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Background

Personalized medicine is the frontier of oncological 
treatments in this new century. Molecular characterization 
is currently mandatory in most human malignancies for 
precise diagnosis and to predict response to targeted 
biological drugs. Genitourinary cancers are particular 
in the landscape of solid tumors since few molecular 
prognostic and predictive biomarkers have been identified 
so far in these tumor types. In fact, the diagnosis of 
prostate cancer still largely relies on histology, while the 
therapeutic advances in lethal prostate cancer still mainly 

involve hormone therapy and in a small proportion of 
cases drugs targeting single germline genetic alterations. 
The molecular classification of urothelial cancer has been 
a major advancement in understanding the biology of this 
cancer type. However, the hands-on application of this 
molecular classification is still under-recognized by most 
pathologists and the predictive significance of molecular 
biomarkers in cancer therapy is poorly understood except 
for immunotherapy. Kidney cancer represents the most 
rapidly evolving field among solid tumors in terms of 
change in subtype classification. The next classification of 
the world health organization will encounter a large number 
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of additional kidney cancer types based on molecular 
distinctive features as it happened to the previous edition in 
2016. This improved understanding of kidney tumors with 
different molecular traits and shared histological features 
will likely impact the diagnostic and surgical approach to 
kidney lesions but will not probably change the therapeutic 
strategy of advanced/metastatic cases. Testicular cancer is 
facing a new epidemiological outbreak and a new biological 
classification is linking similar histology to a different 
carcinogenetic pathway and age of occurrence. Molecular 
advances in testicular cancer might therefore affect mainly 
diagnosis since oncologic therapy is standardized and 
associated with good clinical responses in most metastatic 
cases. Finally, penile cancer is a niche in both pathology and 
oncology and it has been mainly related to human papilloma 
virus (HPV) infections. The main molecular interest is 
focusing on non-HPV related tumors and the complex 
relations between cancer and the associated inflammatory 
microenvironment.

The rationale of this review is to start from a literature 
search and explore the status of the art of the impact 
of molecular pathology tests as diagnostic, prognostic, 
predictive biomarkers in genitourinary cancers. The main 
objective is to foresee the benefits that molecular tests 
will bring to the patients harboring these tumor types. 
We present the following article in accordance with the 
Narrative Review reporting checklist (available at http://
dx.doi.org/10.21037/tau-20-1185).

Methods

We performed a review of PubMed/Medline in June 2020 
for the previous ten years using the following search items: 
genitourinary tumors and molecular classification (286 
results); genitourinary tumors and molecular diagnosis 
(1,042 results) genitourinary tumors and molecular 
biomarkers (1,232 results); genitourinary tumors and 
therapy biomarkers (3,127 results). We applied a selection 
diagram to the results according to the Preferred  
Reporting Items for Systematic Review and Meta-
analysis (PRISMA) (1). After further filtering to exclude: 
(I) experimental studies in animals; (II) studies on 
gynecological cancers; (III) generic studies on solid tumors 
including genitourinary cancers; (IV) review articles; (V) 
case reports, 383 publications were selected for inclusion in 
this analysis. The most significant reports have been utilized 
as the base for the commentary of the following two topics: 
molecular classification and diagnosis of genitourinary 

tumors; molecular prognostic and predictive biomarkers in 
genitourinary tumors.

Molecular classification and diagnosis of genitourinary 
tumors 

The classification of kidney neoplasms has changed in the 
last 10 years to include several new entities, previously 
underestimated, characterized by similar features at 
H&E staining but with totally different genetic basis and 
clinical behavior. The recognition of these new entities 
that started with the meeting of the International Society 
of Uropathology in Vancouver in 2009 and has been 
recognized in the WHO classification of 2016 (2,3).

The diagnosis of several of these new entities derived 
from a better molecular tumor characterization. For 
instance, the molecular distinctive trait of the clear cell 
papillary from conventional clear cell cancer is the absence 
of VHL alterations and now this histotype is commonly 
diagnosed on the basis of the CK7+racemase−CA-IX− 
immunohistochemical algorithm (4,5). The diagnosis of 
other renal cell tumors with papillary morphology such as 
the tumors associated with the succinate dehydrogenase 
(SDHB) or the fumarate hydratase (FH) deficiency has been 
possible after the clarification of the role of the Krebs cycle 
genes alterations in renal cell tumors and it is easily possible 
with specific immunohistochemical stains (6,7). X;11 and 
6;11 translocation tumors associated with the MIT family 
genes (TFE3 and TFEB) fusions represent a well-defined 
group of pediatric and adult kidney tumors whose diagnostic 
final confirmation is made possible by break-apart FISH 
or next generation sequencing methods (8,9). The number 
of new tumor kidney entities is steadily growing and will 
be likely recognized by the new WHO classification of 
genitourinary tumors. Among these new entities the tumors 
associated with alterations of the TSC-mTOR pathway are 
particularly relevant (10). The so-called eosinophilic solid 
and cystic renal cell cancer is part of this tumor group and it 
is characterized by mutations in the TSC2 gene, distinctive 
immunoreactivity for cytokeratin 20, and favorable clinical 
behavior (11). Besides, several other renal tumor types 
are encountered in patients harboring alterations of the 
tuberous sclerosis complex. For instance, renal cancer with 
clear cell morphology and prominent muscle stroma or 
high-grade tumors with eosinophilic and chromophobe-
like features often display mutations in TSC1, TSC2 and 
mTOR genes (12,13). The increasing use of next generation 
sequencing panels in solid tumors leads to the discovery 
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of unusual genetic alterations in tumor that would be 
otherwise classified as papillary renal cell carcinoma (RCC). 
This is the case of the renal tumors associated with ALK 
translocations, a molecular trait that represent a target of 
therapy in lung cancer. These tumors display translocations 
of ALK with a large spectrum of partner genes including 
TPM3, STRN, VCL, HOOK, CLIP1 and KIF5B (14).

Non-muscle invasive urothelial cancer may present as 
low-grade papillary or high-grade flat lesions. From the 
biological standpoint both lesions seem to share the loss of 
the CDKN2 tumor suppressor gene encoding for the cell-
cycle regulator p16 protein. While FGFR3 mutations drive 
the growth of low-grade lesions, p53 alterations are typical 
of flat carcinoma in situ (CIS) (15,16). The diagnosis of 
other superficial urothelial neoplasms such as the lesions 
with the typical inverted architecture have been supported 
by mutation of the MAP kinase/ERK pathway, while 
papillary urothelial neoplasms of low malignant potential 
(PUNLMP) are frequently related to promoter mutations 
of the telomerase TERT gene (17,18). TERT alterations 
do not occur in reactive urothelial lesion and this can be 
helpful in distinguishing low-grade neoplastic lesions from 
hyperplastic proliferations such florid cystic cystitis (19). 
The molecular classification of muscle-invasive bladder 
cancer represents one of the major recent innovations in 
the field of urothelial cancer. Several different laboratories 
in the last decade reached the same conclusions about 
the molecular subtypes of bladder cancer that has been 
recognized by The Cancer Genome Atlas (TCGA) 
consortium (20). Starting from a strange similarity with 
breast cancer, these gene expression-based classification 
recognizes the following molecular sub-types of urothelial 
cancer: (I) luminal tumors (as in the breast) mostly express 
genes of urothelial differentiation such as GATA3 and 
uroplakin and frequently display mutations in FGFR3 (16). 
(II) Basal-squamous tumors tend to express opposite genes 
typical of basal cells such as p63 or proteins as cytokeratins 
5/6 and display variable mutations of p53. (III) A third, quite 
undefined, subtype had been named “p53-like”, “luminal 
infiltrated” and it is characterized by retained p53 function 
and moderate to intense inflammatory infiltrate (20).  
(IV) The neuronal-like subtype identifies small-cell neuro-
endocrine bladder tumors. In the attempt to replicate 
the molecular classification using phenotypical markers 
pathologists have tried to use immunohistochemistry as 
surrogate of gene expression. Several phenotypic panels 
including GATA3, p63, CK5/6 and uroplakin have been 
proposed but none has reached the introduction in the 

clinical routine diagnostic practice so far (21,22).
Testicular cancer most likely derives from defective 

maturation of primordial germ cells and it is characterized 
by variable cytogenetic chromosome copy number gains/
losses. The new WHO classification of testicular germ-
cell tumors (TGCT) has re-grouped TGCTs into two 
categories according to the association with concomitant 
germ cell neoplasia in situ (GCNIS) and the age of onset. 
Type I and type 3 tumors such as pre-pubertal teratoma or 
spermatocytic seminoma do not originate from GCNIS 
while the vast majority of TGCTs such as seminoma, 
embryonal carcinoma, yolk-sac tumor and teratoma 
arising from GCNIS (3). The molecular hallmark of 
GCNIS is the gain of chromosome 12p, often leading to 
an isochromosome i(12p). From a diagnostic view-point 
the assessment of the i(12p) is helpful in distinguishing 
TGCT in the metastatic setting and particular in teratoma 
that developed a somatic malignancy, or to differentiate  
pre-pubertal versus post-pubertal type teratoma (23).

About half of penile cancers are associated with HPV 
infection (24). The WHO in 2016 has introduced a 
classification for penile cancer and pre-cancer based 
on the histological lesions associated or not with HPV  
infection (25). Since most of the HPV-related pre-cancer 
lesions progressing to invasive penile cancer are flat [HPV-
related high-grade penile intraepithelial neoplasia (PeIN)] 
and are associated with high-risk HPV strains, the positive 
immunostaining for p16 is now widely used as a surrogate 
for HPV molecular testing by PCR or in situ hybridization 
(26,27). HPV- and p16-negative penile cancers represent 
a peculiar epidemiological subset of tumors (28). These 
tumors are supposed to develop in a background of chronic 
inflammation and progress through hyperplastic and well-
differentiated histological lesions (differentiated PeIN). The 
molecular alterations at the basis of differentiated PeIN are 
currently unknown.

The role of molecular test for assisting the diagnosis of 
prostate cancer is limited to selected tumor settings. One is 
the identification of a prostatic primary origin in the setting 
of a multi-metastatic cancer dissemination at the disease’s 
onset. Immunohistochemical markers of prostatic origin 
such as the tumor suppressor gene NKX3.1 or prostate-
specific antigen (PSA) are reliable in most cases (29). 
Notwithstanding, in certain anatomical sites (serosal cancer 
effusions or bone metastases) and in rare cases these markers 
can turn under-expressed or negative and histology may 
be overlapping. Molecular tests such as the identification 
of the TMPRSS2-ERG fusion, typical of at least 50% 
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prostate cancer or the amplification of the androgen 
receptor gene might be useful for diagnosis (30,31). The 
differential diagnosis between advanced prostate cancer 
with neuroendocrine (NE) differentiation versus primary 
small-cell NE cancer of the prostate represents another 
diagnostic dilemma for pathologists. Both these tumor types 
are likely associated with clinical resistance to therapeutic 
hormone castration and the immunohistochemical markers 
of NE or prostatic differentiation are often of little help (32). 
Unfortunately, both primary small-cell NE carcinoma of the 
prostate and prostate cancers with endocrine differentiation 
may express the same NE immunohistochemical markers 
and the morphology alone does not warrant the diagnosis 
in all cases. The identification of molecular markers such 
as the inactivation of TP53 or RB1, although not entirely 
specific, would help better separate castration resistant 
prostate cancer (CRPC) from small-cell NE neoplasms 
with important clinical implications (33). The increasing 
application of next-generation sequencing (NGS) 
technologies to advanced prostate cancer patients for 
therapeutic options (see below) will certainly improve also 
the diagnostics of the spectrum of NE prostatic lesions (34). 
Novel diagnostic molecular tests are summarized in Table 1.

Molecular prognostic and predictive biomarkers in 
genitourinary tumors 

Oncologic therapy of metastatic RCC is currently based 
on tyrosine kinase inhibitors (TKIs) or inhibitors of the 
m-TOR pathway or immune check-point inhibitors  
(ICPI) (35). TKIs for RCC mainly deploy an anti-
angiogenic consequence of the VHL inactivation in 

clear cell tumors through the simultaneous inhibition of 
several kinases including VEGFR, PDGFRA and MET. 
Personalized therapy of advanced RCC with TKIs is not 
guided by molecular tests to date. However, the use of 
NGS panels in RCC has recently disclosed alterations 
in novel genes such as PBRM1, BAP1 and SETD2, all 
located close to the genetic locus of VHL on chromosome 
3p. These genes are involved in chromatin remodeling 
and histone methylation. BAP1 and SETD2 mutations 
are associated with aggressive disease while PBRM1 
mutations seem to confer favorable prognosis (36). ALK-
translocated RCC and pure sarcomatoid RCC represent 
two specific disease settings. The first unveils the potential  
application of anti-ALK TKIs as demonstrated in 
single case reports (37). The second is associated with a 
high frequency of TP53 alterations that leads to likely 
resistance to TKIs and favors the use of chemotherapy 
or immunotherapy in metastatic sarcomatoid cases (38). 
Immunotherapy with ICPI represents a major advance in 
the therapy of metastatic RCC with both clear-cell and 
non-clear-cell histology (39). The assessment of PD-L1 in 
RCC to predict response to ICPI is currently discouraged 
due to several limitations including the different antibodies 
and the different scoring systems (40). Additional 
predictors of response to ICPI including tumor mutational 
burden and assessment of the tumor inflammatory micro-
environment are potentially promising but require 
prospective validations as biomarkers (41).

The molecular classification of invasive urothelial cancer 
has important therapeutic implications. In fact, advanced 
urothelial cancer of basal subtype is associated with higher 
response rates to cisplatin-based chemotherapy compared 

Table 1 Novel biomarkers of possible future implementation in genitourinary cancer

Cancer type
Biomarkers type

Diagnostic Prognostic Predictive Immunotherapy

Renal cell cancer Mutation: TSC2, TSC1 BAP1, SETD2, 
PBRM1

P53 (sarcomatoid neoplasia);  
PBRM1

Tumor inflammatory  
microenvironment

Urothelial cancer Mutation: FGFR3, TERT None Amplification: HER 2; mutation: 
FGFR3

Inflammatory gene expression 
profiling; PD-L1 IIC; tumor  
mutational burden

Testicular cancer Isochromosome 12p (FISH) Mutation: cKIT Alteration: BRCA1, RAD51 None

Penile cancer None None None PD-L1 IIC (tumor cell)

Prostate cancer TP53, RB1 in CRPC Alteration: PTEN DNA repair: BRCA1, BRCA2, ATM Gene alteration: MMR

CRPC, castration resistant prostate cancer; MMR, mismatch repair.
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to the other subtypes (42). Similarly, a distinctive trait of 
the “p53-like” subtype is the resistance to cisplatin-based 
regimens (43). The luminal subtype of urothelial cancer 
is characterized by mutations in FGFR3. Although the 
number of muscle-invasive cancers of the luminal type 
is lower compared to the other subtypes the presence 
of FGFR3 alterations could be target of specific anti-
cancer agents such as the pan-FGFR inhibitor Erdafitinib 
and Infigratinib. In a phase II clinical trial Erdafitinib 
was associated with 40% objective tumor responses in 
40% of patients with urothelial cancer harboring FGFR  
mutations (44). Although the micropapillary variant 
of urothelial cancer is typically enriched in HER2 
amplification the attempt to apply the well-known HER2 
targeting agents used in breast cancer to urothelial 
malignancies has provided quite disappointing results (45). 
Nevertheless, the over-expression of HER2 in bladder 
cancer is variable, is not only restricted to micropapillary 
tumors and the HER2 amplification is not always coupled 
with protein immunoreactivity (46). Therefore, new clinical 
trials testing anti-HER2 agents with different patients’ 
selection criteria are required. Predictive biomarkers for 
immunotherapy with ICPI in urothelial cancer would 
require a separate review. Currently, the two PD-1/PD-L1 
inhibitors Pembrolizumab and Atezolizumab are approved 
for first-line treatment of advanced urothelial cancer, and 
other ICPI such as Durvalumab, Avelumab and Nivolumab 
are approved for second-line (47). Approximately 20–30% 
of the patients display objective responses and some are 
long-lasting. Responses are more frequent among the basal 
and the p53-like immune-enriched molecular subtypes 
compared to the luminal type. As previously discussed 
for kidney cancer, the predictive test is based on the 
immunoreactivity for PD-L1 using different antibodies 
and different scoring systems and criteria according to 
each ICPI, weakening the role of immunohistochemistry 
as predictive biomarker (48). Molecular predictive factors 
of response to ICPI are more promising and are essentially 
based on the tumor mutation burden, inflammatory genes 
expression profiling and genomic instability (49). A recent 
trial has highlighted the synergy of combined proportional 
score for PD-L1 in immunohistochemistry plus tumor 
mutational burden in advanced urothelial cancer with 
predominant histological variants treated with neo-adjuvant 
Pembrolizumab (50). Clustering of inflammatory genes 
expression by gene set enrichment analyses recently turned 
out as a significant prognosticator in advanced urothelial 
cancer and was also used as a predictor of response in neo-

adjuvant immunotherapy (51-53). It seems very likely 
that in the near future a combination of gene expression 
profiling for inflammatory genes, tumor mutational burden 
and the immunohistochemical expression of PD-L1 in 
inflammatory cells will be required before decision on neo-
adjuvant immunotherapy in urothelial cancer. 

The general good prognosis of post-pubertal testicular 
germ cell tumors (GCTs) and the excellent response to 
chemotherapy even in the advanced cases has limited the 
application of molecular analyses in testicular cancer. The 
Cancer Genome Atlas investigations on GCTs highlighted 
a large amount of cytogenetic alterations and a very low 
mutational load (54). The higher rate of mutations involves 
seminoma where the presence of KIT genetic variants 
seems associated with more intense inflammatory infiltrate 
and potentially regressions. On the contrary, KIT wild-
type seminomas seem more prone to development towards 
other GC histotypes (54). Chemotherapy refractory GCTs 
represent a small subset of patients with few residual 
therapeutic options. The presence of alterations in BRCA1 
or RAD51 in these patients discloses the potential option 
for a treatment with poly (ADP-ribose) polymerase (PARP) 
inhibitors (55).

Investigations on kinase pathways in penile cancer 
evidenced activation of the PTEN, STAT3, GNRH, IL-8 
and B cell receptor signaling and gene overexpression of 
GNRH, NF-κB, STAT3, ERBB2 and 3 (56). However, 
no TKIs have been approved to date in penile cancer. 
Besides target therapy, the high rates of PD-L1 expression 
in squamous penile cancer, the strong correlation 
between PD-L1 immunoreactivity in primary tumors and 
metastases, and the high immunogenicity of the E6 and E7 
HPV proteins make immunotherapy a feasible alternative 
therapeutic option with several ongoing trials (57,58). 

PTEN and the consequent activation of the PI3K/AKT 
signaling pathway can be considered the most reliable 
biomarker of progression in prostate cancer (59). PTEN 
is usually lost in PCA due to deletions, truncations or 
inactivating mutations. Regardless of the mechanism the 
loss of PTEN function is invariably associated with PCA 
recurrence after surgery and PCA specific death (60,61). 
DNA repair deficiency represents the cutting edge of 
predictive biomarkers in PCA. Genes involved in the 
homologous recombination including BRCA1/2 and ATM 
are enriched in lethal PCA and associated with a higher 
chance of developing resistance to castration in advanced 
cases (62,63). In this view, the PARP inhibitor Olaparib was 
able to improve the disease-free survival of CRPC patients 
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showing at least one alteration in BRCA1/2 or ATM after 
failure of hormone therapy (64). Mismatch repair (MMR) 
is also impaired and enriched in advanced and histologically 
aggressive PCA compared to localized disease (65). Most 
PCA patients with MMR belong to Lynch families or 
develop sporadic mutations in the MMR genes. Although 
immunotherapy is not yet a therapeutic option for PCA it 
might represent a promising alternative in advancer patients 
with MMR alterations (66). Finally, the role of androgen 
receptor amplification and splicing variants has been deeply 
investigated in the last decade and associated to resistance to 
hormone blockade (67,68). Despite the emerging evidences 
linking AR alterations to resistance to castration the tests 
for the assessment of AR amplification and ARv7 expression 
did not enter yet in the clinical practice. New prognostic 
and predictive biomarkers are depicted in Table 1. 

Wide genome analyses and mostly the TCGA initiative 
have shed light on the multi-faced genetic mechanisms 
behind the cancerogenesis and progression of genitourinary 
tumors. NGS technologies nowadays represent a simple and 
quite inexpensive tool to dissect the molecular alterations 
of single cancers. Genitourinary tumors represent the 
new frontier of the molecularly driven therapies and 
immunotherapies. The future is bright, we just need to look 
at it with critical eyes.
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