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Editorial on Update on Molecular Classification and Individualized Treatments of Genitourinary Tumors

Digital diagnostics and artificial intelligence in prostate cancer 
treatment in 5 years from now

The range of novelties included in this special series on “Update on molecular classification and individualized treatments 
of genitourinary tumors” published in the journal Translational Andrology and Urology (1-8) has led us to considerations on 
diagnosing and treating patients with genitourinary tumors in 5 years from now. 

Digital pathology (DP)

This digital-based approach to histological diagnosis, also called DP, is a new approach in the morphologic analyses of glass 
slides either with tissue sections obtained from formalin-fixed paraffin embedded tissue (FFPE) or with frozen sections. Slide 
scanners are designed to obtain virtual slides of entire tissue sections, i.e., whole slide image (WSI), including large format 
histology, from large glass slides. The whole tissue section is represented in the virtual slide (Figure 1). The advantage of the 
virtual slides, compared with still images, is that a the user can change magnification to zoom in and out, while looking for 
diagnostic features as with an optical microscope (9,10). WSI technology has attracted the greatest attention in the pathology 
community. DP will become commonplace in five years from now.

Artificial intelligence

AI is defined as “the ability of a machine to perform cognitive tasks to achieve a particular goal based on provided data” (11). 
The use of DP will allow the routine implementation of AI-based algorithms in the pathology (12,13). The most commonly 
used image-based AI algorithms are “convolutional neural networks” (14-16). These algorithms are based on WSI as learn 
and input associations and links between items such as a diagnosis made by a histopathologist, underlying molecular features 
and patients’ survival or response to adjuvant/neoadjuvant therapy, i.e., outcome measures (16). Such algorithms have the 
capability of going beyond the visual evaluation of morphologic features to identify tissue patterns that are not perceived 
by human recognition. This includes the tumor microenvironment. AI can combine together pieces of information derived 
from a host of features in order to make the overall final diagnosis. The features are then link to additional patients-related 
information in order to give data of potential value on the behavior of the disease, outcome of the patient and prediction of 
response to a certain therapeutic strategy (11).

Computational pathology and Gleason grading

Computer-based diagnosis of prostate cancer (PCa) on glass slides can be achieved by machine learning (ML) (Figure 2) to 
optimize reproducibility and accuracy as well as improve “health-care delivery by enabling the use of customized precision-
care pathways” (11). 

It is now feasible to grade PCa on virtual slides, thus improving reproducibility and accuracy by applying computer-based 
methods (17). Several investigators have dealt with PCa grading based on DP and AI (18). Lucas et al. (19) have attempted 
in a recent study to build an automatic classification of the Gleason pattern. This method can assist pathologists in the 
definition of the PCa Grade Groups (GG) in prostate biopsies. When distinguishing between Gleason patterns 4 or higher 
and Gleason pattern 3, accuracy was 90%, specificity and sensitivity were 94% and 77%, respectively. Concordance of their 
computer-based GG evaluation with the evaluation made by a pathologist was 65% (κ being 0.70). This indicates a substantial 
agreement.

AI can create algorithms that can allow a generalist to function as a specialist. Nagpal et al. (20) adopted “a supervised 
learning method to develop a deep learning system (DLS) for PCa grading” on radical prostatectomy specimens. Accuracy 
was assessed for the assignment of GG by generalists, in comparison to specialists. The DLS outperformed the generalist 
pathologists (accuracy of 0.70 vs. 0.64).
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Digital microscopy of PCa with a fluorescence confocal microscope

Fluorescence confocal microscopy (FCM) is an optical imaging technique that provides digital microscopic images of fresh 
tissue in a real time fashion, without conventional processing (15). FCM has been widely applied in several fields including 
dermatopathology, for the detection of basal cell carcinoma and for the diagnosis of skin inflammatory diseases. In all studies, 
the acquisition of FCM images takes 2 to 5 minutes, without the need for conventional processing. There is no need for 
dedicated personnel and equipped laboratory (21). FCM digital images can be web-shared and interpreted by a remote 
pathologist in a real time, without the need for on-site personnel, i.e., a pathologist, other than the surgeon already involved 
in the surgical procedure. All studies showed the preservation of tissue integrity for further conventional tissue evaluation 
(Figure 3) as well as for immunohistochemistry after the initial FCM analysis.

In a study from our group, detection of PCa with FCM was aligned with routine pathology reports in hematoxylin 
and eosin (HE) stained sections (95.1% of correct-diagnosis with FCM, κ being0.84). “Inter-rater agreement  
between pathologists was almost perfect for both HE and FCM for PCa detection (0.98 for HE, κ=0.95; 0.95 for FCM, 
κ=0.86); for cancer grade attribution only a moderate agreement was reached for both HE and FCM (HE κ=0.47; FCM 
κ=0.49)” (21).

PCa grade by radiomics

Radiomic analysis, “involving feature extraction from images with classifier techniques”, “can automatically predict the grade 
of cancer with a precision and speed beyond the scope of human visual analysis” (22).

Figure 1 Virtual slide of radical prostatectomy specimen examined with whole mount technique. H&E (magnification 2×).

Figure 2 Machine Learning technique to detect prostate cancer and create a cancer probability map. (A) A support vector machine classifier, 
trained and validated by Moradi et al. (13), has produced this probability map. Hot colors show increased probability of cancer on a T2-
weighted MRI image. (B) T2-weighted image of the mid-gland with a suspicious region in the anterior horn of the right peripheral zone. (C) 
The T2-weighted image with the probability map shown as a transparent overlay. (D) The corresponding histopathology whole-mount slide 
in which the main pathological finding is a Gleason 3+4 tumor in the anterior horn of the right peripheral zone. H&E (magnification 2×).
ML, machine learning. Reproduced with permission from Goldenberg et al. (11). (For further details, please see the legend of Figure 3 of the 
paper from which the image was reproduced).
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Investigations have utilized radiomic features, obtained from magnetic resonance (MR) images, for computer-based 
diagnosis (23-25). In addition to basic diagnostic information, such analyses may detect subtle features and insights of the 
neoplasms, making additional evaluation into the “radiomic assessment of PCa as a priority” (Figure 4).

Radiomic features most important to predict the grade of PCa in order to estimate the aggressivity of the tumor under evaluation 
remain largely unexplored. Chaddad et al. (22) identified those radiomic features derived from both T2-WI and ADC images for the 
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Figure 3 Schema of a radiomic model for patients with PCa. Acquisition of pre-treatment PCa patient’s MR images; Regions of interest (i.e., 
subvolume 21×21×3 voxels); Extraction of 41 radiomic features from ROIs; Feature significance analysis based on Spearman rank correlation 
and Kruskal-Wallis, and multivariate prediction of Gleason score groups using the random forest model. Reproduced under the terms of the 
Creative Commons Attribution License (CC BY) from Chaddad et al. (22).
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Figure 4 Prostate biopsy examined with confocal microscopy and standard hematoxylin and eosin (H&E). Prostatic adenocarcinoma in 
confocal microscopy (A) and H&E (B). Normal prostatic glands with confocal microscopy (C) and with H&E (D). Magnification 10×.
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identification of three groups of Gleason scores (GS) and “classifying these groups using the RF classifier model”. Their evaluations 
found that three features, i.e., zone size non-uniformity, large zone size emphasis and zone size percentage, can discriminate groups 
of GS and correlate individual groups with aggressiveness Such items are of importance in predicting GS 6. The sum entropy is the 
most important to predict GS 4+3 (7). Radiomics, as a noninvasive test, has the potential, to predict the GS in men with PCa.

Conclusions: multi-criteria decision making and information fusion

Management of men with PCa is challenging due to the fact that there is biological “diversity between patients and 
histopathology alone cannot accurately predict PCa outcomes” (26).

In the last few years, utilization of genomic- based risk prediction models and molecular profiling has received a great 
interest. ML techniques are adopted in such evaluations in order to identify either the individual genes or groups of them 
for “which expression specificity to predict a certain clinical outcome is high” (27). Data can then be utilized to develop risk 
stratification and diagnostic tools, for producing targeted drug approaches. as well as for determining individualized treatment 

ML algorithms are useful to improve treatment in patients with PCa by increasing the surgeon’s display with additional 
features including PCa location at the time of the robotic and other image-guided procedures. It can be used for the 
“autonomous manipulation of tools for assistance in the operating room” (11).

The process of merging data originating from multiple sources, including digital diagnostics, radiomics, diagnostic imaging 
and robotic surgery, “is defined as multi-criteria decision making and information fusion” (28). The resulting information, 
including the diagnostic and therapeutic decisions, when applied to men with PCa examined with large format histology and 
whole slide imaging (28), and with multiple biomarkers deriving from tissue, urine and blood samples, is far more accurate 
than when the various sources are evaluated separately and individually” (28). All this involves the utilization of AI.
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