
osteogenic induction medium, the hRIFs were washed 
twice with phosphate-buffered saline (PBS), fixed with 4% 
paraformaldehyde for 15 min, and subsequently stained with 
1% alizarin red staining for 5 min. Calcified nodules were 
observed under an inverted microscope and the absorbance 
at 570 nm was read in triplicate.

Western blot

Western blot was conducted to examine the protein 
expression of target genes. After hRIFs were induced and 
transfected, cells were harvested for Western blot analysis. 
The cells were homogenized in ice-cold suspension and 
lysate (Beyotime, China) was added for total protein 
extraction. An equivalent amount of protein was fractionated 
on SDS polyacrylamide gels before immunoblotting with 
the following main antibodies: anti-Runx2 (Abcam, UK), 
anti-OCN (Abcam, UK) or anti-OPN (ZSGB-BIO, China). 
The membrane was incubated with a peroxidase-conjugated 
secondary antibody. The blotted bands were quantified 
using Image J (Bethesda, USA).

Cell transfection

hRIFs were transfected with miRNA-410-3p mimic, 
miRNA-410-3p inhibitor, MSX2 overexpression plasmid, 
or a negative control. Lipofectamine 2000 (Invitrogen, 
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USA) was used for transfection. The cells were harvested 
for subsequent experiments 48 h post-transfection.

Dual-luciferase reporter gene assay

TargetScan database version 7.1 (http://www.targetscan.
org/vert_71/) was used to predict the target genes of 
miRNA-410-3p, and the wild-type or mutated MSX2 
3'-UTR luciferase reporter vectors were designed. The 
vector was co-transfected with miRNA-410-3p mimics or 
miRNA-410-3p control into hRIFs using Lipofectamine 
2000 (Invitrogen, USA). After culturing for 48 h, luciferase 
activities were detected with the Dual Luciferase Reporter 
Gene Assay Kit (RG027; Beyotime).

Statistical analysis

Data are expressed as the mean ± standard deviation 
(SD). The statistical significance between two groups 
was analyzed by a Student’s t-test. P values <0.05 were 
considered statistically significant. Data analyses were 

performed using Statistical Package for the Social Sciences 
(SPSS version 17.0, Chicago, IL, USA).

Results

Low expression of miRNA-410-3p in RP tissues

qPCR analysis of miRNA-410-3p expression in RP and 
nRP tissues displayed low levels of miRNA-410-3p in 
RP compared with control nRP tissues (Figure 1A). This 
suggests that miRNA-410-3p may participate in the 
progression of RP formation.

Osteogenesis-related protein expression in RP tissues

qPCR and IHC were employed to assess the expression 
levels of osteogenesis-related protein in RP and nRP tissues. 
qPCR revealed higher protein levels of Runx2, OCN, 
and OPN in RP tissues (Figure 1B), with the same trend 
noted via IHC staining (Figure 1C). The results indicate 
that osteogenic-like differentiation may participate in the 
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Figure 1 miRNA-410-3p was low expressed and osteogenesis related protein were high expressed in RPs tissues. (A) The level of miRNA-
410-3p was low in RP tissues; (B) qPCR showed the level of Runx2, OCN, OPN were higher in RP tissues; (C) the IHC showed Runx2, 
OCN, OPN were higher expressed in RP tissues (×100). *, P<0.05. RP, Randall’s plaque; Runx2, runt-related transcription factor 2; OCN, 
osteocalcin; OPN, osteopontin; IHC, immunohistochemistry; nRP, normal renal papillary.
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Figure 2 The hRIFs possess osteogenic-like differentiation potential. (A) Primary cell culture showed hRIFs were shuttle-shaped cells (×100); 
(B) immunofluorescence stain showed hRIFs were positive vimentin expression and negative epithelial membrane antigen expression (×100); 
(C) MTT assay showed the cell proliferation ability of hRIFs was inhibited at 5, 9, 14 days compared to control group; (D) the hRIFs were 
treated with osteogenic medium, the calcium deposition showed a time-dependent trend and was most significantly at 14 days by alizarin 
red staining (×100); (E) the hRIFs were treated with calcium chloride, the calcium deposition showed a time-dependent trend and was most 
significantly at 14 days by alizarin red staining (×100); (F) the absorbance was detected at 570 nm, the results showed the deposits of calcium 
aggregates were significantly at 9 and 14 days by treated with osteogenic medium or calcium chloride. *, P<0.05. hRIFs, human renal 
interstitial fibroblasts; MTT assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.
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progression of RP formation.

Establishment and identification of hRIFs

hRIFs were isolated from human kidney papi l la , 

and identified by morphological examination and 
immunofluorescence staining after extraction and culture. 
The results revealed hRIFs to be shuttle-shaped cells 
(Figure 2A) with positive vimentin expression and negative 
epithelial membrane antigen expression (Figure 2B).
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Figure 3 miRNA-410-3p and osteogenesis proteins showed a time-dependent trend during the hRIFs treated with calcium chloride. (A) 
miRNA-410-3p level gradually decreased with the prolongation of induction; (B,C,D) osteogenesis proteins Runx2, OCN and OPN level 
were increased with the prolongation of induction. *, P<0.05. hRIFs, human renal interstitial fibroblasts; Runx2, runt-related transcription 
factor 2; OCN, osteocalcin; OPN, osteopontin.
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The hRIFs showed osteogenic-like differentiation potential

MTT assay was performed at 1, 5, 9, and 14 days after the 
hRIFs were treated with osteogenic medium or calcium 
chloride. The results showed that cell proliferation was 
inhibited at 5, 9, and 14 days compared to the control 
group (Figure 2C). Alizarin red staining was performed 
to estimate the deposits of calcium aggregates. Calcium 
deposition increased over time, and was most abundant at 
day 14 (Figure 2D,E,F). hRIFs treated with calcium chloride 
during osteogenic-like differentiation displayed decreasing 
miRNA-410-3p levels with the prolongation of induction 
(Figure 3A). In contrast, osteogenesis proteins Runx2 
(Figure 3B), OCN (Figure 3C), and OPN (Figure 3D) levels 
increased under the same conditions. The results suggest 
that hRIFs possess osteogenic-like differentiation potential.

Overexpression of miRNA-410-3p suppressed osteogenic-
like differentiation of hRIFs

Transfection of miRNA-410-3p mimics for 48 h significantly 
upregulated miRNA-410-3p level in hRIFs (Figure 4A). 
Alizarin red staining revealed decreased volumes of calcified 
nodules after overexpression of miRNA-410-3p in calcium 
chloride treated hRIFs (Figure 4B,C). Additionally, mRNA 

expression of Runx2 (Figure 4D), OCN (Figure 4E), and 
OPN (Figure 4F) also decreased after overexpression of 
miRNA-410-3p in calcium chloride treated hRIFs. These 
results indicate that miRNA-410-3p overexpression 
suppressed the osteogenic-like differentiation of hRIFs.

Knock down miRNA-410-3p promoted osteogenic-like 
differentiation of hRIFs

Transfection of miRNA-410-3p inhibitor for 48 h 
significantly downregulated miRNA-410-3p expression 
in hRIFs (Figure 5A). Alizarin red staining showed an 
increased volume of calcified nodules after miRNA-410-3p 
was downregulated in hRIFs treated with calcium chloride 
(Figure 5B,C). Meanwhile, the mRNA levels of Runx2 
(Figure 5D), OCN (Figure 5E), and OPN (Figure 5F) were 
upregulated in the presence of knock down miRNA-410-3p. 
These results suggest that the downregulated miRNA-410-
3p promoted the osteogenic-like differentiation of hRIFs.

miRNA-410-3p regulates the osteogenic-like 
differentiation of hRIFs by inhibiting MSX2

To further  confirm the inhibitory mechanism of 
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miRNA-410-3p in hRIF osteogenic-like differentiation, 
bioinformatics analysis was performed. A potential binding 
sequence between miRNA-410-3p and MSX2 was identified 
by TargetScan (Figure 6A), with binding confirmed by the 
dual-luciferase reporter. Luciferase activity was reduced 
in cells co-transfected with miRNA-410-3p mimics and 
WT-MSX2 (Figure 6B). Furthermore, real‐time qPCR 
and Western blot analysis revealed the ability of miRNA-
410-3p to effectively reduce the expression levels of 
MSX2 (Figure 6C,D), while the miRNA-410-3p inhibitor 
elevated MSX2 expression (Figure 6C,E). The above results 
suggested that miR‐410‐3p participated in the osteogenic-
like differentiation of hRIFs by directly targeting MSX2.

MSX2 promoted osteogenic-like differentiation of hRIFs

To determine the effect of MSX2 on osteogenic-like 
differentiation in hRIFs, these cells were transfected with 
NC (non-specific control), miRNA-410-3p mimics, or 
miRNA-410-3p mimics plus MSX2 plasmids. MSX2 
protein decreased when miRNA-410-3p was overexpressed. 
This phenomenon was reversed by MSX2 overexpression 
(Figure 7A,B). A negative correlation was observed between 
the volume and content of calcified nodules with miRNA-
410-3p overexpression. However, co-transfection of 
pcDNA-MSX2 (Figure 7C,D) led to a reversal of this trend. 
MSX2 was also shown to overcome the downregulation of 

Figure 4 Overexpression of miRNA-410-3p suppressed osteogenic-like differentiation of hRIFs. (A) Transfection efficacy of miRNA-410-
3p mimics in hRIFs for 48 h; (B,C) alizarin red staining revealed the volume of calcification nodules were reduced after miRNA-410-3p 
overexpression in hRIFs treated with calcium chloride (×100); (D,E,F) qPCR showed the mRNA levels of Runx2, OCN and OPN were 
downregulated after overexpression of miRNA-410-3p in hRIFs treated with calcium chloride. *, P<0.05. hRIFs, human renal interstitial 
fibroblasts; Runx2, runt-related transcription factor 2; OCN, osteocalcin; OPN, osteopontin.
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Figure 5 Knock down miRNA-410-3p promoted osteogenic-like differentiation of hRIFs. (A) Transfection efficacy of miRNA-410-
3p inhibitor in hRIFs for 48 h; (B,C) alizarin red staining revealed the volume of calcification nodules were increased after miRNA-410-
3p downregulated in hRIFs treated with calcium chloride (×100); (D,E,F) qPCR showed the mRNA levels of Runx2, OCN and OPN 
were upregulated after knock down miRNA-410-3p in hRIFs. *, P<0.05. hRIFs, human renal interstitial fibroblasts; qPCR, quantitative 
polymerase chain reaction; Runx2, runt-related transcription factor 2; OCN, osteocalcin; OPN, osteopontin.
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Runx2 (Figure 7E) and Osterix (Figure 7F) during miRNA-
410-3p overexpression. The above findings demonstrate 
that low expression levels of miRNA-410-3p enhanced 
the upregulation effects of MSX2 on the osteogenic-like 
differentiation of hRIFs.

Discussion

In 1937, RP were identified and defined as interstitial 
deposits of calcium phosphate (CaP) and calcium carbonate, 
appearing as “type I” papillary calcification on the renal 
papillary surface. These findings were based on the 
dissection of over 1,000 kidney pairs (19). In general, stone 
formation results from precipitation of urinary salts after 

exposure of primary plaques to urine (20,21). RP, while 
observed in both non-stone formers and stone formers, 
is more commonly observed in the latter group (22-24). 
The presences of calcified lesions have been shown to be 
precursors of stone formation.

Analysis by Evan et al. clarified the microscopic structure 
of RP; they found that plaque originated in the basement 
membrane of the thin loops of Henle and extended through 
the interstitium to the region inferior to the urothelium (25).  
Khan et al., under scanning and transmission electron 
microscopic analysis (24), found plaque to appear as a small 
protuberance. Detailed scanning analyses showed plaques 
to be aggregates of spherical CaP crystals mixed with fibers 
of varying thickness and other cellular products. Urine 
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Figure 6 miRNA-410-3p regulates the osteogenic-like differentiation of hRIFs by inhibiting MSX2. (A) Potential binding sequences 
between miRNA-410-3p and MSX2; (B) luciferase activity in cells co-transfected with wt-MSX2/mut-MSX2 and miRNA-410-3p mimics; 
(C,D,E) qPCR and Western blot analysis documented that miRNA-410-3p mimics effectively reduced the expression levels of MSX2, while 
the miRNA-410-3p inhibitor elevated the expression of MSX2. hRIFs, human renal interstitial fibroblasts; MSX2, Msh homeobox 2; qPCR, 
quantitative polymerase chain reaction.
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volume and calcium ion level were the main factors of 
plaque coverage (6). Collectively, these studies suggest that 
hypercalciuria is closely related to the formation of RP and 
kidney stones.

Ectopic calcification is an established process in 
various pathological processes, including kidney stone 
formation and atherosclerosis (26). There is a body of 
evidence which supports vascular calcification as an actively 
regulated process which is similar to bone development. 
Lineage tracing studies in mouse models have shown that 
vascular smooth muscle cells can transdifferentiate into 
osteochondrogenic cells (27). Bone osteoid proteins such as 
BMPs, Runx2, and MSX2 have been shown to be involved 
in these processes. Recent studies have found that renal 
epithelial cells also have the capacity to become osteogenic. 
Jia et al. have shown that bone-related factors (BMP2, 
Runx2, Osterix, and OPN) were significantly increased 
in genetic hypercalciuric rats (28). Using genome-wide 
analysis, Okada et al. found that the expression of OPN in 
renal tubular cells and the migration of macrophages in the 
interstitial space around crystals were necessary for stone 
formation (29).

Kageyama et al. found Madin-Darby canine kidney cells 
could produce CaP crystal on the basal side when grown in 
monolayers (30). When these cells were exposed to a high-
oxalate environment, and to CaOx and CaP crystals, the 
resulting NADPH oxidase activation and reactive oxygen 

production led to osteogenic phenotypes. Umekawa et 
al. found oxalate and CaOx crystals upregulated OPN in 
renal fibroblasts (31). Evan et al. found that Runx2 was 
expressed in the RP of hypercalciuria patients (positive in 
the interstitial cells but not tubular epithelial cells) (32).  
However, idiopathic calcium stone formers showed 
no expression of Runx2 at sites of RP. In the study of 
Mezzabotta et al., mesenchymal cells which did not produce 
calcified nodules stained positive for Runx2 and OPN (33). 
These studies indicated that the RP may be a perivascular 
niche in which epithelial and interstitial cells undergo 
osteogenic differentiation under specific conditions.

hRIFs are one of the main cells in kidney interstitial 
tissue. Studies have shown that the fibroblasts in multi-
organization have osteogenic differentiation potential 
(34,35). However, there are no reports on the osteogenic-
like differentiation of hRIFs. Based on the above 
evidence, we speculated that hypercalciuria may induce 
the formation of RP by stimulating osteogenic-like 
differentiation of kidney interstitial tissue. In this study, 
we found osteogenesis-related proteins to be highly 
expressed in RP tissues. The hRIFs showed osteogenic-
like differentiation potential after treatment with calcium. 
Additional investigations confirmed miR-410-3p regulated 
the osteogenic-like differentiation by directly targeting 
MSX2 in hRIFs. The low-expression of miRNA-410-3p 
led to a stimulatory effect of MSX2 on the osteogenic-
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like differentiation of hRIFs via Runx2-Osterix signaling 
pathway.

In summary, the results of our study revealed that hRIFs 
have osteogenic-like differentiation potential, and that 
miRNA-410-3p regulates hRIFs osteogenic differentiation 
by inhibiting MSX2. These results are relevant to enhancing 
our understanding of the pathogenesis of kidney stones and 
indicate a novel potential therapeutic target.
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Table S1 Primer sequences for qPCR

Target genes Classification Primer sequences

Runx2 Forward AGAAGGCACAGACAGAAGCTTGA

Reverse AGGAATGCGCCCTAAATCACT

OPN Forward ACACTTTCACTCCAATCGTCC

Reverse TGCCCTTTCCGTTGTTGTCC

OCN Forward TCGTGTGTCTTCTCCACAGC

Reverse TGGCCACTTACCCAAGGTAG

Osterix Forward ATGGCGTCCTCTCTGCTTG,

Reverse TGAAAGGTCAGCGTATGGCTT

MSX2 Forward AGACATATGAGCCCCACCAC

Reverse CAAGGCTAGAAGCTGGGATG

miRNA-410-3p Forward AGTTGTTCACCACCTTCTCCAC

Reverse TATCGTTGTACTCCAGTCCAAGTC

qPCR, quantitative polymerase chain reaction; Runx2, runt-related transcription factor 2; OPN, osteopontin; OCN, osteocalcin; MSX2, 
Msh homeobox 2.
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