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Introduction

Artificial intelligence (AI) was proposed by John McCarthy 
at the Dartmouth conference held in 1956 in New 
Hampshire. It refers to a new technology science that 
researches and develops theories and methods (1). Generally 
speaking, AI is a kind of computer technology that can 
simulate human behavior and extend human ability beyond 
human instructions. In recent years, with the development 
of data analysis, image recognition, and other technologies, 
AI application in the medical field is gradually expanding 
and becoming more in-depth, especially in medical image 

recognition processing and clinical medical intelligent 
decision-making. AI provides new opportunities for early 
detection, accurate diagnosis, and the individualized 
treatment and management of diseases (2-4).

Urine is a kind of liquid excrement that is excreted from 
humans and vertebrates through the urinary system and 
urinary tract as a byproduct of metabolism. Urine contains 
many substances, such as proteins, electrolytes, sugars, 
and creatinine, amongst others, which can change under 
different physiological and pathological conditions (4-6).  
Therefore, AI combined with urine detection provides 
the possibility for the diagnosis of diseases. Based on 
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the different urine components, this paper summarizes 
the research field and applications of AI combined with 
urine component detection and analysis in the diagnosis 
and treatment of urinary system diseases, cardiovascular 
diseases, digestive tract diseases, and other multisystem 
diseases, which are also summerized in Table 1 and Figure 1. 
We also explore its limitations and development prospects. 
We present the following article following the Narrative 
review checklist (available at http://dx.doi.org/10.21037/
tau-20-1405).

Methods

A systematic literature search was conducted in September 
2020 based on computerized databases, including PubMed, 
EMBASE, the Cochrane Library, and 2 main Chinese 
databases (WANFANG and CNKI) without language 
restrictions. Search terms or keywords used included 
“artificial intelligence”, “machine learning”, “urine 
proteomic”, “urine metabolomic”, “urine RNomics”, and 
“urine cytopathology”. Moreover, we performed a search of 
the reference lists of the included studies or relevant reviews 
to ensure literature saturation. 

AI and medicine

The core technologies of AI include computer vision, 
machine learning, natural language processing, robotics, 
and speech recognition (25,26). AI technology applications 
in the medical field are mainly computer vision and machine 
learning (27-34). Computer vision aims to replace the visual 
organ as the input means through the imaging system, then 
analyzes and processes the image through the computer. 
Therefore, computer vision is widely used in medical 
imaging to improve recognition and analysis ability to 
help predict and diagnose the disease (27-32). AI has been 
widely used in the image-based diagnosis and has shown 
strong perandom forestsormance. Kermany et al. (31) used 
the combination of deep learning and optical coherence 
tomography images to diagnose retinal-related lesions. This 
technology demonstrated good perandom forestsormance 
in diagnosing age-related macular degeneration and 
diabetic macular edema. Also, AI applications based on 
other data types, such as electronic health records, are 
developing rapidly. Liang et al. (32) developed a natural 
language processing system based on deep learning, which 
could effectively extract data from electronic health record 
and build a diagnostic system based on the data. The results 

showed that the system could accurately diagnose multiple 
pediatric diseases. Machine learning is multidisciplinary and 
interdisciplinary, covering probability theory knowledge, 
statistics knowledge, approximate theoretical knowledge, 
and complex algorithm knowledge. It uses the computer 
to simulate the real-time human learning process and 
divides existing content into knowledge structures to 
effectively improve learning efficiency (30-33). With the 
popularization of computer network technology and the rise 
of big data, massive medical data holds great value. Machine 
learning technology can effectively collect and process 
this data, and improve the level of disease diagnosis or 
provide the possibility for devising personalized treatment 
plans. According to different learning methods, AI can be 
divided into supervised learning, unsupervised learning, 
and reinforcement learning. Its common algorithms mainly 
include decision trees, support vector machines, random 
forests, artificial neural networks, and deep learning, 
amongst others. Of these algorithms, support vector 
machines and random forests are widely used in clinical 
medicine. These algorithms have different characteristics 
and advantages. Support vector machines can transform the 
problem of nonlinear separability into a linearly separable 
problem. A decision tree is a tree-like decision-making 
model in which each internal node represents a judgment 
on an attribute, each branch represents the output of a 
judgment result, and finally, each leaf node represents 
a classification result. Random forest is a classifier that 
contains multiple decision trees, randomizes the use 
of variables (columns) and data (rows), generates many 
classification trees, and summarizes the classification trees’ 
results. Deep learning is also gradually being utilized in 
medicine. Through its multilayer structure, the machine 
can automatically find the features or laws in the data to 
improve perandom forestsormance to predict and classify 
the data. According to the different characteristics of the 
algorithms, they are applied to many aspects. For example, 
deep learning has obvious advantages in processing the 
increasing amount of big data in medicine and medical 
imaging diagnosis. support vector machines and random 
forests are used to establish AI-assisted diagnosis 
technologies. Applications of other medical field algorithms 
are also being continuously developed and evaluated (34-36).

AI and urine detection

AI combined with urine proteomics
Urine produced under normal conditions contains a small 
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number of polypeptides and proteins. When the body 
undergoes physiological and pathological changes, the 
types and content of polypeptides and proteins in the urine 
may change. Therefore, it is possible to recognize the 
changes of related proteins in urine through AI and carry 
out disease diagnosis (37-40). In 2016, Rossing et al. (7) 
of the University of Copenhagen in Denmark obtained 
urine proteins by capillary electrophoresis combined with 
mass spectrometry. Based on this, a machine learning 
algorithm for heart failure with decreased ejection fraction 
was established. After testing, the area under the receiver 
operating characteristic (ROC) curve (AUC), sensitivity, 
and specificity of the model were 0.972, 93.6 %, and 92.9 %, 
respectively.

Similarly, Zhang et al. (8) constructed a machine 
learning model based on 96 potential heart failure-specific 
peptide biomarkers to predict sudden heart failure, and the 
results showed that the AUC of the model was 0.7. These 
results suggest that the technique may help understand 
the pathogenesis and diagnosis of heart failure with 
reduced ejection fraction. Von Zur Mühlen et al. (9) from 
the Department of Cardiology of Freiburg University, 
Germany, used a support vector machines model and 
urine proteins obtained from capillary electrophoresis 
coupled to mass spectrometry to construct a prediction 
model of deep vein thrombosis in a 2015 study. The 

model’s sensitivity and specificity were 100% and 83%, 
respectively, in an independent cohort of 6 cases and 41 
controls. This technique may help find the specific proteins 
and peptide markers of lower extremity venous thrombosis 
and assist clinicians in predicting the occurrence of lower 
extremity venous thrombosis earlier and more accurately 
in future clinical practice. Zhang et al. (10) of the State 
Key Laboratory of proteomics, China National Center 
for protein science, combined proteomics technology 
with a random forests model. They built a lung cancer 
prediction model by using the random forests algorithm to 
search for possible lung cancer-specific diagnostic markers 
in urine, and the feature selection algorithm was used to 
screen out sensitive urinary protein markers. After testing, 
the model could correctly classify most lung cancer cases 
in the training group (n=46) and the test set (n = 14–47), 
and the AUC ranged from 0.8747 to 0.9853. Nakajima 
et al. (11) of Tokyo Medical University used polyamine 
biomarkers in the urine combined with machine learning to 
distinguish between colorectal cancer, benign diseases, and 
healthy people. They utilized liquid chromatography-mass 
spectrometry (LC-MS) to profile 7 kinds of polyamines. 
Based on machine learning algorithms such as decision trees, 
the classifier achieved an effective prediction of colorectal 
cancer, and the study found that N1, N12-diacetylspermine 
had the best AUC (0.794) among these polyamine species. 

Urine 
 RNomics

Urine 
proteomics

Urine 
metabolomics

Urinary 
function

artificial
intelligence

Urothelial cell carcinoma

Heart failure
Deep vein thrombosis

Lung cancer 
Renal damage

Colorectal cancer

Bladder cancer
Prostate cancer
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Lower urinary tract symptoms

Bladder cancer
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Figure 1 The applications of artificial intelligence combined with urine detection. 
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Moreover, polyamine combination showed a higher AUC of 
0.961. Similarly, combining LC-MS with machine learning 
techniques, Roux-Dalvai et al. (12) used data-independent 
acquisition and machine learning algorithms to define 
a peptide signature of bacterial species causing urinary 
tract infection and then investigated the unknown urine 
samples by targeted proteomics. This technology effectively 
shortened the detection time of pathogens and had 100% 
accuracy when looking at data above the clinical threshold 
of 1×105 CFU/mL (CFU: colony forming units). The 
studies described above show that AI provides possibilities 
for non-invasive and precise diagnosis of diseases based on 
urine proteomics information.

AI combined with urine metabolomics 
Metabolomics is a research method that conducts a 
quantitative analysis of all metabolites in organisms’ 
bodies and seeks to determine the relative relationship 
between metabolites and physiological and pathological 
changes (41,42). Urine, as the excreta produced by human 
metabolism, contains much metabolomics information. 
However, due to the variety of metabolites, a mass of 
data, and the remaining uncertainties regarding research 
on diseases’ pathophysiological changes, using urinary 
metabolites for disease diagnosis and treatment in the 
past mostly remained theoretical. The development 
of AI technology makes it possible to process urinary 
metabonomics data, which contains much noise. Eisner 
et al. (13) used machine learning algorithms to establish 
a predictive model, which aimed to predict whether a 
patient needed a colonoscopy based on urine’s metabolic 
profile. The study used the urine metabolic profiles, 
colonoscopy results, and medical histories of 988 patients 
(633 normal and 355 who required colonoscopy) to build 
a predictive model through machine learning algorithms 
such as support vector machines. The predictor judged 
whether a new patient needed a colonoscopy by analyzing 
their urine profile and medical history. The results showed 
that the predictive model had a sensitivity of 64% and a 
specificity of 65%, and the experimenter could balance and 
adjust the two. Shao et al. (14) analyzed the metabolites in 
patients’ urine with bladder cancer and hernia by ultra-high 
perandom forestsormance liquid chromatography-mass 
spectrometry. They then established the prediction model 
of bladder cancer based on the urine metabolism spectrum 
and 6 candidate urine markers. The algorithm’s diagnostic 
accuracy, sensitivity, and specificity were 76.60%, 71.88%, 
and 86.67%, respectively.

Similarly, Kouznetsova et al. (15) combined urine 
metabolites and machine learning algorithms to identify 
early and late bladder cancer. The best performing model 
was able to predict metabolite class of different stage with 
an accuracy of 82.54% and the area under precision-recall 
curve of 0.84 on the training set. Caudarella et al. (16) 
utilized an artificial neural network to process 6 parameters, 
including serum Na and K, Na, P, Oxalate, and the AP 
(CaP) index (ion-activity products, AP; calcium phosphate, 
CaP) from the urine of patients with urinary calculi and 
the recurrence of calculus in 5 years. They found that these 
parameters had a significant nonlinear relationship with 
the recurrence of calculus. The results suggested that this 
model could partly predict the recurrence of calculus. Liang 
et al. (17) analyzed the urine metabolism spectrum using 
liquid chromatography-quadrupole time of flight-mass 
spectrometry and then searched for liver metabolic markers 
cancer through a machine learning algorithm. They found 
that 15 kinds of urine metabolites were helpful for the 
diagnosis of liver cancer. Among them, the sensitivity 
and specificity of palmitic acid, alpha-N-Phenylacetyl-L-
glutamine, phytosphingosine, indoleacetyl glutamine, and 
glycocholic acid for liver cancer diagnosis were 96.5% 
and 83.0%, respectively. Such techniques can be used not 
only to diagnose diseases but also to predict prognosis. 
Dykstra et al. (18) established a machine learning algorithm 
by combining urine metabonomics with AI to predict 
the tolerance and response of colorectal cancer patients 
after adjuvant chemotherapy. In this study, 4 different 
machine learning algorithms, including the least absolute 
shrinkage and selection operator algorithm, support vector 
machines, decision tree, and random forests, were used to 
construct prediction models to predict the 5-year survival 
rate, tumor recurrence, chemotherapy dose reduction, and 
treatment cycle extension of colorectal cancer patients after 
adjuvant chemotherapy. For 5-year survival, the AUC of 
the optimal prediction model was 0.612, the AUC of the 
optimal prediction model of cancer recurrence was 0.650, 
chemotherapy dose reduction was 0.542, and treatment 
cycle extension was 0.750. Martinez-Vernon et al. (19) used 
field asymmetric ion mobility spectrometry to analyze and 
determine the volatile organic compounds in the urine. 
These data used a variety of machine learning algorithms 
to build a diabetes prediction model, including random 
forests, sparse logistic regression, support vector machines 
and so on. Among them, the best AUC of the model based 
on sparse logistic regression was 0.825 [95% confidence 
interval (CI): 0.747–0.9], which could effectively identify 
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diabetes. These findings suggest that urine metabolomics 
is a promising additional tool for clinicians to use in disease 
diagnosis and prognosis assessments.

AI combined with urine RNomics
RNAs are key molecules that regulate protein synthesis 
and cell functions in the body. Urine generally contains 
a small amount of microRNAs, which regulate gene 
expression by binding to mRNA molecules and affect their 
stability or translation. Therefore, microRNAs are often 
specifically expressed during tumor occurrence. These 
abnormal microRNAs can act as molecular biomarkers to 
assist in tumor diagnosis, predict prognosis, and evaluate 
treatment responses, and can be detected and analyzed 
using AI (43,44). Sapre et al. (20) selected 12 microRNAs 
that may be related to the occurrence of bladder cancer 
through previous research and constructed a bladder cancer 
prediction model based on a machine learning algorithm. 
The study confirmed that the prediction model of bladder 
cancer was constructed by miR16, miR200c, miR205, 
miR21, and miR34a with 88 % sensitivity and 48% 
specificity. The AUC of the best predictor to distinguish 
patients with bladder cancer from non-recurrers was 0.85, 
especially for stage T1 bladder cancer with an AUC of 
0.92. The results suggest that this model can reduce the 
cystoscopy rate in the validation queue by 30 %. Connell 
et al. (21) constructed a prostate cancer prediction model 
based on urine-derived extracellular vesicle RNA. Through 
verification, the AUC of the model in diagnosing clinically 
significant middle and high-risk prostate cancer was 0.77. 
It also had a better predictive ability for the prognosis of 
prostate cancer patients who underwent active monitoring, 
providing a new direction for the non-invasive diagnosis 
of prostate cancer. The above results suggest that AI 
technology has high accuracy in diagnosing bladder cancer, 
prostate cancer, and other diseases based on the type and 
content of RNA in the urine.

AI combined with urine cytopathology
Under both physiological and pathological conditions, 
a variety of cells can be observed in urine, and most of 
them are of great significance to the diagnosis of urinary 
system diseases. White blood cells and pus cells in urine 
often indicate urinary system infection. Urine red blood 
cell morphology can be used to distinguish glomerular 
diseases from other diseases. The urinary tract’s epithelial 
cells come from the entire urinary system, from the kidney 
to the urethra. When urinary tract tumors occur, they 

can provide pathological evidence for diagnosis (45,46). 
Qin et al. (47) used support vector machines to efficiently 
recognize urine cell images, combined with hue saturation 
intensity color parameters, spatial parameters, and grid 
search cross-validation optimization selection parameters. 
Sanghvi et al. (22) developed a deep learning computational 
pipeline with multiple tiers of convolutional neural network 
models to process whole slide images  and predict diagnosis. 
The algorithm’s sensitivity was 79.5%, and the specificity 
was 84.5% for high-grade urothelial carcinoma. Similarly, 
Muralidaran et al. (23) built an artificial neural networks 
model to identify urothelial cell carcinoma based on the 
visual and morphometric data from urine cytology. This 
model diagnosed all the cases correctly in the test set, except 
a low-grade case, which was diagnosed as high grade.  

AI combined with urinary function
Lower urinary tract symptoms (LUTS) are common 
symptoms of urinary system diseases and mainly include 
symptoms that impact urinary storage and micturition 
period (48). The former refers to frequent urination, urinary 
urgency, increased nocturia, while the latter mainly refers to 
dysuria, thin urine line, slow urine flow and so on. LUTS 
are of great significance in diagnosing benign prostatic 
hyperplasia, urinary tract infection, neurogenic bladder, and 
other diseases. Moreover, Gacci et al. (49) found that older 
men with moderate to severe LUTS had an increased risk 
of cardiovascular events. Thus, LUTS are also significant 
for the diagnosis of some non-urinary diseases. However, 
the diagnosis of LUTS mainly depends on the patient’s 
description, urination log, and other methods at present, 
which have shortcomings of subjectivity and inaccurate 
record keeping, which makes it difficult to judge symptoms 
diagnose diseases. Heckerling et al. (24) combined artificial 
neural networks and genetic algorithms to evaluate urine 
and predict urinary tract infections. Firstly, they used 
genetic algorithms to select the 5 best urine variables that 
could be used to build predictive models, including urinary 
frequency, foul urine odor, leukocyte esterase on urine 
dipstick, and bacteria epithelial cells on urinalysis. Then 
they used artificial neural networks to construct a predictive 
model. The ROC area of the model for identifying urinary 
tract infection and non-infection was 0.853, and when the 
network output threshold was 0.25, the sensitivity was 0.821, 
the specificity was 0.744, and the accuracy was 0.764. Yuan 
et al. (50) established a machine learning algorithm based on 
the data collected by a portable urination recorder, such as 
daily urination volume, times, night urination volume, and 
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night urination times, to objectively evaluate the degree of 
patients’ LUTS and provide evidence for accurate diagnosis 
and individualized treatment of the disease.

Discussion

The application of AI in the medical field has a bright 
prospect. Taking China as an example, an average of  
57 million cases are misdiagnosed each year in clinical care, 
and the total misdiagnosis rate is as high as 27.6% (51).  
Both disease diagnosis and medical imaging analysis depend 
on the personal experience and subjective judgment of 
clinicians and imaging physicians. Therefore, in areas 
with poor medical conditions and weak medical systems, 
the chance of misdiagnosis and missed diagnosis is even 
higher. AI-assisted diagnosis technology can undoubtedly 
help to reduce misdiagnosis and missed diagnosis. Also, 
the development of big medical data has brought many 
possibilities for basic medicine and clinical diagnosis and 
treatment; however, the huge amount of data and redundant 
medical data are accumulating over time. AI technology 
can efficiently and accurately process this data and improve 
itself in the continuous accumulation and processing of data. 
It is unrealistic and inefficient to rely on humans to deal 
with this data. The above advantages are also well reflected 
in AI combined with urine detection. Urine-related data has 
the characteristics of large volume, easy collection, and rich 
information. The effective use of the data obtained from 
urine can help us understand many diseases’ pathological 
mechanisms and assist clinicians in diagnosis and treatment. 
It is noteworthy that urine collection is non-invasive and 
simple, providing new diagnostic methods and ideas for 
many diseases that rely on invasive procedures for diagnosis. 

Despite more and more research and AI achievements in 
medicine, there is still a long way to go before AI products 
are widely used in medical practice. Firstly, the lack of 
evaluation standards for AI in terms of effectiveness, clinical 
applicability, and safety is still a big problem for most 
countries. Taking the urinary proteome as an example, the 
type and content of protein in urine are closely related to 
gender, age, race, and laboratory platform level and are 
affected by the test’s storage temperature and whether 
protease inhibitors are added. Therefore, the internal 
scientificity and external applicability of disease evaluation 
models based on AI still need to be further verified. In 2016, 
the Food and Drug Administration issued the first guideline 
for evaluating AI systems, which provides preliminary 
specifications and standards for AI products’ clinical 

application (52,53). The guidelines and specifications are 
still in their infancy and need to be further established and 
improved.

Furthermore, as medicine-related AI products are for 
human application, this will raise many ethical issues, 
including medical safety and responsibility attribution. 
Misdiagnosis and missed diagnosis by doctors can cause 
damage and risks to patients. When AI products cause 
medical accidents, how will responsibility be divided? 
Will regional differences in the application of AI products 
lead to medical inequality? When the conclusion of AI is 
inconsistent with that of doctors, will it increase patients' 
distrust of doctors and hospitals and worsen the doctor-
patient relationship? These problems need to be solved in 
different cultural and social environments (54-58).

At present, the development of most AI products relies 
on a large amount of medical data. Through the collection 
and analysis of more and more extensive data, AI’s perandom 
forestsormance will further improve. These medical data 
involve patients’ basic information, such as name, gender, 
and age, and often involve privacy-sensitive information, 
such as past medical history, history of present illness, and 
family history. If the server or cloud storing this information 
is invaded, it will lead to patient information leakage and 
privacy breaches. Therefore, there is an unavoidable problem 
in applying AI in the medical field, that is, the contradiction 
between the efficiency of AI products and the privacy 
information of patients. If we want to improve AI’s efficiency, 
we will inevitably need more patient information, including 
sensitive and private information. If we want to fully respect 
and protect patients’ privacy, limiting the collection of their 
data will limit the effectiveness of AI products. Achieving a 
balance between the two is an ideal goal for the development 
of medical-related AI. However, this is a big challenge and is 
affected by disease types, national laws and regulations, and 
social cognition (59-61).

Conclusions

In summary, AI is conducive to making full use of the 
increasing amount of big data in medicine. In this article, 
we have demonstrated the use of AI in processing and 
analyzing urine detection data, such as urine proteins, urine 
metabolites, and urine RNA, which not only contributes 
to the early and accurate diagnosis of diseases but also 
provides new ideas for the non-invasive and simplified 
diagnosis of diseases. Currently, AI is still in the early 
stages of development, and urine-related AI is mostly used 
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in the auxiliary diagnosis of urinary system diseases. The 
accuracy and specificity of AI for diagnosis need to be 
further improved. However, with the rapid developments in 
computer technology and medicine, AI combined with urine 
detection is expected to become another important means 
of disease diagnosis and treatment and is also expected to 
be more widely used in the early diagnosis, treatment, and 
follow-up monitoring of various diseases.
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