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Prostate cancer is the second most common malignancy 
diagnosed in men and the sixth highest contributor to 
cancer-related mortality worldwide (1). Advanced prostate 
cancer initially responds to androgen deprivation therapy 
before progression to an incurable state termed metastatic 
castration resistant prostate cancer (mCRPC). mCRPC is 
typically treated with taxanes or androgen receptor (AR) 
pathway inhibitors, but the survival benefit is variable 
and often brief (2). In recent years, focus has turned to 
the development of therapies outside of the AR signaling 
pathway. PARP inhibitors and pembrolizumab are effective 
in the subset of mCRPC with homologous recombination 
repair and mismatch repair defects, respectively (3,4). 
Further agents including PSMA-lutetium-177, DNA 
peptide-based vaccines, and oncolytic viruses are in various 
stages of clinical development (3). While single agent 
immune checkpoint blockade (ICB) has proved relatively 
ineffective in unselected mCRPC, in this commentary, 
we highlight its potential for eliciting potent anti-tumor 
responses when combined with agents that target the 
uniquely immunosuppressive tumor microenvironment 
(TME) of mCRPC.

In recent years, ICB has shown remarkable success in the 
treatment of some metastatic cancers including melanoma, 
lung, and urothelial carcinoma. Approved ICBs target either 
CTLA-4 or the PD-1/PD-L1 axis to promote tumor cell 
elimination by enhancing T cell activation and invigorating 
exhausted T cells in the TME. In metastatic melanoma, 
long-term disease control is possible via the generation 

of T cell memory in response to CTLA-4 blockade (5,6). 
In prostate cancer, targeting the immune system initially 
gained traction with the FDA approval of Sipuleucel-T, an 
autologous cellular vaccine, for patients with mCRPC (7). 
However, subsequent phase III clinical trials employing 
ICB with ipilimumab (anti-CTLA-4), atezolizumab (anti-
PD-L1), autologous cellular (PROSTVAC) or viral vaccine 
(GVAX), and phase II trials with pembrolizumab (anti-
PD1) have shown no significant survival benefit (8,9). Early 
results from CheckMate 650, an on-going phase II clinical 
trial employing a combination of nivolumab (anti-PD1) and 
ipilimumab (anti-CTLA-4), showed promising objective 
response rates of 26% in chemotherapy-naive patients, and 
10% in chemotherapy-exposed patients. However, about 
half of patients experienced grade 3–5 adverse events, and a 
third discontinued treatment (10). Collectively, ICB clinical 
trial results and correlative analyses have indicated that most 
mCRPC is immunologically ‘cold’ and resistant to current 
immunotherapeutic approaches.

The poor response to ICB in prostate cancer is 
attributable to a combination of extrinsic and intrinsic 
resistance mechanisms including low mutational and 
neoantigen burden, defective MHC-I restricted antigen 
processing and presentation, paucity of inflammatory gene 
signatures, and the presence of immunosuppressive cell 
types (11,12). In particular, myeloid derived suppressor cells 
(MDSCs) appear to have an important role in mCRPC 
progression as they secrete cytokines that suppress T cells, 
promote M2 macrophage polarization, and can also directly 
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promote AR-mediated tumor growth through IL-23/IL-
23R signaling (13). Treatment exposure likely further alters 
the immune microenvironment and contributes to ICB 
resistance. For example, increased M2 macrophages and 
Tregs have been observed in tumors or tumor draining 
lymph nodes of mice exposed to androgen deprivation 
therapy (14-16). Of course, prostate tumors are notoriously 
heterogeneous, and in a recent phase II trial of ipilimumab 
in mCRPC, elevated CD8+ T cell infiltration and expression 
of an IFNγ gene signature in pretreatment tumors were 
associated with disease control and survival benefit (17). 
Importantly, this suggests that there may be an opportunity 
to improve the efficacy of ICB in prostate cancer through a 
combination approach that targets the immunosuppressive 
TME and invigorates infiltrating T cells. One such 
approach, with demonstrated efficacy over single agent use 
in a preclinical mouse model, was the pairing of ICB with 
phosphokinase inhibitors which cooperatively decreased 
mCRPC tumor growth, by selectively targeting tumor 
infiltrating T cell-inhibitory MDSCs, and synergistically 
enhancing ICB induced CD8+ T cell expansion (18).

Bone is the favored site of metastatic lesions in 
mCRPC and appears to be uniquely suited to promoting 
prostate cancer growth. Indeed, the establishment of bone 
metastases fits with Paget’s ‘seed and soil’ hypothesis as 
prostate cancer cells migrate by hijacking bone tropic 
chemokine cues meant for hematopoietic cells, invade 
the bone endosteum, and eventually colonize the bone 
through paracrine signaling processes involving tumor 
cells and bone-resident osteoblasts, osteoclasts, and other 
stromal cells (19). Bone metastases frequently form in 
the axial skeleton including the spine, pelvis and ribs. 
These skeletal locations also house the bone marrow 
which functions as an essential lymphoid organ containing 
hematopoietic stem and progenitor cells, as well as mature 
adaptive and innate immune cell lineages (20). Therefore, 
for successful metastatic colonization, prostate tumor cells 
must first establish a foothold in the marrow and alter the 
bone microenvironment to a pro-tumorigenic state. The 
presence of a variety of immune cells suggests that tumor-
immune crosstalk in the bone microenvironment is an 
important factor in metastatic disease progression. In this 
regard, TGF-ꞵ1 released by dysregulated osteoclastic bone 
resorption, stands out as a critical immunomodulator that 
can exert suppressive effects on antitumor immunity by 
inhibiting Th1 cells and cytotoxic CD8 T cells (21). Other 
examples of tumor-promoting interactions between bone 
metastases and immune cells include the recruitment of 

immunosuppressive Tregs, MDSCs and macrophages via 
tumor mediated chemokine signaling, and expression of 
osteoclast activating molecules by plasmacytoid dendritic 
cells (22). Taken together, it is plausible that tumor-
immune cell crosstalk within the bone microenvironment 
contributes to immunotherapy resistance however this 
remains a relatively underexplored area.

T h e  v a l u e  o f  d i s s e c t i n g  t h e  b o n e  i m m u n e 
microenvironment in mCRPC was thrown into the limelight 
by a recent groundbreaking study from Jiao and colleagues 
that identified and exploited an ICB resistance mechanism 
within the bone marrow of men with mCRPC (23). The 
work was predicated upon the observation that patients 
with bone metastases have worse outcomes in ICB trials 
than those without bone metastases (10,24). Examination of 
immune signatures in the bone and soft tissue metastases of 
ICB-treated patients revealed site-specific differences in the 
tumor-associated T cell compartment. In bone metastases, 
ipilimumab treatment led to an expansion of Th17 cells 
while visceral metastases exhibited a skew towards Th1 
responses. This distinction in immune response is important 
because Th1 cells are thought to be better at generating 
and maintaining cytotoxic CD8+ T responses necessary for 
tumor clearance compared with Th17 cells. To validate 
these site-specific differences in Thelper response, the 
authors generated osseous and subcutaneous mCRPC 
animal models using a syngeneic Myc-CaP cell line and 
degarelix-induced castration. Consistent with the human 
data, when treated with a combination of anti-CTLA-4 and 
anti-PD1, animals with only subcutaneous tumors displayed 
increased survival and tumor control compared to mice 
with osseous tumors. Furthermore, single cell analysis of 
the immune infiltrates in osseous and subcutaneous tumors 
suggested that although ICB resulted in expanded CD4+ T 
cells, CD8+ T cells, and dendritic cells in both metastatic 
niches, the quality of the CD4+ T cell response differed 
considerably. Again mirroring human metastatic sites, 
Th17 and Treg cells dominated in the bone while Th1 cells 
expanded in subcutaneous tumors (23). Interestingly, this 
pattern of Th17/Treg vs. Th1 polarization also appeared 
to be present prior to ICB treatment, suggesting that ICB 
expands T cells in a lineage-constrained manner.

To investigate further, the authors interrogated the 
cytokine, chemokine, and growth factor profile of bone 
marrow in their model system. Bone metastases showed 
an increase in TGF-ꞵ1 expression relative to normal 
contralateral bone from the same animal or relative to bone 
from healthy control animals. IL-6 was also altered in bone 
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marrow but the elevated expression pattern was similar 
in both healthy and diseased bone compared to serum 
indicating that increased IL-6 is merely a feature of the 
osteogenic bone environment. Nevertheless, TGF-ꞵ1 and 
IL-6 are well-established synergistic promoters of Th17 
polarization (25), and TGF-ꞵ1 can also limit Th1 responses; 
thus providing a potential explanation for the inappropriate 
Th17 response observed in the ICB-exposed bone 
metastases of both animal models and humans. Elevated 
TGF-ꞵ1 expression was tied to RANKL dependent bone 
resorption by osteoclasts, as RANKL blockade reduced 
osteoclastic activity and decreased TGF-ꞵ1 expression. The 
increased TGF-ꞵ1 expression observed in murine tumor 
bearing femurs was also confirmed in human mCRPC bone 
lesions (23).

The identification of elevated RANKL, IL-6 and 
TGF-ꞵ1 nominated several options for evaluation in 
combination with ICB to improve treatment outcomes. 
However, Jiao and colleagues found that anti-TGF-ꞵ 
blockade synergized best with anti-CTLA-4 and anti-PD1 
to control tumor growth and improve survival. Importantly, 
anti-TGF-ꞵ could be combined with anti-CTLA-4 alone 
to provide similar therapeutic benefit, thereby highlighting 
a clinically-relevant pairing which may reduce adverse 
effects compared to dual ICB. Examination of immune 
cell composition in these single ICB and anti-TGF-ꞵ 
treated osseous mCRPC tumors showed an expansion of 
Th1 cells and depletion of Tregs. Surprisingly, the Th17 
compartment was still present suggesting that pre-existing 
Th17 cells were able to expand in a TGF-ꞵ independent 
manner in response to treatment. IL-6 and IL-23 are 
known to promote and maintain the Th17 lineage (26) and 
it is possible that osteoblasts or MDSCs secreting these 
cytokines in CRPC bone mets may continue to support 
Th17 cell development. Since cytotoxic T cells are the 
main tumor eliminating immune cell type, the authors 
investigated the effects of anti-TGF-ꞵ and anti-CTLA-4 
alone or in combination on intratumoral CD8 T cells. T 
cell receptor diversity analysis showed that the proportion 
of expanded clones was highest in the context of combined 
anti-TGF-ꞵ and anti-CTLA-4 blockade (although only a 
few T cell clones showed evidence of expansion). These 
CD8 T cell clones possessed an effector/memory signature 
and expressed genes associated with T cell cytotoxicity 
and tissue retention (23). In summary, this study provided 
detailed insight into a TGF-ꞵ linked bone-specific 
mechanism of mCRPC resistance to ICB, and demonstrated 
that targeting this immunosuppressive cytokine could 

move the needle from ‘cold’ to ‘hot’ in recalcitrant bone 
metastases.

TGF-ꞵ signaling also appears to be a core pathway 
contributing ICB resistance in ‘immune excluded’ metastatic 
urothelial carcinomas and colorectal cancer (27,28). 
Encouragingly, in preclinical studies, the TGF-ꞵ signaling 
pathway can be targeted by anti-TGF-ꞵ mediated depletion or 
by TGF-ꞵ inhibitors such as galunisertib (27,28). Together, 
these findings set the stage for clinical trials testing ICB in 
combination with TGF-ꞵ inhibition in mCRPC and other 
cancers with immunosuppressive microenvironments. Of 
course, given the heterogeneity of prostate cancer, clinical 
implementation of this combination will likely require 
development of predictive biomarkers. Importantly, while 
Jiao et al. utilized a MYC-expressing mCRPC model  
system (23), human mCRPC comprises several distinct 
molecular subtypes, each with differential biological 
and clinical impact (29). As such, there is a need to 
understand whether underlying tumor genomic and 
transcriptomic subtypes are associated with the degree 
of immunosuppression in bone metastases. This may 
be particularly relevant in the context of AR expression 
heterogeneity, since about 20% of bone metastases appear 
to exhibit low AR activity, and higher concomitant immune 
cell infiltration and MHC-I expression (30). 
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